
Intensional HTML

Bill Wadge, Gord Brown, m. c. schraefel, and Taner Yildirim

Department of Computer Science, University of Victoria

Victoria, B.C., V8W 3P6, CANADA

wwadge@csr.uvic.ca, gdbrown@csr.uvic.ca,

mc@csr.uvic.ca, taner yildirim@pml.com

Abstract. Intensional HTML is a high-level Web authoring language

that makes practical (using standard client and server software) the

speci�cation of pages and sites that exist in many di�erent versions or

variants.

Each page of IHTML de�nes an intension | an indexed family of ac-

tual (extensional) HTML pages which varies over a multi-dimensional

author-speci�ed version space. The version space is partially ordered by

a re�nement/specialization ordering. For example, platform:mac can be

re�ned to platform:mac+language:french or to platform:mac%k68 and

the last two both re�ne to platform:mac%k68+language:french.

Authors can create multiple labeled versions of the IHTML source for

a given page. Requests from clients specify both a page and a version,

and the server software selects the appropriate source page and uses it

to generate the requested actual HTML page.

Authors do not, however, have to provide separate source for each ver-

sion. If the server-side software cannot �nd a source page with the exact

version requested, it uses the page whose label most closely approximates

the requested version. In other words, it treats the re�nement ordering as

a (reverse) inheritance ordering. Thus di�erent versions can share source,

and authors can write generic, multi-version code.

1 The Versioning Phenomenon

Many documents created for publication are produced in di�erent variants or

versions, corresponding, say, to di�erent languages, di�erent levels of expertise,

di�erent dates or di�erent target audiences. In fact, most artifacts produced by

humankind (documents or otherwise) appear in families of related versions, and

the diversity in a family of documents (for example, user manuals) often simply

re
ects the corresponding diversity in a related family of more concrete entities.

The advent of the World Wide Web has, if anything, increased the pressure on

authors to create multi-version documents, for a number of reasons. Firstly, the

Web is international, and a truly international site must be available in many

di�erent languages. The bandwidth available to users varies greatly, so that

some appreciate high quality graphics while others prefer purely text pages.

Di�erent browsers have di�erent capabilities, for example, in terms of tables

and frames. Some sites o�er more material to paying subscribers while others



may want certain information hidden from outsiders. Some sites would naturally

o�er di�erent information (e.g. weather reports) to people in di�erent parts of

the world. Finally, site designers might want to o�er sites that are customizable

to take personal preferences (fonts, background colors) into account.

Furthermore, it seems at �rst sight that it should be easier to support on the

web than in print mediums. Web documents are fetched on demand, in response

to requests from individual users who could, if necessary, provide at the same

time relevant personal information (such as language or level of expertise). In

principle, server software could take these parameters as input and generate a

made-to-measure version of the requested document.

In practice, however, there are very few sites which allow themselves to be re-

con�gured according to user preferences. In particular, there are very few truly

multilingual sites. Even large international corporations, which typically pro-

vide multilingual versions of their front pages, soon revert to the \default" (i.e.

English) version for their inner pages.

The problem lies with the very nature of HTML. HTML certainly allows

pages to be generated on demand (through the CGI protocol) but provides no

real support for authors who use it. CGI is an escape from HTML. Instead,

authors usually stay with HTML and produce multi-version sites by cloning

source �les. Cloning works well in the short run, for a small number of versions,

but breaks down when the version space is large and when the family of sites

has to continue evolving.

In this paper we propose an alternate solution: we extend HTML to a (slightly)

higher level language which allows users to specify families of sites without the

user cloning or, in the current implementation, escaping through the CGI gate.

1.1 The Problem with Cloning

The easiest way to produce a variant of a web site is to make a copy of the HTML

source and modify it. Unfortunately, the cloning (copying/modifying) approach

to version creation can, in the long run, produce severe di�culties maintaining

the resulting families of versions. The problems arise when changes are required

in parts of the original that were copied unchanged into the new versions. The

same changes have to be made many times, in the sources for all the versions

which used the original code.

The inevitable result of the copy-and-modify approach is a large family of

clones which, as a group, is almost impossible to change in any uniform way.

The obvious solution is ensure that the di�erent members of the family share

the same code (and not copies thereof) so that necessary changes are made only

once and need not be propagated. To use Ted Nelson's terminology, we must

arrange that di�erent versions transclude the source they have in common.

This is easier said than done. In fact, exactly the same issues arise in the

production of software (the documents being programs), and software version

management is one of the most di�cult problems in software engineering. Indeed,

the success of the object oriented approach is due in part to class inheritance,

which allows code to be shared (reused) on a large scale.



HTML certainly allows two di�erent pages to link to a third, but this is a

very crude form of sharing. Links are essentially pointers, and the problem with

sharing via pointers is that you also share everything the shared object itself has

pointers to.

Consider the problem of supporting English and French versions of a simple

slide show. The slide show consists of a sequence of pages of text and/or graphics,

each linked to the next page in the sequence. Obviously, we have to create

separate English and French versions of pages with text on them. But we also

have to make clones of any pages that have only images, even though the French

and English versions will appear identical on the screen. The problem is that the

English version of the page in question must be linked to the rest of the English

version of the show, while the French version of the slide must be linked to the

rest of the French version. Two separate source �les are required.

2 The IHTML Solution

In this paper we present IHTML (Intensional HTML), an HTML-based author-

ing language which incorporates an object-oriented (inheritance based) approach

to hypertext versioning. IHTML allows authors to de�ne, with a single source

�le, a whole indexed family of HTML variants based on the �le in question.

These variants are generated on demand, then discarded after use. In a sense,

IHTML automates the cloning process, and eliminates the maintenance problem

by ensuring that the clones are short lived.

IHTML is intensional because IHTML source has both intensional and ex-

tensional meanings. The intension is the whole indexed family of HTML pages;

the extensions are the di�erent individual HTML pages.

The main feature of IHTML is that authors can provide multiple sources

for the same page, each source labeled with a di�erent version. The IHTML

server-side software accepts requests for particular versions of particular pages,

and generates the actual HTML from the appropriate IHTML source �les.

For example, in the case of the slide show, the author could name the pages

slide1, slide2, slide3, etc., and provide for each of these pages two source

�les, one English and one French.

IHTML authors do not, however, have to provide separate source �les for

every possible version. The IHTML index space (\version space") is partially

ordered by a re�nement relation, and the source for a more re�ned version is by

default inherited from the less re�ned (more generic) versions.

When the server-side software receives a request for a particular version of

a particular page (or part thereof), it looks for a source �le labeled with the

requested version. If there is no such source, it looks for a source �le whose label

most closely approximates the requested version (if there is no such source �le,

or no best source �le, it reports an error). More re�ned versions can therefore by

default transclude source from more generic ones, and a relatively small number

of source �les can de�ne a very large family of pages.



For example, suppose that the �fth slide is purely graphical. The author can

provide a single source �le, labeled as the standard (so-called \vanilla") version.

When a request comes for, say, the French version of page slide5, the server

software �rst looks for a source �le for that page labeled as the French version.

When it �nds none, it uses the more general standard version. Requests for the

English version are similarly referred to the single standard source.

2.1 IHTML Links and Includes

Normally, links in IHTML source look exactly like links in ordinary HTML. They

are interpreted, however, as denoting a whole family of links, each connecting

a given version of the page they appear in to the corresponding version of the

page they link to.

For example, suppose that the generic IHTML source for slide5 contains

the link <a href=page6>next page</a>. This is interpreted as meaning that

the English version of page5 is linked to the English version of page6, and that

the French version of page5 is linked to the French version of page6. When the

server software generates the French version of page5 from the generic source,

it makes the generic link into a link to the French version of page6 (this might

be the only change made).

IHTML also has a \server-side include" feature which causes the contents

of an included �le to be incorporated (by copying) into the HTML page under

construction. For example, each page of the slide show might have <!--#include

virtual=header --> at the top and <!--#include virtual=footer --> at

the bottom, to include a standard header and footer in all slides. (The syntax

was chosen to re
ect the server-side include syntax of the Apache WWW server.)

The IHTML includes are also generic; for example, the English version of

page4will include the English version of the header. When processing an include,

the server software looks for the version of the named source �le whose version

label most closely approximates the \current" version, i.e. the requested version

of the �le in which the include appears. Note that it looks for the requested

version of the included �le: the including page may exist in only a single, generic

version, but a more speci�c version of the included �le will be used if one can

be found.

The include facility is very important for IHTML because it allows authors

to break the source components into pieces smaller than a whole page. This

allows the author to isolate the parts of a page that actually vary, and write

more generic source for the parts (such as headers and footers) that do not.

Conversely, the author may write generic source for a page as a whole, and

include content which varies over whatever dimensions are appropriate.

2.2 The IHTML Version Space

The families of pages speci�ed by IHTML are indexed by (subspaces of) the

algebraically de�ned version space described in [1]. In the terminology of inten-

sional logic [2], the elements of this space are possible worlds ; each individual



possible world (version) determines a particular extension, i.e. an actual HTML

page.

The elements of the space described in [1] are expressions built up from

identi�ers using the operations + and %.

The % operator is the subversion operator: V%s is (by de�nition) a re�ne-

ment of V . For example, Mac%k68 is a subversion of Mac.

The + operator is the version join operator: the least upper bound in the

re�nement ordering. Intuitively, version V +W is the most general version which

incorporates the modi�cations/re�nements of both versions V and W . For ex-

ample, the Mac%k68+french version might be the version which is designed for

68K Macs and uses French as its interface language.

Elements (versions) are partially ordered by a re�nement operator: �. This

operator can be read as \is re�ned by", or \is more general than". For example,

V � W says that W re�nes V , or that V is more general (closer to \vanilla")

than W .

These ideas are formalized in the axioms presented in [1], for example:

V � V%W (1)

or

V%(W1 +W2) = V%W1 + V%W2 : (2)

The elements of this version space are equivalence classes of expressions together

with the coarsest order which satis�es the axioms. This space is similar to Pro-

log's set of Herbrand terms: a convenient collection of abstract symbolic objects

to which we can attach meanings.

The IHTML version space extends that of [1] in one important way: it allows

explicit dimensions [3].

For example, we interpreted the term french in the above expression as re-

ferring to the French language. What if we were producing information about

cooking and also needed to specify the cuisine? In the IHTML space, we can

use arbitrary identi�ers as dimensional \multipliers" and form sums that spec-

ify coordinates for each of the given dimensions. This enlarged space includes

expressions such as

platform:Mac%K68 + lang:french + cuisine:chinese .

The extra rules are:

D :" � " ; (3)

D : (V + V 0) � D :V +D :V 0 ; (4)

D :V � E :V 0 $ (D � E) and (V � V 0) : (5)

(Here " is the most general version: the standard or \vanilla" version.)

It should be clear now how to compare two dimension sums. In general:

D0 :V0 +D1 :V1 + : : : � E0 :W0 +E1 :W1 + : : : (6)



if and only if for each Di, either Vi = " or Di is equal to Ej for some j and

in that case Vi � Wj . (We assume that Di 6= Dj for i 6= j, and likewise for all

Ei and Ej . In other words, there are no duplicates among the dimensions in a

sum.)

2.3 Transversion Links

The second distinguishing feature of IHTML is the ability to de�ne what we

call transversion links. These are links that lead from the current version of the

source page to a di�erent version of the target page | di�erent in a way speci�ed

in the tag. Transversion links allow visitors to the site to move from one version

to another, without necessarily �lling in forms or composing complex URLs. At

the same time, they give the author full control over the way in which di�erent

versions of the site are interconnected.

A transversion link has the same format as an ordinary link, except that the

tag may contain assignments to dimension identi�ers. The link is interpreted as

leading from a given version of the source page to the modi�ed version of the

target page | the modi�cations resulting from altering the coordinates of the

given dimensions as speci�ed.

For example, the author of the slide show might include, in the English

versions of the source of the title page, a link of the form

<a href=page1 vmod="language:french"> .

In the (say) language:english + background:blue version of the title page,

this will be interpreted as a link to the language:french + background:blue

version of the �rst page. The \vmod" attribute de�nes a \version modi�er"

which is applied to the version of the current page.

Notice that following this link will take the reader to the French version of

the whole slide show. The reason is that the French version of page 1 is linked to

the French version of page 2, and so on. The English and French versions coexist

as sort of parallel universes, and the transversion links let the reader move from

one of these universes to the other.

IHTML also allows transversion includes, with a similar syntax. For example,

<!--#include virtual=footer.html vmod="language:english" --> will in-

clude the footer in a version like the current version except that the language

component is english.

IHTML also allows links to conventional (unversioned) HTML webware. We

call these extensional (or external) links. One could think of an extensional link

as a transversion link in which all the coordinates are set to ". Accordingly, the

syntax for an extensional link is <a href=... version="">. IHTML also has

an extensional include tag.

2.4 IHTML with Existing Browsers

It might seem from what has been said that IHTML requires its own version

of the server and client software. The requests from the client consist of a URL



and a version. Satisfying such a request involves searching for the appropriate

IHTML source �le and then transforming the generic source into the particular

HTML �le corresponding to the version in question.

In fact, a prototype implementation of IHTML has been developed that uses

existing browsers and existing server technology, by the author Yildirim (as part

of his Master's thesis [4], completed June 1997). The basic idea is to ensure

that all links to an IHTML-speci�ed page go through a CGI script. The call to

the script has two arguments, the generic URL and (a representation of) the

particular version requested. The CGI script invokes the server-side software

which locates the appropriate source �le and produces the HTML.

The server software itself ensures that all links are CGI calls. When the soft-

ware generates HTML from IHTML, it transforms the normal-looking generic

IHTML links into CGI calls with the appropriate parameters. The �rst param-

eter, the URL, is taken directly from the IHTML source of the link. The second

parameter, a version, is normally the same as the version included in the client

request. In the case of a transversion link, however, the software modi�es this

version according to the information in the IHTML source of the link.

The CGI-based implementation proves that the basic concept works well,

but it has some limitations. Performance is sometimes a problem, since there

is non-trivial overhead in running a large CGI script for every HTTP request.

In addition, URLs look strange to the user of the browser: everything starts

with the same path (the path to the CGI script), and there is an unexpected

numeric argument at the end of the URL. For these reasons (along with some

implementation-level problems), authors Wadge and Brown have produced an

entirely new implementation.

2.5 Current Implementation

The new version is an enhancement of the Apache WWW server [5]. Imple-

mented as an Apache plug-in module, it traps HTTP requests for versioned

entities (HTML pages, images, and so on), handling them separately, while let-

ting requests for non-versioned things be handled by the server as usual. In this

model, the user sees normal URLs, except that the name of a page has a ver-

sion embedded in it. For example, a (partial) URL for the \language:turkish"

version of page \zork.html" would be \zork.M1lw9qG3L4Bzjuee.html", given

that \M1lw9qG3L4Bzjuee" is the encoding of \language:turkish".This version,

although implemented as a modi�ed server, still uses normal browser software

(an essential feature, if the idea is to have any practical value whatsoever).

The implementation has three basic components: tools to aid the site designer

in constructing a versioned site, software in the server to translate the URL in

an HTTP request to a particular version of a particular �lename, and software

to translate IHTML source �les to HTML.

Tools. The current tool set is Unix-based, consisting of modi�ed \ls" and \cp"

commands, as well as a front end to the \vi" text editor (or some other editor

speci�ed by the user). \icp" and \ivi" allow the user to specify the version of



the �le that is to be copied or edited; \ils" lists the versions in which an IHTML

entity exists, in addition to the usual \ls" information. For example, to edit the

language:english+graphics:lowres version of page zork.html, the site de-

signer would use the command \ivi -v language:english+graphics:lowres

zork.html". To list the available versions of the �le, \ils zork.html". To copy

an unversioned �le alpha.html to the colour:blue version of zork.html, \icp

-v colour:blue alpha.html zork.html".

URL to Filename Translation. Two steps in this process are di�erent from the

usual translation process. First, the software must decide whether the URL refers

to a versioned object at all; if it doesn't, the IHTML component declines to han-

dle the request, and processing continues normally. If it does, then the second

step is to �nd the most relevant version of the requested �le. If the exact ver-

sion which was requested exists, it is chosen. If not, the software chooses the

most relevant version (the maximum element of the set of less speci�c versions),

assuming one exists. If none exists (the set has no unique maximum element,

or there are no less speci�c versions), the usual HTTP \404" error is returned,

indicating that the URL doesn't exist.

IHTML to HTML Translation. IHTML �les may contain tags and/or tag at-

tributes that must be transformed to standard HTML before �les are sent to the

browser. There are two basic transformations. First, a normal HTML tag, such as

img, might have an attribute modi�ed to include a version code: \src=pic.gif"

becomes \src="pic.zj94kaz9zll- a.gif"", supposing that \zj94kaz9zll- a"

is the representation of the version of interest. The modi�cation will consider the

current version of the page, as well as any version-modifying attributes present

in the tag. Any tag attribute which refers to a �le or URL is a candidate for

modi�cation. Second, any IHTML-speci�c tag will be replaced by whatever it in-

dicates. For example, an include tag will be replaced by the appropriate version

of the �le named in its virtual attribute. With one exception, to be described

shortly, text outside of tags is echoed verbatim to the browser.

Additional IHTML Features

Executable Includes. As with standard Apache server-parsed documents, IHTML

�les may include the output from the execution of arbitrary Unix programs

(scripts or otherwise). The di�erence, naturally, is that IHTML executables may

exist in multiple versions, with the appropriate version being chosen in the usual

IHTML manner.

Explicit Versions. As well as links, includes, and so on which modify the current

version of the page, it is also possible to specify the exact version of a link,

include, or whatever. This feature is particularly useful when including links to

other versioned sites, with version spaces di�erent from that of the current site.



Structured Documents. HTML documents are already structured by their HTML

tags, of course. However, IHTML allows a higher level of structure which de-

scribes which parts of a document to include in which versions. It behaves rather

like a C-language \switch" statement: \If the current version is a re�nement of

version `a', include the following IHTML fragment. If it is a re�nement of version

`b', include this other fragment", and so on. This feature can save the site de-

signer from creating many small �les for minor variations of a �le. Rather than,

say, including a �le which varies in the background dimension, to set the back-

ground colour for a document which doesn't otherwise vary in this dimension,

the designer can simply specify a series of alternatives (based on the value of the

background dimension) at the top of one �le, which set the background colour

to the appropriate value.

3 A Sample Intensional Site

Author Yildirim has produced a fairly elaborate multi-version home site (view-

able using standard browsers) at URL

http://csr.uvic.ca/~taner/cgi-bin/scan.cgi .

(This site uses Yildirim's cgi-based implementation, but will soon be converted

to run using the Apache-based implementation.)

At �rst sight, it looks like a fairly normal home page. One can follow links

to related pages with Mr. Yildirim's biographical details, r�esum�e, course work,

and favorite bands and beers.

However, at the bottom of each of these pages is a link anchored to the phrase

\Turkish version of this site". When we click it, the text on the page changes

from English to Turkish.

The words are well chosen: if we proceed to explore the site again, we �nd

the r�esum�e, the course work, the bands and so on, but all these pages are in

Turkish. We are now in the Turkish version of the whole site, not just of the home

page. At the bottom there is an anchored phrase containing the words \ingilizce

versiyonu" and, not surprisingly, it leads us back to the English version of the

site.

Each page also o�ers us a similar transversion link to the text-only version

(actually, versions) of the site.

Finally, on the home page there is a link anchored (in the English versions)

to the phrase \Background Options". It takes us to a page with several small

anchored images | background colors or patterns. Following, say, the link an-

chored to the orange square takes us to the home page of a version of the site in

which all the pages have an orange background.

Note that we can view the di�erent versions of the site with a standard

browser, just by following links, without �lling in forms or otherwise composing

complex URLs. In fact, we do not need to know anything about the version

algebra, including the fact that it exists at all.



The site described above uses an eight-dimensional version space. The di-

mensions are language, display, background, date, category, order, text,

and link.

The language and display dimensions have two coordinate values each:

english/turkish and text/graphics, respectively. In other words, the coor-

dinate in the language dimension has either the value english or the value

turkish, and the coordinate in the graphics dimension has either the value

text or the value graphics.

The background dimension has thirty possible coordinate values and the

text and link dimensions have twenty seven possible values.

Four distinct dates are used as the update dates.

The category dimension has six coordinate values: humor, sports, music,

movie, software, weather.

The order dimension has two coordinate values: ascending and descending.

The site consists of thirteen intensional pages, each available in all versions

| a total of more than 4.5 million virtual HTML pages (not every page varies

in every version). The original one-version HTML program for the site consisted

of about 38K bytes divided into 13 di�erent �les. The IHTML source consists of

192 �les, but most of them, 94, are tiny �les | consisting typically of a single line

(such as background=image/sky.gif or text="#FF00FF" link="#0000FF").

There is a total of 107K bytes of IHTML source | and most of the extra

is Turkish versions of the original English text. These 107K bytes of IHTML

source supports a virtual site which would correspond to over 13G bytes of

cloned HTML.

4 Future Directions

The intensional approach to variation described here can be applied to any

indexable family of pages, whether or not one might currently consider them to

be \versions" of a single page.

For example, the slides in the slide show are obviously indexed by the natural

numbers. We can therefore consider them to be variants of \the" slide, and add

a page number dimension to our version space. This would allow us to have a

single generic IHTML source for all the slides, which would have headers, footers,

logos, color choices etc. The generic slide page would include a body �le, which

itself would vary over the page number dimension.

If we have a number of di�erent slide presentations, we could in turn consider

them to be versions of \the" presentation, and write an even more generic page

for all our presentations.

At a university site, the pages for di�erent departments could be produced

as versions of a single generic department page that varies over the department

dimension. Similarly, the di�erent faculty pages could be treated as a family

varying over a professor dimension.

A page which changes every day, e.g. that of a newspaper, can clearly be

indexed by the set of dates. If we add a date dimension, we can write generic



source which speci�es parts of the layout (such as mastheads) that are invariant.

We can extend our scheme by allowing source pages to be labeled by intervals,

with the understanding that the source is valid for requests whose date coordi-

nate lies in the interval. This idea is described in more detail in [6], where it is

pointed out that it amounts to treating the Web as a kind of reactive system.

5 Aggregating Lists

In [7] author schraefel describes how the IHTML approach could be applied to

a non-technical document | speci�cally, an essay on Wuthering Heights. The

plan is to allow the reader to specify a set of parameters which identify the

aspects of the essay in which they are particularly interested. They could specify

a particular character, or that character's relation to a second character, an issue,

degree of depth (from an abstract to a full essay) and a degree of documentation

(from none, to complete footnotes and a full bibliography).

It soon became clear that early versions of IHTML would have di�culty with

some aspects of this design, in particular the parameters that de�ne intensities,

and the speci�cation of lists.

The problem with the original IHTML is that it is based on the standard

object-oriented inheritance convention: given a request for a particular version

of the page, we search for the most relevant (least generic) applicable source

document. In forming a list, however, we want to pull in all (not just the most)

relevant items.

As a result, both implementations of IHTML have a feature which allows a

list to be formed by taking all relevant versions, not just the most relevant. In

the latest implementation, this takes the particularly simple form of a variant

of the C-like switch statement which concatenates all the bodies whose version

conditions are relevant.

This simple extension could have many applications | consider how much

of the information on the Web is composed of lists of some sort. With the

aggregation extension, users can �ne-tune the size and criteria for forming a

list, and choose various formats for displaying it.

References

1. J. Plaice and W. W. Wadge, \A New Approach to Version Control", IEEE Trans-

actions on Software Engineering, March 1993, pp268{276.

2. R. Thomason, editor, Formal Philosophy, Selected Papers of R. Montague, Yale

University Press, 1974.

3. J. Plaice and S. Ben Lamine, \Eduction: A General Model for Computing", in E.

A. Ashcroft, editor, Intensional Programming II, Singapore: World Scienti�c, 1997.

In Press.

4. T. Yildirim, Intensional HTML, MSc Thesis, Computer Science Department, Uni-

versity of Victoria, 1997.

5. B. Behlendorf et.al, The Apach HTTP Server Project, httpd://www.apache.org/.



6. W. Wadge and A. Yoder, \The Possible-World Wide Web", in Mehmet A. Orgun,

Edward A. Ashcroft, editors, Intensional Programming I, pages 207{213. Singa-

pore: World Scienti�c, 1996. (also available at http://lucy.uvic.ca/oo.html).

7. m. c. schraefel, Talking to Antigone, PhD Dissertation (interdisciplinary), Univer-

sity of Victoria, 1997.


