Skip to main content

On the Sample Complexity for Neural Trees

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1501))

Abstract

A neural tree is a feedforward neural network with at most one edge outgoing from each node. We investigate the number of examples that a learning algorithm needs when using neural trees as hypothesis class. We give bounds for this sample complexity in terms of the VC dimension. We consider trees consisting of threshold, sigmoidal and linear gates. In particular, we show that the class of threshold trees and the class of sigmoidal trees on n inputs both have VC dimension Ω(n log n). This bound is asymptotically tight for the class of threshold trees. We also present an upper bound for this class where the constants involved are considerably smaller than in a previous calculation. Finally, we argue that the VC dimension of threshold or sigmoidal trees cannot become larger by allowing the nodes to compute linear functions. This sheds some light on a recent result that exhibited neural networks with quadratic VC dimension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with queries. Journal of the Association for Computing Machinery, 40:185–210, 1993.

    MATH  MathSciNet  Google Scholar 

  2. M. Anthony and N. Biggs. Computational Learning Theory. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  3. E. B. Baum and D. Haussler. What size net gives valid generalization? Neural Computation, 1:151–160, 1989.

    Article  Google Scholar 

  4. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the Association for Computing Machinery, 36:929–965, 1989.

    MATH  MathSciNet  Google Scholar 

  5. T. M. Cover. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers, 14:326–334, 1965.

    Article  MATH  Google Scholar 

  6. T. M. Cover. Capacity problems for linear machines. In L. N. Kanal, editor, Pattern Recognition, pages 283–289, Thompson Book Co., Washington, 1968.

    Google Scholar 

  7. P. W. Goldberg and M. R. Jerrum. Bounding the Vapnik-Chervonenkis dimension of concept classes parameterized by real numbers. Machine Learning, 18:131–148, 1995.

    MATH  Google Scholar 

  8. M. Golea, M. Marchand, and T. R. Hancock. On learning Μ-Perceptron networks with binary weights. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Information Processing Systems 5, pages 591–598. Morgan Kaufmann, San Mateo, CA, 1993.

    Google Scholar 

  9. M. Golea, M. Marchand, and T. R. Hancock. On learning Μ-Perceptron networks on the uniform distribution. Neural Networks, 9:67–82, 1996.

    Article  Google Scholar 

  10. T. R. Hancock, M. Golea, and M. Marchand. Learning nonoverlapping Perceptron networks from examples and membership queries. Machine Learning, 16:161–183, 1994.

    Google Scholar 

  11. D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation, 100:78–150, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Karpinski and A. Macintyre. Polynomial bounds for VC dimension of sigmoidal and general pfaffian neural networks. Journal of Computer and System Sciences, 54:169–176, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Koiran and E. D. Sontag. Neural networks with quadratic VC dimension. Journal of Computer and System Sciences, 54:190–198, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  14. N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285–318, 1988.

    Google Scholar 

  15. W. Maass. Neural nets with superlinear VC-dimension. Neural Computation, 6:877–884, 1994.

    Article  MATH  Google Scholar 

  16. W. Maass. Vapnik-Chervonenkis dimension of neural nets. In M. A. Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 1000–1003. MIT Press, Cambridge, Mass., 1995.

    Google Scholar 

  17. W. Maass, G. Schnitger, and E. D. Sontag. A comparison of the computational power of sigmoid and Boolean threshold circuits. In V. Roychowdhury, K.-Y. Siu, and A. Orlitsky, editors, Theoretical Advances in Neural Computation and Learning, pages 127–151. Kluwer, Boston, 1994.

    Google Scholar 

  18. W. Maass and G. Turán. Lower bound methods and separation results for on-line learning models. Machine Learning, 9:107–145, 1992.

    MATH  Google Scholar 

  19. A. Sakurai. Tighter bounds of the VC-dimension of three-layer networks. In Proceedings of the World Congress on Neural Networks WCNN’93, volume 3, pages 540–543, 1993.

    Google Scholar 

  20. L. SchlÄfli. Theorie der vielfachen KontinuitÄt. Zürcher & Furrer, Zürich, 1901. Reprinted in: L. SchlÄfli, Gesammelte Mathematische Abhandlungen, Band I, BirkhÄuser, Basel, 1950.

    Google Scholar 

  21. J. Shawe-Taylor. Sample sizes for threshold networks with equivalences. Information and Computation, 118:65–72, 1995.

    Article  MATH  Google Scholar 

  22. L. G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–1142, 1984.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmitt, M. (1998). On the Sample Complexity for Neural Trees. In: Richter, M.M., Smith, C.H., Wiehagen, R., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 1998. Lecture Notes in Computer Science(), vol 1501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49730-7_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-49730-7_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65013-3

  • Online ISBN: 978-3-540-49730-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics