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ABSTRACT

This paper  presents an extension of Bayesian networks (BN) applied to reliabil ity analysis.
We developed a general methodology for modelling reliabil ity of complex systems based
on Bayesian networks. A reliabil ity structure represented as a reliabil ity block diagram is
transformed to a Bayesian network representation, and with this, the reliabil ity of the
system can be obtained using probabil ity propagation techniques. This allows for
modell ing complex systems, such as a bridge type, and dependencies between failures,
which are difficult to obtain with conventional reliabil ity analysis techniques. The relation
between a BN and fault tree, and some advantages of BN for modeling system reliabil ity
are shown. We present some examples of the application of this methodology in solving
difficult cases, which occur in reliabil ity analysis of real systems, such as power plants.

Keywords: knowledge representation, model-based reasoning, probabil istic reasoning, Bayesian
networks, reliabil ity analysis.
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BAYESIAN NETWORKS FOR RELIABILITY ANALYSIS
 OF COMPLEX SYSTEMS

ABSTRACT

This paper  presents an extension of Bayesian networks (BN) applied to reliability analysis. We developed a
general methodology for modelling reliability of complex systems based on Bayesian networks. A reliability
structure represented as a reliability block diagram is transformed to a Bayesian network representation, and
with this, the reliability of the system can be obtained using probability propagation techniques. This allows
for modelling complex systems, such as a bridge type, and dependencies between failures, which are difficult
to obtain with conventional reliability analysis techniques. The relation between a BN and fault tree, and
some advantages of BN for modeling system reliability are shown. We show some examples of the
application of this methodology in solving difficult cases, which occur in reliability analysis of power plants.

Keywords: knowledge representation, model-based reasoning, probabilistic reasoning, Bayesian networks,
reliability analysis.

I. INTRODUCCTION

Complex industrial plants and equipment for critical applications, such as power plants, require a
high reliability, i.e., a very low probability of failure. For this, there are statistical techniques that
can predict the reliability of a complex system based on its structure and the reliability of each
component. Some traditional techniques for reliability analysis have several important
limitations, including the assumption that all the failures are independent and that the rate of
failure is constant (exponential model). Also, building the model used to calculate the reliability
of the system is a difficult and complex task, so an expert reliability engineer is usually required.

It should be clear that failure prediction is difficult to be done. However, for a period of time
given, the probability of failure can be obtained by applying probability theory. In the context of
this work, reliability is the probability that the equipment performs its intended functions
satisfactorily or without failure, for a mission time under specific design and environmental
conditions. The reliability of complex equipment depends on the individual reliability of its
elements.

The motivation for developing this work is to obtain a computational method that can incorporate
explicitly dependencies between failures and include the effects of maintenance in the reliability
analysis of complex systems in operation. A Bayesian network is used to represent the system
reliability structure, and obtain its reliability via probability propagation. With this representation
the limitations of other techniques are avoided, so it is possible to manage dependencies and non-
exponential distributions.

The document is divided in six parts. The second part summarizes the theory of Bayesian
networks and general aspects of reliability analysis. The third part focuses on dependency
between failures in reliability analysis and the fourth part presents a procedure for systems
reliability modelling supported by Bayesian networks. The following part presents an application
to reliability analysis of power plants. Finally, the conclusions and future work are presented.
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II. GENERAL ASPECTS OF BAYESIAN NETWORKS AND RELIABILITY ANALYSIS

A. Bayesian Network

Bayesian networks are directed acyclic graphs (DAG), see figure 1, in which the nodes represent
propositions (or variables), the arcs signify direct dependencies between the linked propositions,
and the strength of these dependencies are quantified by conditional probabilities [Pearl 86]. Such
graphical structures, known also as influence diagrams or belief networks, are used for
representing expert knowledge.  The graph represents a set of random variables and its
dependency and independency relations. It is used to estimate the posterior probability of
unknown variables given other variables (evidence), through a process known as probabilistic
reasoning. This generates recommendations or conclusions about a particular problem, and can
be used for explanation, the process of communicating the relevant information to user.

When the graph is used for diagnosis it is called a probabilistic expert system. In this context, the
reasoning is based on dependency relations: fault-symptoms, cause-effects, hypothesis-evidence.
Every fault and symptom is modeled by random variables with a finite range of possible values.
A graph is constructed with a node for each variable and it has an edge (arc) from one node,
which represents a fault to another node which represents a symptom, e.g. the symptom C is
dependent on A in figure 1.

A

F

E

DCB

Figure 1. Example of a directed acyclic graph.

Probability propagation

The topology of a network gives the dependency relations between the variables implicated. It
represents which variables are conditionally independent given another variable. Following figure
1, C is conditionally independent of D, given E if

P(C|D,E)=P(C|E)

The main advantage of Bayesian networks is the representation of the joint probability
distribution of the variables, this probability can be expressed as a product of the conditional
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distributions of each node given its direct influences (parents) in the graph. Hence, letting pa(v)
denote the parents of node v, the graph implies that the joint distribution p(v) has the form:

( )p V p v pa v
v

( ) ( )=
∈
∏

 V

(1)

This is also known as a recursive model with respect to some DAG. Thus, for example, the model
for figure 1 is equivalent to:

P(A,B,C,D,E,F) = P(F|E)·P(E|C,D)·P(D|A)·P(C|A)·P(B|C,D)·P(A) (2)

The reasoning mechanism used for diagnosis is deductive. It consists in instantiating the input
variables (symptoms or evidences) and propagating their effect through the network to update the
probability of the hypothesis (fault) variables. The propagation procedure is based on Bayes
theorem and the structure of dependencies of the network. This can be implmented through
communications between neighboring nodes, by local operations, and by sending messages
between connected nodes in the network [Pearl 88]. The posterior probabil ity of any variable can
be calculated by the product of the evidence (V) from its parents and its sons, using Bayes
theorem.

Propagation in trees

A tree structured network has only one node, called root node, without parents and the rest of the
nodes have only one parent.

In a tree, any node (C) can be a point of division in two independent sub-trees. A subtree contains
as root the node of division and is denoted by (-), the data contained in this subtree represents the
evidence V-, the remainder of the tree is denoted by (+) with evidence V+ [Neapolitan 90].
Therefore, the posterior probability of any variable (C)  can be obtained by Bayes theorem as:

P(Ci|V)=P(Ci)P(V+,V-|Ci)/P(V)             (3)

But since both sub-trees are independent, and with Bayes theorem further applied, we have:

P(Ci|V)=∝P(Ci|V+)P(V-|Ci)               (4)

Where α is a normalization constant.

If we define:

π (Ci) = P(Ci | V+)                  (5)

λ (Ci) = P(V-|Ci )                 (6)
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Replacing the equations (5) and (6) in (4), we obtain:

P(Ci | V ) = ∝  π(Ci)  λ(Ci)                 (7)

The above equation offers a way to update the probabilities of any node C as a product of the
evidence V of its ascendants nodes (π) and of its descendant nodes (λ).

Propagation in polytrees or simply networks connected

A polytree is a network in which a node can have more than one parent, without multiple paths
between nodes (figure 2).

F G

BA

C ED

Figure 2. Example of polytree.

The propagation of probabilities in polytree structures is very similar to the case of tree networks
[Neapolitan 90]. The principal difference is that polytrees require the conditional probability of
each node given all its parents nodes. In similar form that the treatment of networks with tree
structure, for the case of polytrees an expression to obtain the probability of any node given some
evidence can be deduced [Pearl 88].

Consider a typical fragment of a singly-connected network, consisting of a node Bi, the set of all
parents of Bi, V

+={V1
+, · ··V1

+}, and the set of all children of Bi, V
-={V1

-, ···V1
-}. As before, let V

be the total evidence obtained, so that:

P(Bi|V) = αP(Bi|V1
+
,···Vn

+
)P(Vn

-
|Bi)· ··P (Vm

+
|Bi)                         (8)

Dividing the polytree in two parts, V+ and V -, it is possible to obtain a mechanism for  local
probability propagation similar to the one for trees.

The algorithm for probability propagation in polytrees is very efficient, so the computation time
is nearly proportional to the diameter (largest path) of the network. For multiconnected networks
probability propagation is more complex and their are several algorithms based con clustering,
conditioning and stochastic simulation [Pearl 88, Neapolitan 90].
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B. System Reliability

In reliabil ity analysis, we can distinguished three characteristic types of failures which may be
inherent  in the behavior of the equipment [Bazovsky 61]. First, there are the failures which occur
early in the life of a component, they are called early failures and in the majority of the cases are
the result of a poor manufacturing and quality-control techniques during the production process.
Secondly, there are failures which are caused by wearout of parts. These occur in an equipment
only if it is not properly maintained or not maintained at all . Thirdly, there are the so called
"chance" failures. These failures are caused by sudden cumulative stress summation  beyond the
design strength of the component. Chance failures occur at random intervals, irregularly and
unexpectedly.

Reliabil ity analysis differentiates between early, wearout, and chance failures for two main
reasons. First, each one of these types of failures follows a specific statistical distribution and
therefore requires a different mathematical treatment. Second, different methods must be used for
their elimination or correction.

In reliabil ity analysis of a complex system, is nearly impossible to model the complete system.
The logical process to accomplish this is to divide the system in smaller elements, units,
subsystems, or components. The main assumption is that every entity has two states, success and
failure (although some times three or more are needed). The subdivision generates a  “block
diagram” that is similar to the description of systems in operation [Fullwood, Hall 88]. The
models are then fixed to this structure, and they utilize probabilistic techniques to calculate the
reliability of the system in terms of the reliabil ity of the subdivisions [Shooman 68].

To evaluate the adequate performance, an observation of inadequate performance in operation is
required, therefore, the frequency at which malfunctions and failures occurs it is used as a
parameter for a mathematical formulation of reliabil ity. This parameter is called failure rate; it is
usually measured in number of failures per unit operating hour. Its reciprocal value is called the
mean time between failures and this is measured in hours [Bazovsky 61].

III. DEPENDENCY BETWEEN FAILURES IN RELIABILTY ANALYIS

Our objective is to build a versatile computational tool capable of evaluating the reliabil ity during
useful life or wear out of complex systems. Traditionally, fault trees [Fullwood, Hall 88] are used
for reliability analysis. However, this technique has its limitations. It usually asumes independent
events and it is difficult to model dependency between events or faults.

Dependent events can be found in reliabil ity analysis in the following cases:

1) Common causes. Some condition or event which provokes multiple elemental failures is
called a common cause. For instance, fire or flood may cause simultaneous failures of sets of
components. Thus, under these conditions, component failures are no longer independent.
Other sources of common cause are aging, human error and system environment in general.
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2) Mutually exclusive primary events. Consider the basic events: “switch fails to close” and
“switch fails to open”. These two basic events are mutually exclusive, i.e., the ocurrence of one
basic event preculdes another. Thus we encounter dependent basic events when a fault tree
involves mutually exclusive basic events.

 
3) Standby redundancies. When an operating component fails, a standby component is put into

operation, and the redundant configuration continues to function. Thus, components failures
are not statistically independent, since the failure of an operating component causes a standby
component to be more susceptible to failure.

 
4) Components supporting loads. Assume that a set of components supports loads such as

stresses, currents, etc. A failure of one component increases the load supported by the other
components. Consequently, the remaining components are more likely to fail , and we can not
assume statistical independence of components.

 
Bayesian networks allow to represent explicitly dependencies between failures as above
mentioned. We suggest to employ this approach to solve reliability analysis of complex systems,
in particular when there are dependent failures.

IV. PROCEDURE FOR SYSTEM RELIABILITY MODELING

The procedure suggested for reliability analysis based on Bayesian networks consists in defining
the conditional probability matrix equivalent to series-parallel configurations of simple systems
(as the AND-OR gates utilized in fault trees). Being the reliability block diagram a methodology
commonly used for reliabilty analysis, we will refer it to introduce the representation with BN.
Reliabil ity analysis begins with the construction of a reliabil ity block diagram of the system
which is a graphic representation where every component is represented as a block or rectangle
connected to other components, in series or in parallel form.

 
 Considering a series or parallel system with only two components, figure 3, its representation as

Bayesian network looks like figure 4 with one additional node, X. We use circles for representing
series systems and squares for parallel system.

 
 
                                           
 

 
 
 

 Figure 3. System Reliabil ity Block Diagram: (a) series, (b) parallel.
 

A B

B

A

(a) (b)
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 Figure 4. Bayesian Network for two components (a) series system, (b) parallel system
 
 According to equation (1), the joint probabil ity of the series system is:
 

 P(X,A,B) = P(X/A,B) P(A,B) (9)
 

 where the elements of the columns of the conditional probabil ity matrix, P(X/A,B), are the
combination of the parent nodes states: A,B are operating, A is operating and B is failed, A is
failed and B is operating, and A ,B are failed. The first row represents the success probability of
the system given the information of A and B. This matrix is equivalent to an AND gate:    
 

 







1   1   1   0

0   0   0   1
 = ),/( BAXP (10)

 
 The elements of the P(A,B) matrix are taken from the marginal probability P(A) and P(B), for

example P(a’ b) is the probability that component A is in a failure state and component B in an
operating state.

 

  ( , ) =  

 

'

 '

' '

P A B

a b

a b

a b

a b



















(11)

 
 In the parallel case only the conditional probability matrix is modified, such matrix is equivalent

to an OR gate [Schwarzblat et al 80]:
 

 P X A B( / , ) =  
1   1   1   0

0   0   0   1









 (12)

 Following the above scheme, the generalization for multiple components is not difficult. For
instance, for a three component system, which require two components functioning, the
probabilit y matrix wil l be:
 

 







1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1
 = C)B,P(X/A,

X

A B

(a)

X

A B

(b)
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V. APPLICATIONS TO RELIABILITY ANALYSIS

 
 A. Complex combination of serie-parallel system
 
 In order to exemplify the advantages of using BN, consider the schematic reliabilit y block
diagram in figure 5. This system is known as bridge type. The system is operable if at least one of
the paths AC, BD, AED o BEC are good.

 
 
 
                    A        C
 
                   E
 
                   B        D
 

 Figure 5. Reliabilit y block diagram.
 

 The usual method to compute the reliabilit y is selecting a component, and consider two
alternatives: the component is working (good) or the component has failed (bad) [Bazovsky
1961]. In this case the E element is chosen, which is the best choice to simplify the solution. The
system is divided in two subsystems, one when E is considered as good,  and other where E has
failed.
 
 
 A C
 
 
 
 
 B D

 
 Figure 6 (a). Subsystem considering E “ good” .
 
 
 A C
 
 
 
 B D
 
 Figure 6 (b). Subsystem considering E “ bad” .
 

 When a set of subsystems are defined utili zing series-parallel connected configurations, the total
reliabili y could be evaluate applying Bayes’ theorem. The probabilit y distribution in terms of
conditional probabiliti es is P(X) = P(X/E= good) P(E=good) + P(X/E=bad) P(E=bad). See
figure 6(a) and 6(b).
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 The preceeding method is laborious. However, using a BN approach the solution is simplified so
the system reliability can be obtained from single network. A graphic representation for the
bridge system in the scheme of BN is shown in figure 7. We have developed an algorithm for
buiding automatically a BN representation from the reliability block diagram.
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 7. Bayesian Network of a complex system.

 
 For example, if the A,B,C,D, and E components have 0.1 as success probability value, the system

reliability is 0.9785 and its failure probability 0.0215. To obtain these values, we apply probabilty
propagation tecniques (in this case, it is a multiconnected network) to the network in figure 7,
obtaining the probabilities for the intermediate nodes (Si) and for the complete system (P). For
this particular case, the results for the subsystems are:
 

 P(S1)= P(S4)=(0.729, 0.271)
 P(S2)= P(S3)=(0.810, 0.190)

 
 

 B. Reliability of dependent components
 

 Suppose three independent sources of shock are present in the environment [Henley and
Kumamoto, 1992]. A shock from source 1 destroys component 1; it ocurrs at a random time U1,

where [ ]P U t e
t

1
1> =

−λ
. A shock from source 2 destroys component 2; it occurs at random

time U2, [ ]P U t e
t

2
2> =

−λ
. Finally a shock form source 3 destroys both components, it occurs

at random time U12, where [ ]P U t e
t

12
12> =

−λ
. Thus the random life length T1 of component 1

satisfies:
 

 T min U U1 1 12= ( , ) ,
 

 while the random life length T2 of component 2 satisfies:
 

 T min U U2 2 12= ( , )
 

A B C D E

S1 S2 S3 S4

 P
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A BN model for this example of  dependent failures is shown in figure 8, where Si represents the
i-th source and Ci the i-th component. The system states are assigned to X. In this case, all the
conditional probability matrix are defined equivalent to AND gates.

 
 
 
 
 
 
 
 
 
 

 Figure 8. Bayesian network of a system with common cause failures.

 Reliability and failure probability of the system is obtain by applying the conventional procedure
for probability propagation for multiconnected networks. Reliability results for particular values
are shown in table 1.

Node Reliability
S1 0.9417
S2 0.9048
S3 0.9980
C1 0.9398
C2 0.9030
X 0.8504

Table 1. Reliability (probability of success) for a system with common cause failures.

VI. CONCLUSIONS

Bayesian networks are an alternative technique for the systems reliability analysis with an ample
potential of application. They are based on the management of conditional probability and on
probability propagation. BN have a strong similirity to fault trees. In fact, fault trees could be
viewed as a specific case of BN. One of the advantages of using Bayesian networks is the explicit
representation of dependencies.

In this paper we have presented a general methodology for modelling reliability of complex
systems based on Bayesian networks. A reliability structure represented as a reliability block
diagram can be transformed to a Bayesian network representation, and with this, the reliability of
the system can be obtained using probability propagation techniques. This allows for modelling
complex systems, such as a bridge type, and dependencies between failures, which are difficult to
obtain with conventional reliability analysis techniques.

S1 S2 S3

C1
C2

X
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This approach also allows a combination of information sources (objective and subjective) and
the selection of the best probabil istic model according to the distribution and the structure of the
system. The combination of information sources could be applied to avoid the lack of information
in data bases of certain areas for reliabil ity analysis. For example, in the case of the majority of
the power plants, the information is augmented with the estimates obtained by operators or
maintenance personal. The combination of these sources permits to increase the precision of the
system reliabil ity estimation.

Another future direction for research is to use this type of models for design. In this case, we can
set the desired reliabil ity of the system and obtain the required reliabil ity of each compnent, using
the same probability propagation techniques.
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