
A Theory of Atomic Transactions

Nancy Lynch, M.I.T.
Michael Merritt, AT&T Bell Labs

William Weihl, M.I.T.
Alan Fekete, M.I.T.

Abstract:

This paper describes some results of a recent project to develop a theory for reasoning about atomic
transactions. This theory allows careful statement of the correctness conditions to be satisfied by
transaction-processing algorithms, as well as clear and concise description of such algorithms. It also
serves as a framework for rigorous correctness proofs.

1 Introduction
The notion of "atomic transaction", originally introduced for databases, is now used in programming

systems for general (data-oriented) distributed computing such as Argus [Liskov] and Camelot [SS].
Roughly speaking, a transaction is a sequence of accesses to data objects; it should execute "as if" it ran
with no interruption by other transactions. Moreover, a transaction can complete either successfully or
unsuccessfully, by "committing" or "aborting". If it commits, any alterations it makes to the database
should be lasting; if it aborts, it should be "as if" it never altered the database at all. The execution of a
set of transactions should be "serializable", that is, equivalent to an execution in which no transactions
run concurrently and in which all accesses of committed transactions, but no accesses of aborted
transactions, are performed. Another condition often considered is "external consistency", which asserts
that the order of transactions in the equivalent serial execution should be compatible with the order in
which transaction invocations and responses occur.

In order for transactions to be useful for general distributed programming, the notion needs to be
extended to include nesting. Thus, in addition to accesses, a transaction can also contain
subtransactions. The transaction nesting structure can be described by a forest, with the top-level
transactions at the roots and the accesses to data at the leaves. The semantics of nested transactions
generalize those of ordinary transactions as follows. Each set of sibling transactions or subtransactions
is supposed to execute serializably. As for top-level transactions, subtransactions can commit or abort.
Each set of sibling transactions runs as if all the transactions that committed ran in serial order, and all
the transactions that aborted did not run at all. An external consistency property is also required for each
set of siblings.

Nested transactions provide a very flexible programming mechanism. They allow the programmer to
describe more concurrency than would be allowed by single-level transactions, by having transactions
request the creation of concurrent subtransactions. They also allow localized handling of transaction
failures. When a subtransaction commits or aborts, the commit or abort is reported to its parent
transaction. The parent can then decide on its next action based on the reported results. For example, if
a subtransaction aborts, its parent can use the reported abort to trigger another subtransaction, one that
implements some alternative action. A good mechanism for handling failures is especially important in
distributed systems, where failures are common because of the unreliability of communication.

IThe work of the first author (and through her, the work of the fourth author) was supported in part be the office of Naval
Research under Contract N00014-85-K-0168, by the National Science Foundation under Grant CCR-8611442, and by the
Defense Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125. The work of the third author
was supported in part by the National Science Foundation under Grant CCR-8716884. and by the Defense Advanced
Research Projects Agency (DARPA) under Contract N00014-83-K-0125.

42

The idea of nested transactions seems to have originated in the "spheres of control" work of [Davies].
Reed [Reed] developed the current notion of nesting and designed a timestamp-based implementation.
Moss [Moss] later designed a locking implementation that serves as the basis of the implementation of
the Argus programming language.

There are two reasons why a formal model is needed for reasoning about atomic transactions. First,
the implementors of languages that contain transactions need a model in order to reason about the
correctness of their implementations. Some of the algorithms that have been proposed for implementing
transactions are complicated, and informal arguments about their correcmess are unsatisfying. In fact, it
is not even obvious how to state the precise correctness conditions to be satisfied by the
implementations; a model is needed for describing the semantics of transactions carefully and formally.
Second, if programming languages containing transactions become popular, users of these languages
will need a model to help them reason about the behavior of their programs.

There has been considerable prior work on a theory for atomic transactions, described, for example, in
[BHG]. This "classical" theory is primarily applicable to single-level transactions, rather than nested

transactions. It treats both concurrency control and recovery algorithms, although the treatments of the
two kinds of algorithms are not completely integrated. The theory assumes a system organization in
which accesses are passed from the transactions to a "scheduler", which determines the order in which
they are to be performed by the database. The database handles recovery from transaction abort and
media failure, so that each access to one data object is performed in the state resulting from all previous
non-aborted accesses to that object. The notion of "serializability" in this theory corresponds to
"looking like a serial execution, from the point of view of the database". Proofs for some algorithms are
presented, primarily based on one main combinatorial theorem, the "Serializability Theorem". This
important theorem states that serializability is equivalent to the absence of cycles in a certain graph
representing dependencies among transactions.

There are some limitations of this prior work. First, the notion of correctness is quite restrictive,
stated as it is in terms of the object boundary in a particular system organization. The object interface
that is described is suitable for single-version locking and timestamp algorithms (in the absence of
transaction aborts), but it is much less appropriate for other kinds of algorithms. Multi-version
algorithms and replicated data algorithms, for example, maintain object information in a form that is
very different from the (single-copy latest-value) form used for the simple algorithms, and the
appropriate object interface is also very different. The correctness conditions presented for the simple
algorithms in [BHG] thus do not apply without change to these other kinds of algorithms. It seems more
appropriate, and useful in not unduly restricting possible implementations, to state correctness
conditions at the user interface to the system, rather than the object boundary.

Second, the transactions are not modelled explicitly in the earlier work, but rather implicitly, in terms
of axioms about their executions. It is sometimes interesting to reason about the control within a
transaction, e.g., to describe how the same transaction would behave when it is placed in different
systems. Such reasoning is facilitated by an explicit model which clarifies which actions occur under
the transaction's control, and which are due to activity of the environment. Furthermore, it will turn out
that the "user interface" mentioned above can be modelled by the boundary between the transactions and
the rest of the system; in order to state correctness conditions at this boundary, it is useful to have an
explicit model for the transactions.

Third, the prior model does not seem to extend well to treat nested transactions. This seems to be
primarily because not everything that needs to be described is modelled explicitly. For example, a
subtransaction may have been created only because an earlier attempt aborted, so we must model the
abort explicitly to capture this dependence.

Our model remedies the deficiencies described above for the earlier model. This improvement does
not come for free: our model contains more detail than the earlier model, and may therefore seem more
complicated. It seems to us, however, that this extra detail is necessary. In fact, we believe that the
extra detail is useful for understanding not just nested transactions, but also ordinary single-level
transactions.

43

We have already used our theory to present and prove correctness of many transaction-processing
algorithms, including locking and timestamp-based algorithms for concurrency control, algorithms for
managing replicated data and algorithms for managing "orphan" transactions. This work has been
presented in research papers [LM, FLMW1, FLMW2, HLMW, GL, AFLMW, Perl], and we are
currently writing a book [LMWF] to unify all the work. There is still much that remains to be done, in
particular in modelling the very interesting and complex algorithms that have been developed to
implement transactions in the presence of crashes that destroy volatile memory.

In this paper, we present some of the basic results of our theory and attempt to compare them to the
corresponding results of the classical theory. In particular, we describe the correctness conditions that
we use for transaction systems - notions similar to "serializability" but stated in terms of the transaction
boundary. We then present our "Serializability Theorem", a general theorem containing a sufficient
condition for proving serializability. Although this theorem is more complicated to state than the
classical Serializability Theorem, it is similar in spirit: it shows that the existence of a single ordering of
transactions that is consistent with the processing of accesses at each object is sufficient to prove
serializability. We use our Seriaiizability Theorem elsewhere to prove correctness for locking
[FLMW2] and timestamp algorithms [AFLMW], but in this paper, we only present the theorem itself in

detail and mention some of its consequences.

The rest of the paper is organized as follows. Section 2 contains an outline of the I/O automaton
model, the basic model for concurrent systems that is used for presenting all of our transaction work.
Section 3 contains a description of "serial systems", extremely constrained transaction-processing
systems that are defined solely for the purpose of stating correctness conditions for more liberal systems.
Section 4 contains a description of "simple systems", very unconstrained transaction-processing systems
that represent the common features of most transaction-processing systems. Section 5 contains our
Serializability Theorem, stated in terms of simple systems. Section 6 contains a discussion of some
applications of the Serializability Theorem and Section 7 contains some final remarks.

2 The I/O Automaton Model
In order to reason carefully about compIex concurrent systems such as those that implement atomic

transactions, it is important to have a simple and clearly-defined formal model for concurrent
computation. The model we use for our work is the recently-developed input~output automaton model
[LT]. Since its introduction, the model has been used for describing and reasoning about several

different types of concurrent systems, including network resource allocation algorithms, communication
algorithms, concurrent database systems, shared atomic objects, and dataflow architectures. This
section contains an introduction to a simple special case of the model that is sufficient for use in this
paper. 2

2.1 Overview of the Model
I/O automata provide an appropriate model for discrete event systems consisting of concurrently-

operating components. 3 The components of a discrete event system can be regarded as discrete event
systems themselves. Such a system may be "reactive" in the sense that it interacts with its environment
in an ongoing manner (rather than, say, simply accepting an input, computing a function of that input
and halting).

Each system component is modelled as an "I/O automaton", which is a mathematical object somewhat
like a traditional finite-state automaton. However, an I/O automaton need not be finite-state, but can

2In this paper, we only consider properties of finite executions, and do not consider "liveness" or "fairness" properties.

3By a "discrete event system" we mean an entity that undergoes sudden changes that may be named and observed, and
through which the system interacts with its environment,

44

have an infinite state set. The actions of an I/O automaton are classified as either "input", "output" or
"internal". This classification is a reflection of a distinction in the system being modelled, between
events (such as the receipt of a message) that are caused by the environment, events (such as sending a
message) that the component can perform when it chooses and that affect the environment, and events
(such as changing the value of a local variable) that a component can perform when it chooses, but that
are undetectable by the environment except through their effects on later events. In the model, an
automaton generates output and internal actions autonomously, and transmits output actions
instantaneously to its environment. In contrast, the automaton's input is generated by the environment
and transmitted instantaneously to the automaton. Our distinction between input and other actions is
based on who determines when the action is performed: an automaton can establish restrictions on
when it will perform an output or internal action, but it is unable to block the performance of an input
action.

The fact that our automata are unable to block inputs distinguishes our model from others, such as
Hoare's Communication Sequential Processes ("CSP") [Hoare], or Milner's Calculus of Communicating
Systems ("CCS")[Milner]. In these models, communication between two components only occurs
when both components are willing to communicate. Thus, for example, a sender of a message is
blocked until the corresponding receiver is ready to receive the message. In CSP-like models, input
blocking is used for two purposes: as a way of eliminating undesirable inputs, and as a way of blocking
the activity of the environment. Our model does not have any way of blocking the environment, but
does have other ways of coping with unwanted inputs. For example, suppose that we wish to constrain
the behavior of an automaton only in case the environment observes certain restrictions on the
production of inputs. Instead of requiring the automaton to block the bad inputs, we permit these inputs
to occur; however, we may permit the automaton to exhibit arbitrary behavior in case they do.
Alternatively, we may require the automaton to detect bad inputs and respond to them with error
messages. Thus, we have simple ways of describing input restrictions, without including input-blocking
in the model.

I/O automata may be nondeterministic, and indeed the nondeterminism is an important part of the
model 's descriptive power. Describing algorithms as nondeterministically as possible tends to make
results about the algorithms quite general, since many results about nondeterministic algorithms apply a
fortiori to all algorithms obtained by restricting the nondeterministic choices. Moreover, the use of
nondeterminism helps to avoid cluttering algorithm descriptions and proofs with inessential details.
Finally, the uncertainties introduced by asynchrony make nondeterminism an intrinsic property of real
concurrent systems, and so an important property to capture in a formal model of such systems.

Often, a single discrete event system can also be viewed as a combination of several component
systems interacting with one another. To reflect this in our model, we define an operation called
"composition", by which several I/O automata can be combined to yield a single I/O automaton. Our
composition operator connects each output action of the component automata with the identically named
input actions of any number (usually one) of the other component automata. In the resulting system, an
output action is generated autonomously by one component and is thought of as being instantaneously
transmitted to all components having the same action as an input. All such components are passive
recipients of the input, and take steps simultaneously with the output step.

When a system is modelled by an I/O automaton, each possible mn of the system is modelled by an
"execution", an alternating sequence of states and actions. The possible activity of the system is
captured by the set of all possible executions that can be generated by the automaton. However, not all
the information contained in an execution is important to a user of the system, or to an environment in
which the system is placed. We believe that what is important about the activity of a system is the
externally visible events, and not the states or internal events. Thus, we focus on the automaton's
"behaviors" - - the subsequences of its executions consisting of external (i.e., input and output) actions.
We regard a system as suitable for a purpose if any possible sequence of externally-visible events has
appropriate characteristics. Thus, in the model, we formulate correctness conditions for an I/O

45

automaton in terms of properties of the automaton's behaviors. 4

One convenient way to specify properties of an I/O automaton's behaviors is in terms of another 1/O
automaton. That is, we can define a particular "specification automaton" B and say that any automaton
A is "correct" if it "implements" B, in the sense that each finite behavior of A is also a finite behavior of
B. Often, B will be a simple system that is impractical as a real solution because it is too inefficient or
uses global information, while A will be a more efficient or distributed algorithm.

The model permits description of the same system at different levels of abstraction. Abstraction
mappings can be defined, which describe the relationship between automata that include implementation
detail to more abstract automata that suppress some of the detail. Such mappings can be used as aids in
correctness proofs for algorithms: if automaton B is an image of automaton A under an appropriate
abstraction mapping, then it can be shown that A implements B.

The model allows very careful and readable descriptions of particular concurrent algorithms. We have
developed a simple language for describing automata, based on "precondition" and "effect"
specifications for actions. This notation has proved sufficient for describing all algorithms we have
attempted so far. However, the model does not constrain the user to describe all automata in this
manner; for example, the model is general enough to serve also as a formal basis for languages that
include more elaborate constructs for sequential flow of control.

The model also allows clear and precise statement of the correctness conditions that an automaton
must satisfy in order that the system modelled by the automaton be said to solve a problem; such
conditions can be stated independently of any particular proposed solution. As described above, such
properties are often conveniently formulated in terms of implemention of a given automaton, but any
other method of specifying properties of external behaviors could be used instead. Finally, once both an
algorithm and the correctness condition it is supposed to satisfy have been described in the model, it is
then possible to use the model as a basis for a rigorous proof that the algorithm satisfies the given
conditions.

2.2 Action Signatures
The formal subject matter of this paper is concerned with finite and infinite sequences describing the

executions of automata. Usually, we will be discussing sequences of elements from a universal set of
actions. Since the same action may occur several times in a sequence, it is convenient to distinguish the
different occurrences. Thus, we refer to a particular occurrence of an action in a sequence as an event.

The actions of each automaton are classified as either "input", "output", or "internal". In the system
being modelled, the distinctions are that input actions are not under the system's control, output actions
are under the system's control and are externally observable, and internal actions are under the system's
control but are not externally observable. In order to describe this classification formally, each
automaton comes equipped with an "action signature".

An action signature S is an ordered triple consisting of three pairwise-disjoint sets of actions. We
write in(S), out(S) and int(S) for the three components of S, and refer to the actions in the three sets as
the input actions, output actions and internal actions of S, respectively. We let ext(S) = in(S) u out(S)
and refer to the actions in ext(S) as the external actions of S. Also, we let local(S) = int(S) u out(S), and
refer to the actions in local(S) as the locally-controlled actions of S. Finally, we let acts(S) = in(S) t j
out(S) u int(S), and refer to the actions in acts(S) as the actions of S. An external action signature is an
action signature consisting entirely of external actions, that is, having no internal actions. If S is an
action signature, then the external action signature of S is the action signature extsig(S) =
(in(S),out(S),O), i.e., the action signature that is obtained from S by removing the internal actions.

4This viewpoint differs from that taken in much of the algorithm specification work in the research literature, in which
properties of the states are taken to be of primary concern.

46

2.3 Input/Output Automata
An input~output automaton A (also called an BO automaton or simply an automaton) consists of four

components:

• an action signature sig(A),

• a set states(A) of states,

• a nonempty set start(A) c_ states(A) of start states, and

• a transition rela,tion steps(A) ~ states(A) × acts(sig(A)) x states(A), with the property that
for every state s and input action ~ there is a transition (s ,re,s) in steps(A). 5

Note that the set of states need not be finite. We refer to an element (s',Tz,s) of steps(A) as a step of
A. The step (s',rc,s) is called an input step of A if ~ is an input action, and output steps, internal steps,
external steps and locally-controlled steps are defined analogously. If (s',r~,s) is a step of A, then r~ is
said to be enabled in s'. Since every input action is enabled in every state, automata are said to be
input-enabled. The input-enabling property means that an automaton is not able to block input actions.

If A is an automaton, we sometimes write acts(A) as shorthand for acts(sig(A)), and likewise for
in(A), out(A), etc. An automaton A is said to be closed if all its actions are locally-controlled, i.e., if
in(A) = O.

An execution fragment of A is a finite sequence s0r~lSl~2...rCnS n or infinite sequence s0r~lSl~2...~nSn...
of alternating states and actions of A such that (si,xi+l,Si+l) is a step of A for every i. An execution
fragment beginning with a start state is called an execution. We denote the set of executions of A by
execs(A), and the set of finite executions of A byfinexecs(A). A state is said to be reachable in A if it is
the final state of a finite execution of A.

The schedule of an execution fragment c~ of A is the subsequence of ~ consisting of actions, and is
denoted by sched(~). We say that ~ is a schedule of A if ~ is the schedule of an execution of A. We
denote the set of schedules of A by scheds(A) and the set of finite schedules of A byfinscheds(A). We
say that a finite schedule ~ of A can leave A in state s if there is some finite execution ~ of A with final
state s and with sched(c0 = 9. The behavior of a sequence ~ of actions in acts(A), denoted by beh(~), is
the subsequence of I~ consisting of actions in ext(A). The behavior of an execution fragment ~ of A,
denoted by beh(~), is defined to be beh(sched(~)). We say that 13 is a behavior of A if 13 is the behavior
of an execution of A. We denote the set of behaviors of A by behs(A) and the set of finite behaviors of A
by finbehs(A).

An extended step of an automaton A is a triple of the form (s',13,s), where s' and s are in states(A), ~ is
a finite sequence of actions in acts(A), and there is an execution fragment of A having s" as its first state,
s as its last state and 13 as its schedule. (This execution fragment might consist of only a single state, in
the case that 1~ is the empty sequence.)

If [3 is any sequence of actions and • is a set of actions, we write [31~ for the subsequence of
consisting of actions in ~ . If A is an automaton, we write ~lA for [31acts(A). We call this the projection
of [3 on A. It can be thought of as the portion of 13 observable by A.

2.4 C o m p o s i t i o n
I/O automata may be combined by means of a composition operator, as defined in this section. As a

preliminary step, we first define composition of action signatures. Let I be an index set that is at most
countable. A collection {Si}iE I of action signatures is said to be strongly compatible 6 i f for all i, j ~ I,

5I/O automata, as defined in [LT], also include a fifth component, an equivalence relation part(A) on local(sig(A)). This
component is used for describing fair executions, and is not needed for the results described in this paper.

6A weaker notion called "compatibility" is defined in [LT], consisting of the first two of the three given properties only. In
this paper, only the stronger notion will be required.

47

we have

1. out(Si) n out(Sj) = O,

2. int(S i) ~ acts(Sj) = ~ , and

3. no action is in acts(Si) for infinitely many i.
Thus, no action is an output of more than one signature in the collection, and internal actions of any
signature do not appear in any other signature in the collection. Moreover, we do not permit actions
involving infinitely many component signatures.

The composition S = Yli~ iSi of a collection of strongly compatible action signatures { S i }i~ I is defined
to be the action signature with

* in(S) = Lgie iin(Si) - ui~ iout(Si),

• out(S) = ui~ IOUt(Si), and

• int(S) = ui~ iint(Si).
Thus, output actions are those that are outputs of any of the component signatures, and similarly for
internal actions. Input actions are any actions that are inputs to any of the component signatures, but
outputs of no component signature.

Now we define composition of automata. A collection {Ai}iE I of automata is said to be strongly
compatible if their action signatures are strongly compatible. The composition A = Hie iAi of a strongly

compatible collection of automata {Ai}ie I has the following components: 7

• sig(A) = Fli~ I sig(Ai),

* states(A) = l-lie I states(Ai),

• start(A) = rlie I start(Ai), and

• steps(A) is the set of triples (s',~,s) such that for all i e I, (a) if r c e acts(Ai) then

(s'[i],r~,s[i]) e steps(Ai), and (b) if 7~ ¢ acts(Ai) then s'[i] = s[i]. 8

Since the automata A i are input-enabled, so is their composition, and hence their composition is an
automaton. Each step of the composition automaton consists of all the automata that have a particular
action in their action signature performing that action concurrently, while the automata that do not have
that action in their signature do nothing. We will often refer to an automaton formed by composition as
a "system" of automata. Using the obvious isomorphisms, composition of automata is associative and
commutative when defined.

If o~ = s07~lSl.., is an execution of A, let alA i, the projection of ~ on A i, be the sequence obtained by
deleting ~;s;j J when r~;j is not. an action of A;l, and replacing the remaining sj by sj[i]. Recall that we have
previously defined a projection operator for action sequences. The two projection operators are related
in the obvious way: sched(alAi) = sched(a)lA i, and similarly beh(alAi) = beh(a)lA i.

We close this subsection with some basic results relating executions, schedules and behaviors of a
system of automata to those of the automata being composed. The first result says that the projections
of executions of a system onto the components are executions of the components, and similarly for
schedules, etc.

Proposit ion 1: Let {Ai}iE I be a strongly compatible collection of automata, and let A =

YIiEIA i, If ~ ~ execs(A) then ~IA i ~ execs(Ai) for all i ~ I. Moreover, the same result holds
for finexecs, scheds, finscheds, behs and finbehs in place of execs.

7Note that the second and third components listed are just ordinary Cartesian products, while the first component uses a
previous definition.

8We use the notation s[i] to denote the i th component of the state vector s.

48

Certain converses of the preceding proposition are also true. In particular, we can prove that
schedules of component automata can be "patched together" to form a schedule of the composition, and
similarly for behaviors. In order to prove these results, we first state two preliminary lemmas, one
involving schedules and one involving behaviors, that say that executions of component automata can be
patched together to form an execution of the composition.

Lemma 2: Let { A i}i~ I be a strongly compatible collection of automata, and let A = Hie IAi.
Let oq be an execution of A i, for all i e I. Suppose ~ is a sequence of actions in acts(A) such
that ~IA i = sched(~) for every i. Then there is an execution c¢ of A such that [~ = sched(0~) and
0t i = (xlA i for all i.

L e m m a 3: Let {Ai}ic I be a strongly compatible collection of automata, and let A = rl i~iA i.
Let c¢ i be an execution of A i, for all i ~ I. Suppose [~ is a sequence of actions in ext(A) such
that [~IA i = beh(ai) for every i. Then there is an execution ¢x of A such that 13 = beh(cx) and c¢ i
= (zlA i for all i.

Now the results about patching together schedules and patching together behaviors follow easily.

Proposition 4: Let {Ai}ie I be a strongly compatible collection of automata, and let A =

I-lie iAi .
1. Let [~ be a sequence of actions in acts(A). If 131A i e scheds(A i) for all i e I, then 13

scheds(A).

2. Let 13 be a finite sequence of actions in acts(A). If [31A i e finscheds(Ai) for all i e I,

then 13 ~ finscheds(A).

3. Let [3 be a sequence of actions in ext(A). If 13IA i e behs(Ai) for all i e I, then 13
behs(A).

4. Let [~ be a finite sequence of actions in ext(A). If [31A i e finbehs(Ai) for all i e I, then

e finbehs(A).

Proof: By Lemmas 2 and 3.

Proposition 4 provides a method for showing that certain sequences are behaviors of a composition A:
first show that its projections are behaviors of the components of A and then appeal to Proposition 4.

2.5 Correspondences Between Automata
In this subsection, we define the notion of "implementation" which is useful in stating correctness

conditions to be satisfied by automata. Let A and B be automata with the same external action
signature, i.e., with extsig(A) = extsig(B). Then A is said to implement B if finbehs(A) ~ finbehs(B).
One reason for the usefulness of the notion of implementation as a correctness condition is the following
fact: if A implements B, then replacing B by A in any system yields a new system in which all finite
behaviors are behaviors of the original system. In fact, as the following proposition shows, we can take
any collection of components of a system and replace each by an implementation, and the resulting
system wilt implement the original one.

Proposition 5: Suppose that { A i}ie I is a strongly compatible collection of automata, and let
A = I]ie IA i, Also suppose that {Bi}iE I is a strongly compatible collection of automata, and let
B = Ylie IB i. If for each index i in I, A i implements Bi, then A implements B.

In order to show that one automaton implements another, it is often useful to demonstrate a
correspondence between states of the two automata. Such a correspondence can often be expressed in
the form of a kind of abstraction mapping that we call a "possibilities mapping", defined as follows.
Suppose A and B are automata with the same external action signature, and suppose f is a mapping from
states(A) to the power set of states(B). That is, if s is a state of A, f(s) is a set of states of B. The
mapping f is said to be apossibilities mapping from A to B if the following conditions hold:

1. For every start state s o of A, there is a start state t o of B such that t o e f(s0).

49

2. Let s' be a reachable state of A, t ' ~ f(s') a reachable state of B, and (s',~,s) a step of
A. Then there is an extended step, (t',7,t), of B (possibly having an empty schedule) such
that the following conditions are satisfied:

a. ~ext(B) = glext(A), and

b. t ~ f(s).

Proposition 6: Suppose that A and B are automata with the same external action signature
and there is a possibilities mapping, f, from A to B. Then A implements B.

2.6 Preserving Properties
Although an automaton in our model is unable to block input actions, it is often convenient to restrict

attention to those behaviors in which the environment provides inputs in a "sensible" way, that is, where
the interaction between the automaton and its environment obeys certain "well-formedness" restrictions.
A useful way of discussing such restrictions is in terms of the notion that an automaton "preserves" a
property of behaviors: as long as the environment does not violate the property, neither does the
automaton. Such a notion is primarily interesting for properties that are "prefix-closed" and "limit-
ctosed": formally, a set of sequences P is prefix-closed provided that whenever [~ ~ P and "/is a prefix of
9, it is also the case that Y ~ P. A set of sequences P is limit-closed provided that any sequence all of
whose finite prefixes are in P is also in P.

Let • be a set of actions and P be a nonempty, prefix-closed, limit-closed set of sequences of actions
in ~ (i.e., a nonempty, prefix-closed, limit-closed "property" of such sequences). Let A be an
automaton with <b c_ ext(A). We say that A preserves P if [~rr ~ finbehs(A), 7z ~ out(A) and ~l~b ~ P
together imply that ~rcl~ ~ P. Thus, if an automaton preserves a property P, the automaton is not the
first to violate P: as long as the environment only provides inputs such that the cumulative behavior
satisfies P, the automaton will only perform outputs such that the cumulative behavior satisfies P. Note
that the fact that an automaton A preserves a property P does not imply that all of A 's behaviors, when
restricted to ~b, satisfy P; it is possible for a behavior of A to fail to satisfy P, if an input causes a
violation of P. However, the following proposition gives a way to deduce that all of a system's
behaviors satisfy P. The lemma says that, under certain conditions, if all components of a system
preserve P, then all the behaviors of the composition satisfy P.

Proposition 7: Let {Ai}ie I be a strongly compatible collection of automata, and suppose

that A, the composition, is a closed system. Let • _c ext(A), and let P be a nonempty, prefix-
closed, limit-closed set of sequences of actions in ~ . Suppose that for each i E I, one of the
following is true.

1. qb ~ ext(Ai) and A i preserves P, or

2. • c7 ext(Ai) = O.

If ~ e behs(A), then ~Ig9 ~ P.

3 Serial Systems and Correctness
In this section, we develop the formal machinery needed to define correctness for transaction-

processing systems. Correctness is expressed in terms of a particular kind of system called a "serial
system". We define serial systems here, using I/O automata.

3.1 Overview
Transaction-processing systems consist of user-provided transaction code, plus transaction-processing

algorithms designed to coordinate the activities of different transactions. The transactions are written by
application programmers in a suitable programming language. In some transaction-processing systems
such as the Argus system, transactions have a nested structure, so that transactions can invoke
subtransactions and receive responses from the subtransactions describing the results of their processing.
In addition to invoking subtransactions, transactions can also invoke operations on data objects.

50

In a transaction-processing system, the transaction-processing algorithms interact with the
transactions, making decisions about when to schedule the creation of subtransactions and the
performance of operations on objects. In order to carry out such scheduling, the transaction-processing
algorithms may manipulate locks on objects, multiple copies of objects, and other convenient data
structures. One popular organization divides the transaction processing into a "scheduler algorithm" and
a "database" of objects. In this organization, the scheduler has the power to decide when operations are
to be performed on the objects in the database, but not to perform more complex manipulations on
objects (such as maintaining multiple copies). Although this organization is popular, it does not
encompass all the useful system designs.

In our work, each component of a transaction-processing system is modelled as an I/O automaton. In
particular, each transaction is an automaton, and all the transaction-processing algorithms together
comprise another automaton.

It is not obvious at first how one ought to model the nested structure of transactions within the/ /O
automaton model. One might consider defining special kinds of automata that have a nested structure,
for example. However, it appears that the cleanest way to model this structure is to describe each
subtransaction in the transaction nesting structure as a separate automaton. If a parent transaction T
wishes to invoke a child transaction T' , T issues an output action that "requests that T' be created". The
transaction-processing algorithms receive this request, and at some later time might decide to issue an
action that is an input to the child T' and corresponds to the "creation" of T ' . Thus, the different
transactions in the nesting structure comprise a forest of automata, communicating with each other
indirectly through the transaction-processing automaton. The highest-level user-defined transactions,
i.e., those that are not subtransactions of any other user-defined transactions, are the roots in this forest.

It is actually more convenient to model the transaction nesting structure as a tree than a forest. Thus,
we add an extra "root" automaton as a sort of "dummy transaction", located at the top of the transaction
nesting structure. The highest-level user-defined transactions are considered to be children of this new
root. The root can be thought of as modelling the outside world, from which invocations of top-level
transactions originate and to which reports about the results of such transactions are sent. We often find
that the formal reasoning we want to do about this dummy root transaction is very similar to our
reasoning about ordinary transactions; thus, regarding the root as a transaction leads to economy in our
formal arguments.

The primary goal of this section is to define correcmess conditions to be satisfied by transaction-
processing systems. As we discussed in the introduction, it seems most natural and general to define
correctness conditions in terms of the actions occurring at the boundary between the transactions
(including the root transaction) and the transaction-processing automaton. For it is immaterial how the
transaction-processing algorithms work, as long as the outside world and the transactions see "correct"
behavior. We define correct behavior for a transaction-processing system in terms of the behavior of a
particular and very constrained "serial" transaction-processing system, which processes all transactions
serially.

Serial systems consist of transaction automata and "serial object automata" composed with a "serial
scheduler automaton". Transaction automata have already been discussed above. Serial object automata
serve as specifications for permissible object behavior. They describe the responses the objects should
make to arbitrary sequences of operation invocations, assuming that later invocations wait for responses
to previous invocations. Serial objects are very much like the ordinary abstract data objects that are
used in sequential programming languages.

The serial scheduler handles the communication among the transactions and serial objects, and
thereby controls the order in which the transactions take steps. It ensures that no two sibling
transactions are active concur ren t ly - - that is, it runs each set of sibling transactions serially. The serial
scheduler is also responsible for deciding if a transaction commits or aborts. The serial scheduler can
permit a transaction to abort only if its parent has requested its creation, but it has not actually been
created. Thus, in a serial system, all sets of sibling transactions are run serially, and in such a way that

51

no aborted transaction ever performs any steps.

A serial system would not be an interesting transaction-processing system to implement. It allows no
concurrency among sibling transactions, and has only a very limited ability to cope with transaction
failures. However, we are not proposing serial systems as interesting implementations; rather, we use
them exclusively as specifications for correct behavior of other, more interesting systems. In our work,
we describe many systems that do allow concurrency and recovery from transaction failures. (That is,
they undo the effects of aborted transactions that have performed significant activity.) We prove that
these systems are correct in the sense that certain transactions, and in particular T O , cannot distinguish
them from corresponding serial systems. It appears to the transactions as i f all siblings are run serially,
and aborted transactions are never created, even though in reality, the systems allow concurrency and
recovery from transaction failures.

In the remainder of this section, we develop the necessary machinery for defining serial systems and
correctness. First, we define a type structure used to name transactions and objects. Then we describe
the general structure of a serial system - - the components it includes, the actions the components
perform, and the way the components ate interconnected. We define several concepts involving the
actions of a serial system. We then go on to define the components of a serial system in detail, and state
some basic properties of serial systems. Finally, we use serial systems to state correctness conditions for
transaction-processing systems.

3 .2 S y s t e m Types
We begin by defining a type structure that will be used to name the transactions and objects in a serial

system.

A system type consists of the following:

• a set 7"of transaction names,

• a distinguished transaction name T O ~ U,

• a subset accesses of 7 'not containing T 0,

• a mapping parent: 7"- {To} --+ 7, which configures the set of transaction names into a tree,
with T O as the root and the accesses as the leaves,

• a set X o f object names,

• a mapping object: accesses --+ -E, and

• a set Vof return values.
In referring to the transaction tree, we use standard tree terminology, such as "leaf node", "internal
node", "child", "ancestor", and "descendant". As a special case, we consider any node to be its own
ancestor and its own descendant, i.e. the "ancestor" and "descendant" relations are reflexive. We also
use the notion of a "least common ancestor" of two nodes.

The transaction tree describes the nesting structure for transaction names, with T O as the name of the
dummy "root transaction". Each child node in this tree represents the name of a subtransaction of the
transaction named by its parent. The children of T o represent names of the top-level user-defined
transactions. The accesses represent names for the lowest-level transactions in the transaction nesting
structure; we will use these lowest-level transactions to model operations on data objects. Thus, the
only transactions that access data directly are the leaves of the transaction tree. The internal nodes
model transactions whose function is to create and manage subtransactions, but not to access data
directly.

The tree structure should be thought of as a predefined naming scheme for all possible transactions
that might ever be invoked. In any particular execution, however, only some of these transactions will
actually take steps. We imagine that the tree structure is known in advance by all components of a
system. The tree will, in general, be an infinite structure with infinite branching.

52

Classical concurrency control theory considers transactions having a simple nesting structure. As
modelled in our framework, that nesting structure has three levels; the top level consists of the root T O ,
modelling the outside world, the next level consists of all the user-defined transactions, and the lowest
level consists of the accesses to data objects.

The set AVis the set of names for the objects used in the system. Each access transaction name denotes
an access to some particular object, as designated by the "object" mapping. If X e X, the set of accesses
T for which object(T) = X is called accesses(X).

The set Y of return values is the set of possible values that might be returned by successfully-
completed transactions to their parents. If T is an access transaction name, and v is a return value, we
say that the pair (T,v) is an operation of the given system type. Thus, an operation designates a
particular access to an object and a particular value returned by the access.

3.3 General Structure of Serial Systems
A serial system for a given system type is a closed system consisting of a "transaction automaton"

A(T) for each non-access transaction name T, a "serial object automaton" S(X) for each object name X,
and a single "serial scheduler automaton". Later in this chapter, we will give a precise definition for the
serial scheduler automaton, and will give conditions to be satisfied by the transaction and object
automata. Here, we just describe the signatures of the various automata, in order to explain how the
automata are interconnected.

The following diagram depicts the structure of a serial system.

Transaction
Automata

(

/ / / \ \

Q Q
?

\ 1 /

Object Automata /

Figure 1: Serial System Structure

S
e
r
1
a

1
S
e

h
e

d
u

1
e
r

A
u

t
o
m
a

t
o
n

The transaction nesting structure is indicated by dotted lines, and the direct connections between
automata (via shared actions) are indicated by solid lines. Thus, the transaction automata interact
directly with the serial scheduler, but not directly with each other or with the object automata. The
object automata also interact directly with the serial scheduler.

53

CREATE(T t ~EQUEST_CO MMIT(T,v)

~ T ' child o f t a

Figure 2: Transaction Automaton

Figure 2 shows the interface of a transaction automaton in more detail. Transaction T has an input
CREATE(T) action, which is generated by the serial scheduler in order to initiate T's processing. We
do not include arguments to a transaction in our model; rather we suppose that there is a different
transaction for each possible set of arguments, and so any input to the transaction is encoded in the name
of the transaction. T has REQUEST_CREATE(T') actions for each child T' of T in the transaction
nesting structure; these are requests for creation of child transactions, and are communicated directly to
the serial scheduler. At some later time, the scheduler might respond to a REQUEST_CREATE(T')
action by issuing a CREATE(T') action, an input to transaction T'. T also has
REPORT_COMMIT(T',v) and REPORT_ABORT(T') input actions, by which the serial scheduler
informs T about the fate (commit or abort) of its previously-requested child T'. In the case of a commit,
the report includes a return value v that provides information about the activity of T'; in the case of an
abort, no information is returned. Finally, T has a REQUEST_COMMIT(T,v) output action, by which it
announces to the scheduler that it has completed its activity successfully, with a particular result as
described by return value v.

MIT('I"v)

(T~I) an access to X

Figure 3: Object Automaton

Figure 3 shows the object interface. Object X has input CREATE(T) actions for each T in
accesses(X). These actions should be thought of as invocations of operations on object X. Object X also
has output actions of the form REQUEST_COMMIT(T,v), representing responses to the invocations.
The value v in a REQUEST_COMMIT(T,v) action is a return value returned by the object as part of its
response. We have chosen to use the "create" and "request_commit" notation for the object actions,
rather than the more familiar "invoke" and "respond" terminology, in the interests of uniformity: there
are many places in our formal arguments where access transactions can be treated uniformly with non-
access transactions, and so it is useful to have a common notation for them.

54

,

~EQUEST_CREATE(T) I REPORT_COMMIT(T,v)~ REPORT_ABORT(T){
COMMIT(T] ABORT(T)]

3
 R ATE(T) REQUEST OOMMIT(T v) l

Figure 4: Serial Scheduler Automaton

Figure 4 shows the serial scheduler interface. The serial scheduler receives the previously-mentioned
REQUEST_CREATE and REQUEST_COMMIT actions as inputs from the other system components.
It produces CREATE actions as outputs, thereby awakening transaction automata or invoking operations
on objects. It also produces COMMIT(T) and ABORT(T) actions for arbitrary transactions T * T 0,
representing decisions about whether the designated transaction commits or aborts. For technical
convenience, we classify the COMMIT and ABORT actions as output actions of the serial scheduler,
even though they are not inputs to any other system component. Finally, the serial scheduler has
REPORT_COMMIT and REPORT_ABORT actions as outputs, by which it communicates the fates of
transactions to their parents.

As is always the case for a composition of I/O automata, the components of a serial system are
determined statically. Even though we refer to the action of "creating" a child transaction, the model
treats the child transaction as if it had been there all along. The CREATE action is treated formally as
an input action to the child transaction; the child transaction will be constrained not to perform any
output actions until such a CREATE action occurs. A consequence of this method of modelling
dynamic creation of transactions is that the system must include automata for all possible transactions
that might ever be created, in any execution. In most interesting cases, this means that the system will
include infinitely many transaction automata.

3.4 Serial Actions
The serial actions for a given system type are defined to be the external actions of a serial system of

that type. These are just the actions listed in the preceding section: CREATE(T) and
REQUEST_COMMIT(T,v), where T is any transaction name and v is a return value, and
REQUEST_CREATE(T), COMMIT(T), ABORT(T), REPORT_COMMIT(T,v), and
REPORT_ABORT(T) where T ~ T O is a transaction name and v is a return value.

In this subsection, we define some basic concepts involving serial actions, for use later in the paper.
All these definitions are based on the set of serial actions only, and not on the specific automata in the
serial system. For this reason, we present the definitions here, before going on (in the next subsection)
to give more information about the system components.

3.4.1 Basic Definitions
The COMMIT(T) and ABORT(T) actions are called completion actions for T, while the

REPORT_COMMIT(T,v) and REPORT_ABORT(T) actions are called report actions for T.

We define the "transaction" of an action that appears in the interface of a transaction or object
automaton - - that is, of any non-completion action. Let T be any transaction name. If n is one of the
serial actions CREATE(T), REQUEST_COMMIT(T,v), or REQUEST_CREATE(T'),
REPORT_COMMIT(T' ,v ') or REPORT_ABORT(T'), where T ' is a child of T, then we define
transaction(n) to be T. If n is a completion action, then transaction(n) is undefined. We wilt sometimes
want to associate a transaction with completion actions as well as other serial actions; since a
completion action for T can be thought of as occurring "in between" T and parent(T), we will sometimes
want to associate T and sometimes parent(T) with the action. Thus, we extend the "transaction(n)"

55

definition in two different ways. If n is any serial action, then we define hightransaction(n) to be
transaction(n) if n is not a completion action, and to be parent(T), if n is a completion action for T. Also,
if n is any serial action, we define lowtransaction(n) to be transaction(n) if rc is not a completion action,
and to be T, if n is a completion action for T. In particular, hightransaction(~t) = lowtransaction(n) =
transaction(n) for all serial actions other than completion actions.

We also require notation for the object associated with any serial action whose transaction is an
access. If n is a serial action of the form CREATE(T) or REQUEST COMMIT(T,v), where T is an
access to X, then we define object(n) to be X.

We extend the notation in the preceding paragraphs to events as well as actions. For example, if ~ is
an event, then we write transaction(n) to denote the transaction of the action of which n is an
occurrence.

Recall that an operation is a pair (T,v), consisting of a transaction name and a return value. We can
associate operations with a sequence of serial actions, as follows. If ~ is a sequence of serial actions, we
say that the operation (T,v) occurs in 13 if there is a REQUEST_COMMIT(T,v) event in 13. Conversely,
we can associate serial actions with a sequence of operations. For any operation (T,v), let perform(T,v)
denote the two-action sequence CREATE(T) REQUEST COMMIT(T,v), the expansion of (T,v) into its
two parts. This definition is extended to sequences of operations in the natural way: if ~ is a sequence
of operations of the form ~'(T,v), then perform(~) = perform(~') performS,v). Thus, the "perform"
function expands a sequence of operations into a corresponding alternating sequence of CREATE and
R E Q U E S T C O M M I T actions.

Now we require terminology to describe the status of a transaction during execution. Let ~ be a
sequence of serial actions. A transaction name T is said to be active in 13 provided that 13 contains a
CREATE(T) event but no REQUEST_COMMIT event for T. Similarly, T is said to be live in l]
provided that 13 contains a CREATE(T) event but no completion event for T. Also, T is said to be an
orphan in l] i f there is an ABORT(U) action in 13 for some ancestor U of T.

We have already used projection operators to restrict action sequences to particular sets of actions, and
to actions of particular automata. We now introduce another projection operator, this time to sets of
transaction names. Namely, i f 13 is a sequence of serial actions and U i s a set of transaction names, then
131Uis defined to be the sequence 13t{n: transaction(n) ~ U}. If T is a transaction name, we sometimes
write l]lT as shorthand for 131{T}. Similarly, if 13 is a sequence of serial actions and X is an object name,
we sometimes write l])X to denote 131{r¢: object(n) = X}.

Sometimes we will want to use definitions from this subsection for sequences of actions chosen from
some other set besides the set of serial actions - - usually, a set containing the set of serial actions. We
extend the appropriate definitions of this subsection to such sequences by applying them to the
subsequences consisting of serial actions. Thus, if I~ is a sequence of actions chosen from a set ¢ of
actions, define serial(13) to be the subsequence of l] consisting of serial actions. Then we say that
operation (T,v) occurs in It exactly if it occurs in serial(I]). A transaction T is said to be active in 13
provided that it is active in serial(13), and similarly for the "live" and "orphan" definitions. Also, 131Uis
defined to be serial(l])l~ and similarly for projection on an object.

3.4.2 Well-Formedness
In the definition of a serial system in the following subsection, we will place very few constraints on

the transaction automata and serial object automata. However, we will want to assume that certain
simple properties are guaranteed; for example, a transaction should not take steps until it has been
created, and an object should not respond to an operation that has not been invoked. Such requirements
are captured by "well-formedness conditions", certain properties of sequences of external actions of the
transaction and object components. We define those conditions here.

First we define "transaction well-formedness". Let T be any transaction name. A sequence 13 of serial
actions n with transaction(rQ = T is defined to be transaction well-formed for T provided the following

56

conditions hold.
1. The first event in 13, if any, is a CREATE(T) event, and there are no other CREATE

events.

2. There is at most one REQUEST_CREATE(T') event in [~ for each child T' of T.

3. Any report event for a child T' of T is preceded by REQUEST_CREATE(T') in 13.

4. There is at most one report event in 13 for each child T' of T.

5. If a REQUEST_COMMIT event for T occurs in 13, then it is preceded by a report event for
each child T' o f t for which there is a REQUEST CREATE(T') in 13-

6. If a REQUEST_COMMIT event for T occurs in 13, then it is the last event in 13.
In particular, if T is an access transaction name, then the only sequences that are transaction well-formed
for T are the prefixes of the two-event sequence CREATE(T) REQUEST_COMMIT(T,v). For any T, it
is easy to see that the set of transaction well-formed sequences for T is nonempty, prefix-closed and
limit-closed.

Now we define "serial object well-formedness". Let X be any object name. A sequence of serial
actions ~ with object(Tr) = X is defined to be serial object well-formed for X if it is a prefix of a
sequence of the form CREATE(T1) REQUEST COMMIT(TI,Vl) CREATE(T2)
REQUEST_COMMIT(T2,v2) where T i ~ Tj when i ~ j. The following connection between serial
object well-formedness and transaction weU-formedness is immediate.

Lemma 8: Let 13 be a sequence of serial actions rr with object(~z) = X. If 13 is serial object
well-formed for X and T is an access to X, then 131T is transaction well-formed for T.

3.5 Serial Systems
We are now ready to define "serial systems". Serial systems are composed of transaction automata,

serial object automata, and a single serial scheduler automaton. There is one transaction automaton
A(T) for each non-access transaction name T, and one serial object automaton S(X) for each object
name X. We describe the three kinds of components in turn.

3.5.1 Transaction Automata
A transaction automaton A(T) for a non-access transaction name T of a given system type is an I/O

automaton with the following external action signature.

Input:
CREATE(T)
REPORT_COMMIT(T' ,v), for T' a child of T, and v a return value
REPORT_ABORT(T') , for T' a child of T

Output:
REQUEST_CREATE(T') , for T ' a child of T
REQUEST_COMMIT(T,v), for v a return value

In addition, A(T) may have an arbitrary set of internal actions. We require A(T) to preserve
transaction well-formedness for T, as defined in the previous section. As discussed earlier, this does not
mean that all behaviors of A(T) are transaction well-formed, but it does mean that as long as the
environment of A(T) does not violate transaction well-formedness, A(T) will not do so. Except for that
requirement, transaction automata can be chosen arbitrarily. Note that if 13 is a sequence of actions, then
131T = 131ext(A(T)).

Transaction automata are intended to be general enough to model the transactions defined in any
reasonable programming language. Of course, there is still work required in showing how to define
appropriate transaction automata for the transactions in any particular language. This correspondence
depends on the special features of each language, and we do not describe techniques for establishing
such a correspondence in this paper.

57

3.5.2 Serial Object Automata
A serial object automaton S(X) for an object name X of a given system type is an I/O automaton with

the following external action signature.

Input:
CREATE(T), for T an access to X

Output:
REQUEST_COMMIT(T,v), for T an access to X

In addition, S(X) may have an arbitrary set of internal actions. We require S(X) to preserve serial
object well-formedness for X, as defined in the previous section. As with transaction automata, serial
object automata can be chosen arbitrarily as long as they preserve serial object well-formedness.

3.5.3 Serial Scheduler
There is a single serial scheduler automaton for each system type. It runs transactions according to a

depth-first traversal of the transaction tree, running sets of sibling transactions serially. The serial
scheduler can choose nondeterministically to abort any transaction after its parent has requested its
creation, as long as the transaction has not actually been created. In the context of this scheduler, the
"semantics" of an ABORT(T) action are that transaction T was never created. The scheduler does not
permit any two sibling transactions to be live at the same time, and does not abort any transaction while
any of its siblings is active. We now give a formal definition of the serial scheduler automaton.

The action signature of the serial scheduler is as follows.

Input:
REQUEST_CREATE(T), T ~ T O
REQUEST_COMMIT(T,v)

Output:
CREATE(T)
COMMIT(T), T . T o

ABORT(T), T . T o
REPORT_COMMIT(T,v), T ~ T o

REPORT_ABORT(T), T ~ T o

Each state s of the serial scheduler consists of six sets, denoted via record notation:
s.create requested, s.created, s.commit_requested, s.committed, s.aborted and s.reported. The set
s.commit_requested is a set of operations. The others are sets of transactions. There is exactly one start
state, in which the set create_requested is {To}, and the other sets are empty. We use the notation
s.completed to denote s.committed ~ s.aborted. Thus, s.completed is not an actual variable in the state,
but rather a "derived variable" whose value is determined as a function of the actual state variables.

The transition relation of the serial scheduler consists of exactly those triples (s',rc, s) satisfying the
preconditions and yielding the effects described below, where rt is the indicated action. By convention,
we include in the effects only those conditions on the state s that may change with the action. If a
component of s is not mentioned in the effects, it is implicit that the set is the same in s ' and s.

REQUEST_CREATE(T), T ~ T O
Effect:

s.create_requested = s'.create_requested ~ { T }

REQUEST_COMMIT(T,v)
Effect:

s.commit_requested = s'.commit_requested u { (T,v) }

CREATE(T)
Precondition:

T e s'.create_requested - s'.created
T ~ s'.aborted

58

siblings(T) c3 s'.created ~ s'.completed
Effect:

s.created = s'.created w {T}

COMMIT(T), T , T O
Precondition:

(T,v) e s'.commit_requested for some v
T ~ s'.completed

Effect:
s.committed = s'.committed u {T}

ABORT(T), T ~ T o
Precondition:

T ~ s'.create_requested - s' .completed
T ~ s'.created
siblings(T) n s'.created ~ s'.completed

Effect:
s.aborted = s'.aborted u {T}

REPORT_COMMIT(T,v), T * T o
Precondition:

T ~ s' .committed
(T,v) ~ s'.commit_requested
T ~ s'.reported

Effect:
s.reported = s'.reported u {T}

REPORT_ABORT(T), T # T O
Precondition:

T ~ s'.aborted
T ~ s'.reported

Effect:
s.r~ported = s'.reported u { T }

Thus, the input actions, REQUEST_CREATE and REQUEST_COMMIT, simply result in the request
being recorded. A CREATE action can occur only if a corresponding REQUEST_CREATE has
occurred and the CREATE has not already occurred. Moreover, it cannot occur if the transaction was
previously aborted. The third precondition on the CREATE action says that the serial scheduler does
not create a transaction until each of its previously created sibling transactions has completed (i.e.,
committed or aborted). That is, siblings are run sequentially. A COMMIT action can occur only if it
has previously been requested and no completion action has yet occurred for the indicated transaction.
An ABORT action can occur only if a corresponding REQUEST_CREATE has occurred and no
completion action has yet occurred for the indicated transaction, Moreover, it cannot occur if the
transaction was previously created. The third precondition on the ABORT action says that the scheduler
does not abort a transaction while there is activity going on on behalf of any of its siblings. That is,
aborted transactions are dealt with sequentially with respect to their siblings. The result of a transaction
can be reported to its parent at any time after the commit or abort has occurred.

The following lemma describes simple relationships between the state of the serial scheduler and its
computational history.

Lemma 9: Let 13 be a finite schedule of the serial scheduler, and let s be a state such that 13
can leave the serial scheduler in state s. Then the following conditions are true.

1. T ~ s.create_requested exactly if T = T O or 13 contains a REQUEST_CREATE(T)
event.

2. T e s.created exactly if [3 contains a CREATE(T) event.

59

3. (T,v) ~ s.cornmiLrequested exactly if ~ contains a REQUEST_COMMIT(T,v) event.

4. T ~ s.committed exactly if [5 contains a COMMIT(T) event.

5. T ~ s.aborted exactly if ~ contains an ABORT(T) event.

6. T ~ s.reported exactly if ~ contains a report event for T.

7. s.committed n s.aborted = ~ .

8. s.reported ~ s.committed t j s.aborted.

The following lemma gives simple facts about the actions appearing in an arbitrary schedule of the
serial scheduler.

Lemma 10: Let 13 be a schedule of the serial scheduler. Then all of the following hold:
1. If a CREATE(T) event appears in 13, then a REQUEST-CREATE(T) event precedes it

in t3.

2. At most one CREATE(T) event appears in 13 for each transaction T.

3. If a COMMIT(T) event appears in 13 then a REQUEST-COMMIT(T,v) event
precedes it in [5 for some return value v.

4. If an ABORT(T) event appears in 13 then a REQUEST-CREATE(T) event precedes it
in 13.

5. If a CREATE(T) or ABORT(T) event appears in I~ and is preceded by a CREATE(T')
event for a sibling T ' ofT, then it is also preceded by a completion event for T ' .

6. At most one completion event appears in 15 for each transaction.

7. At most one report event appears in [5 for each transaction.

8. If a REPORT-COMMIT(T,v) event appears in [~, then a COMMIT(T) event and a
REQUEST_COMMIT(T,v) event precede it in [5.

9. If a REPORT-ABORT(T) event appears in t3, then an ABORT(T) event precedes it in
9.

Proof: By Lemma 9 and the serial scheduler preconditions.

The final lemma of this subsection says that the serial scheduler preserves the well-formedness
properties described earlier.

Lemma 11:
1. Let T be any transaction name. Then the serial scheduler preserves transaction weli-

formedness for T.

2. Let X be any object name. Then the serial scheduler preserves serial object wetl-
formedness for X.

Proof: By the definitions and the characterization given in Lemma 10.

3.5.4 Serial Systems, Executions, Schedules and Behaviors
A serial system of a given system type is the composition of a strongly compatible set of automata

indexed by the union of the set of non-access transaction names, the set of object names and the
singleton set {SS} (for "serial scheduler"). Associated with each non-access transaction name T is a
transaction automaton A(T) for T. Associated with each object name X is a serial object automaton S(X)
for X. Finally, associated with the name SS is the serial scheduler automaton for the given system type.
When the particular serial system is understood from context, we will sometimes use the terms serial
executions, serial schedules and serial behaviors for the system's executions, schedules and behaviors,
respectively.

A fundamental property of serial behaviors is that they are well-formed for each transaction and object
n a m e .

60

Proposition 12: If [~ is a serial behavior, then the following conditions hold.

1. For every transaction name T, 131T is transaction well-formed for T.

2. For every object name X, 131X is serial object well-formed for X.

Proof: For non-access transaction names T, or arbitrary object names X, the result is
immediate by Lemma 7, the definitions of transaction and object automata, and Lemma 11.
Suppose that T is an access to X. Since [3IX is serial object well-formed for X, Lemma 8
implies that 131T is transaction well-formed for T.

Another fundamental property of serial behaviors is that the live transactions always form a chain of
ancestors, as indicated below.

Proposition 13: Let ~ be a serial behavior.
1. If T is live in 13 and T ' is an ancestor of T, then T' is live in [3.

2. If T and T' are transaction names such that both T and T' are live in [~, then either T
is an ancestor of T' or T' is an ancestor of T.

In the remainder of the paper, we fix an arbitrary system type and serial system, with A(T) as the
non-access transaction automaton for each transaction name T, and S(X) as the serial object automaton
for each object name X.

3.6 Correctness Conditions
Now that we have defined serial systems, we can use them to state correctness conditions for other

transaction-processing systems. It is reasonable to use serial systems in this way because of the
particular constraints the serial scheduler imposes on the orders in which transactions and objects can
perform steps. We contend that the given constraints correspond precisely to the way nested transaction
systems ought to appear to behave; in particular, these constraints yield a natural generalization of the
notion of serial execution in classical transaction systems. We arrive at a number of correctness
conditions by considering for which system components this appearance must be maintained: for the
external environment T O , for all transactions, or for all non-orphan transactions.

To express these correctness conditions we define the notion of "serial correctness" of a sequence of
actions for a particular transaction name. We say that a sequence 13 of actions is serially correct for
transaction name T provided that there is some serial behavior Y such that 131T = ~T. (Recall that if T is
a non-access, we have 131T = 131ext(A(T)) and ylT = ~ext(A(T)). If T is a non-access transaction, serial
correctness for T is a condition that guarantees to implementors of T that their code will encounter only
situations that can arise in serial executions.

The principal notion of correctness that we will use in this paper is the serial correctness of all finite
behaviors for the root transaction name T O . This says that the "outside world" cannot distinguish
between the given system and the serial system.

Many of the algorithms we study satisfy stronger correctness conditions. A fairly strong and possibly
interesting correctness condition is the serial correctness of all finite behaviors for all transactions
names. Thus, neither the outside world nor any of the individual user transactions can distinguish
between the given system and the serial system. Note that the definition of serial correctness for all
transactions does not require that all the transactions see behavior that is part of the same execution of
the serial system; rather, each could see behavior arising in a different execution.

We will also consider intermediate conditions such as serial correctness for all non-orphan transaction
names. This condition implies serial correctness for T O because the serial scheduler does no~ have the
action ABORT(T0) in its signature, so T O cannot be an orphan. Most of the popular algorithms for
concurrency control and recovery guarantee serial correctness for all non-orphan transaction names.
Our Serializability Theorem gives sufficient conditions for showing that a behavior of a transaction-
processing system is serially correct for an arbitrary non-orphan transaction name, and can be used to
prove this property for many of these algorithms. The usual algorithms do not guarantee serial

61

correctness for orphans, however; in order to guarantee this as well, the use of a special "orphan
management" algorithm is generally required. Such algorithms are described and their correctness
proved in [HLMW].

We close this subsection with a proposition that shows that serial correctness with respect to a
transaction name T, a notion defined in terms of behaviors of T, implies a relationship between
executions of T in the two systems.

Proposit ion 14: Let {Bi}ie I be a strongly compatible set of automata and let B = l-IielB i.
Suppose that non-access transaction name T is in the index set I and suppose that B T and A(T)
are the same automaton. Let ¢t be a finite execution of B, and suppose that beh(ct) is serially
correct for T. Then there is a serial execution ix' such that c~lB T = t~'IA(T).

Proof: Proposition 1 implies that c¢IB T is an execution of B T, and then Lemma 3 can be
used to patch together the desired execution.

4 Simple S y s t e m s
It is desirable to state our Serializability Theorem in such a way that it can be used for proving

correctness of many different kinds of transaction-processing systems, with radically different
architectures. We therefore define a "simple system", which embodies the common features of most
transaction-processing systems, independent of their concurrency control and recovery algorithms, and
even of their division into modules to handle different aspects of transaction-processing. A "simple
system" consists of the transaction automata together with a special automaton called the "simple
database". Our theorem is stated in terms of simple systems.

Many complicated transaction-processing algorithms can be understood as implementations of the
simple system. For example, a system containing separate objects that manage locks and a "controller"
that passes information among transactions and objects can be represented in this way, and so our
theorem can be used to prove its correctness. The same strategy works for a system containing objects
that manage timestamped versions and a controller that issues timestamps to transactions.

4.1 Simple Database
There is a single simple database for each system type. The action signature of the simple database is

that of the composition of the serial scheduler with the serial objects:

Input:
REQUEST_CREATE(T), T ~ T O
REQUEST_COMMIT(T,v), T a non-access

Output:
CREATE(T)
COMMIT(T), T * T o

ABORT(T), T ~ T o
REPORT_COMMIT(T,v), T ~ T o

REPORT_ABORT(T), T • T o
REQUEST COMMIT(T,v), T an access

States of the simple database are the same as for the serial scheduler, and the initial states are also the
same. The transition relation is as follows.

REQUEST_CREATE(T), T * T o
Effect:

s.create_requested = s'.create_requested u {T}

REQUEST_COMMIT(T,v), T a non-access
Effect:

s.commit_requested = s'.commit_requested u { (T,v) }

62

CREATE(T)
Precondition:

T e s'.create__requested - s'.created
Effect:

s.created = s'.created ~9 {T}

COMMIT(T), T ;e T O
Precondition:

(T,v) e s'.commit_requested for some v
T ~ s'.completed

Effect:
s.committed = s'.committed u {T}

ABORT(T), T :# T O
Precondition:

T e s'.create_requested - s ' .completed
Effect:

s.aborted = s'.aborted • {T}

REPORT_COMMIT(T,v), T ~ T O
Precondition:

T e s' .committed
(T,v) e s'.commit_requested
T ff s'.reported

Effect:
s.reported = s'.reported u {T}

REPORT_ABORT(T), T # T O
Precondition:

T • s'.aborted
T ~ s'.reported

Effect:
s.reported = s'.reported k) {T}

REQUEST_COMMIT(T,v), T an access
Precondition:

T • s'.created
for all v ' , (T,v') ~ s'.commit_requested

Effect:
s.commit_requested = s ' .commiLrequested u { (T,v) }

The next two lemmas are analogous to those previously given for the serial scheduler.

Lemma 15: Let 13 be a finite schedule of the simple database, and let s be a state such that 13
can leave the simple database in state s. Then the following conditions are true.

1. T is in s.create_requested exactly if T = T O or 13 contains a REQUEST_CREATE(T)
event.

2. T is in s.created exactly if 1~ contains a CREATE(T) event.

3. (T,v) is in s.commit_requested exactly if 13 contains a REQUEST_COMMIT(T,v)
event.

4. T is in s.committed exactly if 13 contains a COMMIT(T) event.

5. T is in s.aborted exactly if ~ contains an ABORT(T) event.

6. T is in s.reported exactly if ~ contains a report event for T.

7. s.committed n s.aborted = O.

8. s.reported ~ s.committed k) s.aborted.

63

Lemma 16: Let 13 be a schedule of the simple database. Then all of the following hold:
1. If a CREATE(T) event appears in 13, then a REQUEST-CREATE(T) event precedes it

in 13.

2. At most one CREATE(T) event appears in 13 for each transaction T.

3. If a COMMIT(T) event appears in 13, then a REQUEST-COMMIT(T,v) event
precedes it in 1~ for some return value v.

4. If an ABORT(T) event appears in 13, then a REQUEST-CREATE(T) event precedes it
in 13.

5. At most one completion event appears in 13 for each transaction.

6. At most one report event appears in 13 for each transaction.

7. If a REPORT-COMMIT(T,v) event appears in 13, then a COMMIT(T) event and a
REQUEST_COMMIT(T,v) event precede it in 13.

8. If a REPORT-ABORT(T) event appears in 13, then an ABORT(T) event precedes it in
13.

9. If T is an access and a REQUEST_COMMIT(T,v) event occurs in 13, then a
CREATE(T) event precedes it in 13.

10. I f T is an access, then at most one REQUESTCOMMIT event for T occurs in 13.

Proof: By Lemma 15 and the simple database preconditions.

Thus, the simple database embodies those constraints that we would expect any reasonable
transaction-processing system to satisfy. The simple database does not allow CREATEs, ABORTs, or
COMMITs without an appropriate preceding request, does not allow any transaction to have two
creation or completion events, and does not report completion events that never happened. Also, it does
not produce responses to accesses that were not invoked, nor does it produce multiple responses to
accesses. On the other hand, the simple database allows almost any ordering of transactions, allows
concurrent execution of sibling transactions, and allows arbitrary responses to accesses. We do not
claim that the simple database produces only serially correct behaviors; rather, we use the simpIe
database to model features common to more sophisticated systems that do ensure correctness.

Lemma 17" Let T be any transaction name. Then the simple database preserves transaction
well-formedness for T.

Proof: By the definitions and the characterization given in Lemma 16.

4.2 Simple Systems, Executions, Schedules and Behaviors
A simple system is the composition of a compatible set of automata indexed by the union of the set of

non-access transaction names and the singleton set { SD } (for "simple database"). Associated with each
non-access transaction name T is a transaction automaton A(T) for T, and associated with the name SD
is the simple database automaton for the given system type. When the particular simple system is
understood from context, we will often use the terms simple executions, simple schedules and simple
behaviors for the system's executions, schedules and behaviors, respectively.

Lemma 18: If 13 is a simple behavior and T is a transaction name, then 131T is transaction
well-formed for T.

Proof: By Lemma 17 and the definition of transaction automata.

The Serializability Theorem is formulated in terms of simple behaviors; it provides a sufficient
condition for a simple behavior to be serially correct for a particular transaction name T.

64

5 T h e S e r i a l i z a b i l i t y T h e o r e m
In this section, we present our Serializability Theorem, which embodies a fairly general method for

proving that a concurrency control algorithm guarantees serial correctness. This theorem expresses the
following intuition: a behavior of a system is serially correct provided that there is a way to order the
transactions so that when the operations at each object are arranged in the corresponding order, the result
is a behavior of the corresponding serial object. The correctness of many different concurrency control
algorithms can be proved using this theorem.

This theorem is the closest analog we have for the classical Serializability Theorem of [BHG]. Both
that theorem and ours hypothesize that there is some ordering on transactions consistent with the
behavior at each object. In both cases, this hypothesis is used to show serial correctness. Our result is
somewhat more complicated, however, because it deals with nesting and aborts. In the next two
subsections, we give some additional definitions that are needed to accomodate these complications.

5.1 Visibility
One difference between our result and the classical Serializability Theorem is that the conclusion of

our result is serial correctness for an arbitrary transaction T, whereas the classical result essentially
considers only serial correctness for T 0. Thus, it should not be surprising that the hypothesis of our
result does not deal with all the operations at each object, but only with those that are in some sense
"visible" to the particular transaction T. In this subsection, we define a notion of "visibility" of one
transaction to another. This notion is a technical one, but one that is natural and convenient in the
formal statements of results and in their proofs. Visibility is defined so that, in the usual transaction-
processing systems, only a transaction T' that is visible to another transaction T can affect the behavior
o fT .

A transaction T' can affect another transaction T in several ways. First, if T ' is an ancestor of T, then
T ' can affect T by passing information down the transaction tree via invocations. Second, a transaction
T ' that is not an ancestor of T can affect T through COMMIT actions for T ' and all ancestors of T' up to
the level of the least common ancestor with T; information can be propagated from T ' up to the least
common ancestor via COMMIT actions, and from there down to T via invocations. Third, a transaction
T' that is not an ancestor of T can affect T by accessing an object that is later accessed by T; in most of
the usual transaction-processing algorithms, this is only allowed to occur if there are intervening
COMMIT actions for all ancestors of T ' up to the level of the least common ancestor with T.

Thus, we define "visibility" as follows. Let 13 be any sequence of serial actions. If T and T' are
transaction names, we say that T' is visible to T in 13 if there is a COMMIT(U) action in [3 for every U in
ancestors(T') - ancestors(T). Thus, every ancestor of T ' up to (but not necessarily including) the least
common ancestor of T and T ' has committed in 13.

T0

T'

Figure 5: Visibility

65

Figure 5 depicts two transactions, T and T' neither an ancestor of the other. If the transactions
represented by all of the circled nodes have committed in some sequence of serial actions, then the
definition implies that T ' is visible to T.

The following lemma describes elementary properties of "visibility".

Lemma 19: Let 13 be a sequence of actions, and let T, T ' and T " be transaction names.
1. If T ' is an ancestor of T, then T ' is visible to T in 13.

2. T ' is visible to T in 13 if and only if T' is visible to lca(T,T') in 13.

3. I f T " is visible to T ' in 13 and T ' is visible to T in 13, then T " is visible to T in 13.

4. If T ' is live in 13 and T ' is visible to T in 13, then T is a descendant of T ' .

5. If T' is an orphan in 13 and T' is visible to T in 13, then T is an orphan in 13.

We use the notion of "visibility" to pick, out of a sequence of actions, a subsequence consisting of the
actions corresponding to transactions that are visible to a given transaction T. More precisely, if 13 is any
sequence of actions and T is a transaction name, then visible(13,T) denotes the subsequence of 13
consisting of serial actions x with hightransaction(x) visible to T in 13. Note that every action occurring
in visible(13,T) is a serial action, even if 13 itself contains other actions. The following obvious lemma
says that the "visible" operator on sequences picks out either all or none of the actions having a
particular transaction.

Lemma 20: Let 13 be a sequence of actions, and let T and T' be transaction names. Then
visible(13,T)lT' is equal to 131T' if T' is visible to T in 13, and is equal to the empty sequence
otherwise.

5.2 Event and Transaction Orders
The hypothesis of the theorem refers to rearranging the operations at each object according to a given

order on transactions. The definitions required to describe the appropriate kind of ordering to use for this
purpose are provided in this subsection.

5.2.1 Affects Order
We first def'me a partial order "affects(13)" on the events of a sequence 13 of serial actions. This will be

used to describe basic dependencies between events in a simple behavior; any appropriate ordering will
be required to be consistent with these dependencies. We define the affects relation by first defining a
subrelation that we call the "directly-affects" relation and then taking the transitive closure. For a
sequence 13 of serial actions, and events ~ and ~ in 13, we say that ~ directly affects ~ in 13 (and that (~,x)

directly-affects(13)) if at least one of the following is true.

• transaction(O) = transaction(~) and ~ precedes x in 13, 9

• ¢ = REQUEST_CREATE(T) and x = CREATE(T)

• ~ = REQUEST_COMMIT(T,v) and ~ = COMMIT(T)

• ~ = REQUEST_CREATE(T) and n = ABORT(T)

• ~ = COMMIT(T) and ~ = REPORT_COMMIT(T,v)

• ~ = ABORT(T) and ~ = REPORT_ABORT(T)

If 13 is a simple behavior, and (¢~,x) e directly-affects(13), then it is easy to see that ~ precedes ~ in 13.
For a sequence 13 of serial events, define the relation affects(13) to be the transitive closure of the relation
directly-affects(13). If the pair (~,~) is in the relation affects(13), we also say that ~ affects ~ in 13. The
following is immediate.

9This includes accesses as well as non-accesses.

66

Lemma 21: Let [3 be a simple behavior. Then affects(13) is an irreflexive partial order on the
events in 1~. 10

The conditions listed in the definition of "directly-affects" should seem like a reasonable collection of
dependencies among the events in a simple behavior. Here we try to give some technical justification
for these conditions. In the proof of the theorem, we will attempt to extract serial behaviors from a
given simple behavior. The transaction orderings used to help in this construction will be constrained to
be consistent with "affects"; this will mean that the sequences we construct will be closed under
"affects" and that the orders of events in these sequences are consistent with "affects". Thus, if ~ is a
simple behavior and (¢,~) E directly-affects(13), all the serial behaviors we construct that contain ~ will
also contain ¢, and ¢ will precede x in each such behavior.

The first case of the "directly-affects" definition is used because we are not assuming special
knowledge of transaction behavior; if we included n and not ~) in our candidate serial behavior, we
would have no way of proving that the result included correct behaviors of the transaction automata.
The remaining cases naturally parallel the preconditions of the serial scheduler; in each case, the
preconditions of rc as an action of the serial scheduler include a test for a previous occurrence of ¢, so a
sequence of actions with n not preceded by ~) could not possibly be a serial behavior.

As before, we extend the "affects" definition to sequences 13 of arbitrary actions by saying that
affects ~ in 13 exactly if ~) affects ~ in serial(p).

5.2.2 Sibling Orders
The type of transaction ordering needed for our theorem is more complicated than that used in the

classical theory, because of the nesting involved here. Instead of just arbitrary total orderings on
transactions, we will use orderings that only relate siblings in the transaction nesting tree. We call such
an ordering a "sibling order". Interesting examples of sibling orders are the order of completion of
transactions or an order determined by assigned timestamps.

Let SIB be the (irreflexive) sibling relation among transaction names, for a particular system type;
thus, (T,T') ~ SIB if and only i f T ~ T ' and parent(T) = parent(T'). If R ~ SIB is an irreflexive partial
order then we call R a sibling order. Sibling orders are the analog for nested transaction systems of
serialization orders in single-level transaction systems. Note that sibling orders are not necessarily total,
in general; totality is not always appropriate for our results.

A sibling order R can be extended in two natural ways. First, Rtran s is the extension of R to
descendants of siblings, i.e., the binary relation on transaction names containing (T,T') exactly when
there exist transaction names U and U ' such that T and T' are descendants of U and U ' respectively, and
(U,U') e R. This order echoes the manner in which the serial scheduler runs transactions when it runs
siblings with no concurrency, in the order specified by R. Second, if 13 is any sequence of actions, then
Revent(~) is the extension of R to serial events in [3, i.e., the binary relation on events in 13 containing
(~,r~) exactly when ~) and n are distinct serial events in 13 with lowtransactions T and T' respectively,
where (T,T') a Rtran s. It is easy to see that Rtran s is an irreflexive partial order, and for any sequence 13
of actions, Revent(13) is an irreflexive partial order.

The concept of a "suitable sibling order" describes two basic conditions that will be required of the
sibling orders to be used in our theorem. The first condition is a technical one asserting that R orders
sufficiently many siblings, while the second condition asserts that R does not contradict the
dependencies described by the affects relation. Let 13 be a sequence of actions and T a transaction name.
A sibling order R is suitable for [~ and T if the following conditions are met.

1. R orders all pairs of siblings T ' and T " that are lowtransactions of actions in visible(I],T).

l°An irreflexive partial order is a binary relation that is irreflexive, anfisymmetric and transitive.

67

2. Revent([~) and affects(p) are consistent partial orders on the events in visible(~,T). 11

5.3 The Serializability Theorem
We now present the main result. It says that a simple behavior ~ is serially correct for a non-orphan

transaction name T provided that there is a suitable sibling order R for which a certain "view condition"
holds for each object name X. The view condition says that the portion of [3 occurring at X that is visible
to T, reordered according to R, is a behavior of the serial object S(X). In order to make all of this
precise, suppose [~ is a finite simple behavior, T a transaction name, R a sibling order that is suitable for
[~ and T, and X an object name. Let ~ be the sequence consisting of those operations occurring in
whose transaction components are accesses to X and that are visible to T in 9, ordered according to
Rtran s on the transaction components. (The first condition in the definition of suitability implies that this
ordering is uniquely determined.) Define view(~,T,R,X) to be pefform(~).

Thus, view([~,T,R,X) represents the portion of the behavior [~ occurring at X that is visible to T,
reordered according to R. Stated in other words, this definition extracts from 13 exactly the
REQUESTCOMMIT actions for accesses to X that are visible to T; it then reorders those
REQUEST_COMMIT actions according to R, and then inserts an appropriate CREATE action just prior
to each REQUEST_COMMIT action. The theorem uses a hypothesis that each view(~,T,R,X) is a
behavior of the serial object S(X) to conclude that [3 is serially correct for T.

Theorem 22: (Serializability Theorem) Let ~ be a finite simple behavior, T a transaction
name such that T is not an orphan in [~, and R a sibling order suitable for ~ and T. Suppose
that for each object name X, view(~,T,R,X) ~ finbehs(S(X)). Then ~ is serially correct for T.

Proof: Given 13, T and R, the needed serial behavior is constructed explicitly. The
construction is done in several steps. First~ visible([~,T), the portion of [3 visible to T, is
extracted from [3. This sequence is then reordered according to R and affects([~). (There may
be many ways of doing this.) The reordered sequence is then truncated at an appropriate
place, just after the last action involving T or any of its descendants. The resulting sequence 7
is shown to be a serial behavior by showing separately that its projections are behaviors of the
transaction automata, of the serial object automata, and of the serial scheduler, and then
applying Proposition 4.

If T ' is a nonaccess transaction name, Proposition 1 implies that [~lT' is a behavior of A(T').
Proposition 20 and the fact that Revent([~) is consistent with affects([~) ensure that ~dT' is a
prefix of ~IT' and so is a behavior of A(T'). Thus, the projection of Y on each of the
transaction automata is a behavior of that automaton.

For each object name X, unwinding the definitions shows that ~X is a prefix of
view(13,T,R,X). The "view condition" hypothesis of the theorem, that view(l~,T,R,X)
finbehs(S(X)), implies that ~X is a behavior of S(X). Thus, the projection of T on each of the
serial object automata is a behavior of that automaton.

Finally, an explicit argument by induction on the length of T shows that ~,is a behavior of the
serial scheduler automaton. Consistency with affects(13) is used to show that certain events are
included in 7, this implies that the serial scheduler preconditions involving occurrence of
certain events are satisfied. The properties of the "visible" operator are used to show that
certain events, e.g., those involving live transactions neither ancestors nor descendants of T,
are not included in 7, this implies that the serial scheduler preconditions involving
nonoccurrence of certain actions are satisfied.

The theorem has a straightforward corollary that outlines a strategy for showing that a particular
system satisfies the correctness condition in which we are mainly interested, i.e., that all its finite
behaviors are serially correct for T O .

llTwo binary relations R and S are consistent if their unio, can be extended to an irretlexive partial order (or in other
words, if their union has no cycles).

68

Corollary 23: Let {Bi}i~ I be a strongly compatible set of automata and let B = IlielB i-
Suppose that the name T O is in the index set I, and that the automaton A(T0) is associated with
T O in B. Suppose that for every finite behavior 13 of B, the following conditions hold.

1. serial(13) is a simple behavior.

2. There exists a sibling order R suitable for serial(13) and T 0, such that for each object
name X, view(serial(13),T0,R,X) e finbehs(S(X)).

Then every finite behavior of B is serially correct for T 0.

6 Applications of the Serializability Theorem
We use this theorem elsewhere in our work to reason about the correctness of a wide variety of

algorithms for implementing atomic transactions. In particular, we carry out correctness proofs for
several algorithms that use locking and others that use timestamps.

The locking algorithm of Moss [Moss] is designed for data objects that are accessible only by read and
write operations. We have developed a similar algorithm, in [FLMW2], that accomodates arbitrary data
types. These algorithms involve simultaneous locking at different levels of the transaction nesting tree.
A transaction is only permitted to access a data object if it has a suitable lock on that object. Sometime
after a transaction commits, its locks are passed up to its parent and associated modifications to the data
are made available to the parent and its other descendants. On the other hand, when a transaction aborts,
its locks are released and its modifications to the data are discarded. The decision about whether to
permit an access transaction to obtain a lock is based on whether any locks for "conflicting" operations
are held by transactions that are not ancestors of the given access.

Using Corollary 23 above, we can prove that all the finite behaviors of a system B are serially correct
for T O if B uses these algorithms. Although the locking algorithms include more actions than the simple
system, it is not hard to see that serial(13) is a simple behavior, for every finite behavior 13 of B. The
sibling order R used in the proof is the "completion order", i.e., the order in which sibling transactions
commit and abort. Proving correctness of this algorithm using the Serializability Theorem highlights the
key reason why locking algorithms work: roughly speaking, the condition that view(13,T0,R,X)
finbehs(S(X)) says that the processing at any object is "consistent" with the transaction completion
order. The "consistency" mentioned here means that reordering the appropriate, "visible" portion of the
processing at each object in completion order yields a correct behavior for the corresponding serial
object automaton. We can also use the Serializability Theorem to prove the stronger statement that the
locking algorithms mentioned above are serially correct for all non-orphan transactions.

Our correctness proofs for these algorithms have an interesting structure. Namely, we describe each
algorithm as the composition of a component automaton for each object plus one global "controller"
automaton that simply manages communication among the other automata. A local condition called
"dynamic atomicity" is defined; this condition essentially says that the object satisfies the view condition
using the completion order. The Serializability Theorem implies that if all the objects are dynamic
atomic, the system guarantees serial correctness for all non-orphan transaction names. The rest of the
proof involves showing that the objects that model the given locking algorithms are dynamic atomic.

This proof structure allows us to obtain much stronger results than just the correctness of the given
algorithms. As long as each object is dynamic atomic, the whole system will guarantee that any finite
behavior is serially correct for all non-orphan transaction names. Thus, we are free to use an arbitrary
implementation for each object, independent of the choice of implementation for each other object, as
long as dynamic atomicity is satisfied. For example, a simple algorithm such as Moss' can be used for
most objects, while a more sophisticated algorithm permitting extra concurrency by using type-specific
information can be used for objects that are "hot spots" (that is, very frequently accessed.) The idea of a
local condition that guarantees serial correctness was introduced by Weihl [Weihl] for systems without
transaction nesting.

The timestamp algorithm of Reed [Reed] is designed for data objects that are accessible only by read

69

and write operations. We have developed a similar algorithm, in [AFLMW], that accomodates arbitrary
data types. (This work generalizes work of Herlihy [Herlihy] giving a timestamp algorithm for single-
level transactions using arbitrary data types.) These algorithms both involve assignment of ranges of
timestamp values to transactions in such a way that the interval of a child transaction is included in the
interval of its parent, and the intervals of siblings are disjoint. Responses to accesses are determined
from previous accesses with earlier timestamps.

We again analyze these algorithms using the Serializability Theorem and its Corollary. This time, the
sibling order used is the timestamp order. Now the condition that view(~,T0,R,X) ~ finbehs(S(X)) says
that the processing of accesses to X is "consistent" with the timestamp order, in that reordering the
processing in timestamp order yields a correct behavior for the corresponding serial object automaton.
The Corollary then implies that all finite behaviors are serially correct for T 0, and the Serializability
Theorem implies that the timestamp algorithms are serially correct for all non-orphan transaction names.
Once again, each algorithm is described as the composition of object automata and a controller. This
time, a local condition called "static atomicity" is used, saying that an object satisfies the view condition
using the timestamp order. As long as each object is static atomic, the whole system is serially correct
for non-orphan transactions. We show that both Reed's algorithm and our version of Herlihy's algorithm
ensure static atomicity. Again, we have the flexibility to implement objects independently as long as
static atomicity is guaranteed.

Objects can be proved to be dynamic atomic or static atomic using standard assertional proof
techniques and connections between the object's state and history. It is also possible to prove that some
objects are dynamic atomic or static atomic by showing that they implement other objects of the same
kind. Possibilities maps and Proposition 6 can be used to show this. This strategy is especially useful in
cases where the object keeps information in a compact form, whereas the required local property is easy
to prove for a less compact variant of the algorithm. We refer the interested reader to [FLMW2] and
[AFLMW] for more details.

7 Conclusions
In this paper, we have presented correctness conditions for atomic transaction systems. These

conditions are stated at the user interface to the system, which is the interface of primary interest. The
fact that the conditions are stated at this interface makes them quite general; they can be used to state
appropriate correctness conditions for a wide variety of different algorithms. We have also described
one general theorem, the Serializability Theorem, which is useful for proving correctness of many
interesting and apparently dissimilar algorithms.

The Serializability Theorem is not the only tool we use for our correctness proofs. There are several
other techniques that we use for decomposing proofs of transaction-processing algorithms. For
example, in [GL], we provide proofs for replicated data algorithms based on the quorum consensus
technique of Gifford [Gifford]. We consider replication management algorithms in combination with
concurrency control and recovery algorithms. Our presentation separates the concerns very cleanly: the
algorithm is divided into modules that handle replication and modules that handle the concurrency
control and recovery. Correctness conditions for the two separate algorithms are combined to yield
correctness for the complete algorithm. In particular, all that is required of the concurrency control and
recovery algorithms is that they guarantee serial correctness for non-orphan transactions (with respect to
the individual copies of the data objects); thus, there is considerable flexibility in the choice of
concurrency control and recovery algorithms. We remark that transaction nesting provides a
particularly good way to organize this decomposition: the replication part of the algorithm is formally
described in terms of new copy-management subtransactions that are called by the user-level
transactions in place of the original user-level accesses to objects.

We expect that our model in general, and the Serializability Theorem in particular, will prove quite
useful for reasoning about many more algorithms than those that we have already considered. We are
also particularly interested in understanding how to reason about multi-level locking algorithms such as
that considered in [BBG], and in understanding complicated algorithms that are used for concurrency

70

control and recovery in an environment having volatile memory which is lost during a crash.
Understanding these ideas in our model is work remaining to be done.

Finally, we remark that our Serializability Theorem still seems somewhat more complicated than the
classical theorem, even taking the generalizations into account. The classical theorem was stated in
simple combinatorial terms, while our theorem involves a more complicated fine-gained treatment of
individual actions. We wonder if it is possible to combine the advantages of the two approaches:
perhaps there is a simple combinatorial condition that takes suitable account of nesting and failures, and
that implies the natural and general correctness conditions described in this paper.

8 References

[AFLMW]

[BBG]

[BHG]

[Davies]

[FLMWl]

[FLMW2]

[Gifford]

[GL]

[Herlihy]

[HLMW]

[Hoare]

[Liskov]

[LM]

[LMWF]

Aspnes, J., Fekete, A., Lynch, N., Merritt, M., and Weihl, W., "A Theory of
Timestamp-Based Concurrency Control for Nested Transactions," Proceedings of
14th International Conference on Very Large Data Bases, to appear.

Beeri, C., Bernstein, P. A., and Goodman, N., "A Model for Concurrency in Nested
Transaction Systems," Technical Report, Wang Institute TR-86-03, March 1986.

Bernstein, P., Hadzilacos, V., and Goodman, N, "Concurrency Control and
Recovery in Database Systems," Addison-Wesley, 1987.

Davies, C. T., "Recovery Semantics for a DB/DC System," Proceedings of 28th
ACM National Conference, 1973, pp. 136-141.

Fekete, A, Lynch, N., Merritt, M., and Weihl, W., "Nested Transactions and
Read/Write Locking," Proceedings of 6th ACM Symposium on Principles of
Database Systems, 1987, pp. 97-111. An expanded version is available as Technical
Memo MIT/LCS/TM-324, Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA., April 1987.

Fekete, A., Lynch, N., Merritt, M., and Weihl, W., "Nested Transactions, Conflict-
Based Locking and Dynamic Atomicity," Technical Memo MIT/LCS/TM-340,
Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA., September 1987. Submitted for publication.

Gifford, D., "Weighted Voting for Replicated Data," Proceedings of 7th ACM
Symosium on Operating System Principles, 1979, pp. 150-162.

Goldman, K., and Lynch, N., "Nested Transactions and Quorum Consensus,"
Proceedings of 6th ACM Symposium on Principles of Distributed Computation,
I987, pp. 27-41. An expanded version is available as Technical Report
MIT/LCS/TR-390, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA., May 1987.

Herlihy, M., "Extending Mulfiversion Time-Stamping Protocols to Exploit Type
Information," IEEE Transactions on Computers C-36, April 1987.

Herlihy, M., Lynch, N., Merritt, M., and Weihl, W., "On the Correctness of Orphan
Elimination Algorithms," Proceedings of 17th IEEE Symposium on Fault-Tolerant
Computing, 1987, pp. 8-13.

Hoare, C. A. R., "Communicating Sequential Processes," Prentice Hall International,
1985.

Liskov, B., "Distributed Computing in Argus," Communications of ACM, vol. 31,
no. 3, March 1988, pp. 300-312.

Lynch, N., and Merritt, M., "Introduction to the Theory of Nested Transactions,"
Technical Report MIT/LCS/TR-367, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA., July 1986. To appear in
Theoretical Compter Science.

Lynch, N., Merritt, M., Weihl, W., and Fekete, A., "Atomic Transactions," in
preparation.

71

[LT]

[Milner]

[Moss]

[Perl]

[SS]

[Reed[

[Weihl]

Lynch, N., and Tuttle, M., "Hierarchical Correctness Proofs for Distributed
Algorithms," Proceedings of 6th ACM Symposium on Principles of Distributed
Computation, 1987, pp. 137-151. An expanded version is available as Technical
Report MIT/LCS/TR-387, Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA., April 1987.

Milner, R., "A Calculus of Communicating Systems," Lecture Notes in Computer
Science 92, Springer Verlag, 1980.

Moss, J. E. B., "Nested Transactions: An Approach To Reliable Distributed
Computing," Ph.D. Thesis, Technical Report MIT/LCS/TR-260, Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge, MA., April
1981. Also, published by MIT Press, March 1985.

Perl, S., "Distributed Commit Protocols for Nested Atomic Actions," M.S. Thesis,
M.I.T. September 1987.

Spector, A., and Swedlow, K. (eds), "Guide to the Camelot Distributed Transaction
Facility: Release 1," Carnegie Mellon University, Pittsburgh, PA., October 1987.

Reed, D. P., "Naming and Synchronization in a Decentralized Computer System,"
Ph.D Thesis, Technical Report MIT/LCS/TR-205, Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA., September 1978.

Weihl, W., "Specification and Implementation of Atomic Data Types," Ph.D.
Thesis, Technical Report MIT/LCS/TR-314, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA., March 1984.

