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Abstract: 

This paper describes some results of a recent project to develop a theory for reasoning about atomic 
transactions. This theory allows careful statement of the correctness conditions to be satisfied by 
transaction-processing algorithms, as well as clear and concise description of such algorithms. It also 
serves as a framework for rigorous correctness proofs. 

1 Introduction 
The notion of "atomic transaction", originally introduced for databases, is now used in programming 

systems for general (data-oriented) distributed computing such as Argus [Liskov] and Camelot [SS]. 
Roughly speaking, a transaction is a sequence of accesses to data objects; it should execute "as if" it ran 
with no interruption by other transactions. Moreover, a transaction can complete either successfully or 
unsuccessfully, by "committing" or "aborting". If it commits, any alterations it makes to the database 
should be lasting; if  it aborts, it should be "as if" it never altered the database at all. The execution of a 
set of transactions should be "serializable", that is, equivalent to an execution in which no transactions 
run concurrently and in which all accesses of  committed transactions, but no accesses of aborted 
transactions, are performed. Another condition often considered is "external consistency", which asserts 
that the order of  transactions in the equivalent serial execution should be compatible with the order in 
which transaction invocations and responses occur. 

In order for transactions to be useful for general distributed programming, the notion needs to be 
extended to include nesting. Thus, in addition to accesses, a transaction can also contain 
subtransactions. The transaction nesting structure can be described by a forest, with the top-level 
transactions at the roots and the accesses to data at the leaves. The semantics of nested transactions 
generalize those of ordinary transactions as follows. Each set of sibling transactions or subtransactions 
is supposed to execute serializably. As for top-level transactions, subtransactions can commit or abort. 
Each set of sibling transactions runs as if all the transactions that committed ran in serial order, and all 
the transactions that aborted did not run at all. An external consistency property is also required for each 
set of siblings. 

Nested transactions provide a very flexible programming mechanism. They allow the programmer to 
describe more concurrency than would be allowed by single-level transactions, by having transactions 
request the creation of  concurrent subtransactions. They also allow localized handling of  transaction 
failures. When a subtransaction commits or aborts, the commit or abort is reported to its parent 
transaction. The parent can then decide on its next action based on the reported results. For example, if 
a subtransaction aborts, its parent can use the reported abort to trigger another subtransaction, one that 
implements some alternative action. A good mechanism for handling failures is especially important in 
distributed systems, where failures are common because of  the unreliability of  communication. 

IThe work of the first author (and through her, the work of the fourth author) was supported in part be the office of Naval 
Research under Contract N00014-85-K-0168, by the National Science Foundation under Grant CCR-8611442, and by the 
Defense Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125. The work of the third author 
was supported in part by the National Science Foundation under Grant CCR-8716884. and by the Defense Advanced 
Research Projects Agency (DARPA) under Contract N00014-83-K-0125. 
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The idea of nested transactions seems to have originated in the "spheres of control" work of [Davies]. 
Reed [Reed] developed the current notion of nesting and designed a timestamp-based implementation. 
Moss [Moss] later designed a locking implementation that serves as the basis of the implementation of 
the Argus programming language. 

There are two reasons why a formal model is needed for reasoning about atomic transactions. First, 
the implementors of languages that contain transactions need a model in order to reason about the 
correctness of their implementations. Some of the algorithms that have been proposed for implementing 
transactions are complicated, and informal arguments about their correcmess are unsatisfying. In fact, it 
is not even obvious how to state the precise correctness conditions to be satisfied by the 
implementations; a model is needed for describing the semantics of transactions carefully and formally. 
Second, if programming languages containing transactions become popular, users of these languages 
will need a model to help them reason about the behavior of their programs. 

There has been considerable prior work on a theory for atomic transactions, described, for example, in 
[BHG]. This "classical" theory is primarily applicable to single-level transactions, rather than nested 

transactions. It treats both concurrency control and recovery algorithms, although the treatments of the 
two kinds of algorithms are not completely integrated. The theory assumes a system organization in 
which accesses are passed from the transactions to a "scheduler", which determines the order in which 
they are to be performed by the database. The database handles recovery from transaction abort and 
media failure, so that each access to one data object is performed in the state resulting from all previous 
non-aborted accesses to that object. The notion of "serializability" in this theory corresponds to 
"looking like a serial execution, from the point of view of the database". Proofs for some algorithms are 
presented, primarily based on one main combinatorial theorem, the "Serializability Theorem". This 
important theorem states that serializability is equivalent to the absence of cycles in a certain graph 
representing dependencies among transactions. 

There are some limitations of this prior work. First, the notion of correctness is quite restrictive, 
stated as it is in terms of the object boundary in a particular system organization. The object interface 
that is described is suitable for single-version locking and timestamp algorithms (in the absence of 
transaction aborts), but it is much less appropriate for other kinds of algorithms. Multi-version 
algorithms and replicated data algorithms, for example, maintain object information in a form that is 
very different from the (single-copy latest-value) form used for the simple algorithms, and the 
appropriate object interface is also very different. The correctness conditions presented for the simple 
algorithms in [BHG] thus do not apply without change to these other kinds of algorithms. It seems more 
appropriate, and useful in not unduly restricting possible implementations, to state correctness 
conditions at the user interface to the system, rather than the object boundary. 

Second, the transactions are not modelled explicitly in the earlier work, but rather implicitly, in terms 
of axioms about their executions. It is sometimes interesting to reason about the control within a 
transaction, e.g., to describe how the same transaction would behave when it is placed in different 
systems. Such reasoning is facilitated by an explicit model which clarifies which actions occur under 
the transaction's control, and which are due to activity of the environment. Furthermore, it will turn out 
that the "user interface" mentioned above can be modelled by the boundary between the transactions and 
the rest of the system; in order to state correctness conditions at this boundary, it is useful to have an 
explicit model for the transactions. 

Third, the prior model does not seem to extend well to treat nested transactions. This seems to be 
primarily because not everything that needs to be described is modelled explicitly. For example, a 
subtransaction may have been created only because an earlier attempt aborted, so we must model the 
abort explicitly to capture this dependence. 

Our model remedies the deficiencies described above for the earlier model. This improvement does 
not come for free: our model contains more detail than the earlier model, and may therefore seem more 
complicated. It seems to us, however, that this extra detail is necessary. In fact, we believe that the 
extra detail is useful for understanding not just nested transactions, but also ordinary single-level 
transactions. 
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We have already used our theory to present and prove correctness of  many transaction-processing 
algorithms, including locking and timestamp-based algorithms for concurrency control, algorithms for 
managing replicated data and algorithms for managing "orphan" transactions. This work has been 
presented in research papers [LM, FLMW1, FLMW2, HLMW, GL, AFLMW, Perl], and we are 
currently writing a book [LMWF] to unify all the work. There is still much that remains to be done, in 
particular in modelling the very interesting and complex algorithms that have been developed to 
implement transactions in the presence of crashes that destroy volatile memory. 

In this paper, we present some of the basic results of our theory and attempt to compare them to the 
corresponding results of the classical theory. In particular, we describe the correctness conditions that 
we use for transaction systems - notions similar to "serializability" but stated in terms of the transaction 
boundary. We then present our "Serializability Theorem", a general theorem containing a sufficient 
condition for proving serializability. Although this theorem is more complicated to state than the 
classical Serializability Theorem, it is similar in spirit: it shows that the existence of  a single ordering of  
transactions that is consistent with the processing of accesses at each object is sufficient to prove 
serializability. We use our Seriaiizability Theorem elsewhere to prove correctness for locking 
[FLMW2] and timestamp algorithms [AFLMW], but in this paper, we only present the theorem itself in 

detail and mention some of its consequences. 

The rest of the paper is organized as follows. Section 2 contains an outline of  the I/O automaton 
model, the basic model for concurrent systems that is used for presenting all of our transaction work. 
Section 3 contains a description of "serial systems", extremely constrained transaction-processing 
systems that are defined solely for the purpose of stating correctness conditions for more liberal systems. 
Section 4 contains a description of "simple systems", very unconstrained transaction-processing systems 
that represent the common features of most transaction-processing systems. Section 5 contains our 
Serializability Theorem, stated in terms of simple systems. Section 6 contains a discussion of  some 
applications of the Serializability Theorem and Section 7 contains some final remarks. 

2 The I/O Automaton Model 
In order to reason carefully about compIex concurrent systems such as those that implement atomic 

transactions, it is important to have a simple and clearly-defined formal model for concurrent 
computation. The model we use for our work is the recently-developed input~output automaton model 
[LT]. Since its introduction, the model has been used for describing and reasoning about several 

different types of concurrent systems, including network resource allocation algorithms, communication 
algorithms, concurrent database systems, shared atomic objects, and dataflow architectures. This 
section contains an introduction to a simple special case of  the model that is sufficient for use in this 
paper. 2 

2.1 Overview of the Model 
I/O automata provide an appropriate model for discrete event systems consisting of concurrently- 

operating components. 3 The components of a discrete event system can be regarded as discrete event 
systems themselves. Such a system may be "reactive" in the sense that it interacts with its environment 
in an ongoing manner (rather than, say, simply accepting an input, computing a function of  that input 
and halting). 

Each system component is modelled as an "I/O automaton", which is a mathematical object somewhat 
like a traditional finite-state automaton. However, an I/O automaton need not be finite-state, but can 

2In this paper, we only consider properties of finite executions, and do not consider "liveness" or "fairness" properties. 

3By a "discrete event system" we mean an entity that undergoes sudden changes that may be named and observed, and 
through which the system interacts with its environment, 
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have an infinite state set. The actions of an I/O automaton are classified as either "input", "output" or 
"internal". This classification is a reflection of a distinction in the system being modelled, between 
events (such as the receipt of a message) that are caused by the environment, events (such as sending a 
message) that the component can perform when it chooses and that affect the environment, and events 
(such as changing the value of a local variable) that a component can perform when it chooses, but that 
are undetectable by the environment except through their effects on later events. In the model, an 
automaton generates output and internal actions autonomously, and transmits output actions 
instantaneously to its environment. In contrast, the automaton's input is generated by the environment 
and transmitted instantaneously to the automaton. Our distinction between input and other actions is 
based on who determines when the action is performed: an automaton can establish restrictions on 
when it will perform an output or internal action, but it is unable to block the performance of an input 
action. 

The fact that our automata are unable to block inputs distinguishes our model from others, such as 
Hoare's Communication Sequential Processes ("CSP") [Hoare], or Milner's Calculus of Communicating 
Systems ("CCS")[Milner]. In these models, communication between two components only occurs 
when both components are willing to communicate. Thus, for example, a sender of a message is 
blocked until the corresponding receiver is ready to receive the message. In CSP-like models, input 
blocking is used for two purposes: as a way of eliminating undesirable inputs, and as a way of blocking 
the activity of the environment. Our model does not have any way of blocking the environment, but 
does have other ways of coping with unwanted inputs. For example, suppose that we wish to constrain 
the behavior of an automaton only in case the environment observes certain restrictions on the 
production of inputs. Instead of requiring the automaton to block the bad inputs, we permit these inputs 
to occur; however, we may permit the automaton to exhibit arbitrary behavior in case they do. 
Alternatively, we may require the automaton to detect bad inputs and respond to them with error 
messages. Thus, we have simple ways of describing input restrictions, without including input-blocking 
in the model. 

I/O automata may be nondeterministic, and indeed the nondeterminism is an important part of the 
model 's  descriptive power. Describing algorithms as nondeterministically as possible tends to make 
results about the algorithms quite general, since many results about nondeterministic algorithms apply a 
fortiori to all algorithms obtained by restricting the nondeterministic choices. Moreover, the use of 
nondeterminism helps to avoid cluttering algorithm descriptions and proofs with inessential details. 
Finally, the uncertainties introduced by asynchrony make nondeterminism an intrinsic property of real 
concurrent systems, and so an important property to capture in a formal model of such systems. 

Often, a single discrete event system can also be viewed as a combination of several component 
systems interacting with one another. To reflect this in our model, we define an operation called 
"composition", by which several I/O automata can be combined to yield a single I/O automaton. Our 
composition operator connects each output action of the component automata with the identically named 
input actions of any number (usually one) of the other component automata. In the resulting system, an 
output action is generated autonomously by one component and is thought of as being instantaneously 
transmitted to all components having the same action as an input. All such components are passive 
recipients of the input, and take steps simultaneously with the output step. 

When a system is modelled by an I/O automaton, each possible mn of the system is modelled by an 
"execution", an alternating sequence of states and actions. The possible activity of the system is 
captured by the set of  all possible executions that can be generated by the automaton. However, not all 
the information contained in an execution is important to a user of the system, or to an environment in 
which the system is placed. We believe that what is important about the activity of a system is the 
externally visible events, and not the states or internal events. Thus, we focus on the automaton's 
"behaviors" - -  the subsequences of its executions consisting of external (i.e., input and output) actions. 
We regard a system as suitable for a purpose if any possible sequence of externally-visible events has 
appropriate characteristics. Thus, in the model, we formulate correctness conditions for an I/O 
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automaton in terms of properties of  the automaton's behaviors. 4 

One convenient way to specify properties of an I/O automaton's behaviors is in terms of another 1/O 
automaton. That is, we can define a particular "specification automaton" B and say that any automaton 
A is "correct" if  it "implements" B, in the sense that each finite behavior of A is also a finite behavior of  
B. Often, B will be a simple system that is impractical as a real solution because it is too inefficient or 
uses global information, while A will be a more efficient or distributed algorithm. 

The model permits description of the same system at different levels of abstraction. Abstraction 
mappings can be defined, which describe the relationship between automata that include implementation 
detail to more abstract automata that suppress some of the detail. Such mappings can be used as aids in 
correctness proofs for algorithms: if automaton B is an image of automaton A under an appropriate 
abstraction mapping, then it can be shown that A implements B. 

The model allows very careful and readable descriptions of particular concurrent algorithms. We have 
developed a simple language for describing automata, based on "precondition" and "effect" 
specifications for actions. This notation has proved sufficient for describing all algorithms we have 
attempted so far. However, the model does not constrain the user to describe all automata in this 
manner; for example, the model is general enough to serve also as a formal basis for languages that 
include more elaborate constructs for sequential flow of control. 

The model also allows clear and precise statement of  the correctness conditions that an automaton 
must satisfy in order that the system modelled by the automaton be said to solve a problem; such 
conditions can be stated independently of any particular proposed solution. As described above, such 
properties are often conveniently formulated in terms of implemention of a given automaton, but any 
other method of specifying properties of external behaviors could be used instead. Finally, once both an 
algorithm and the correctness condition it is supposed to satisfy have been described in the model, it is 
then possible to use the model as a basis for a rigorous proof that the algorithm satisfies the given 
conditions. 

2.2 Action Signatures 
The formal subject matter of this paper is concerned with finite and infinite sequences describing the 

executions of automata. Usually, we will be discussing sequences of elements from a universal set of 
actions. Since the same action may occur several times in a sequence, it is convenient to distinguish the 
different occurrences. Thus, we refer to a particular occurrence of an action in a sequence as an event. 

The actions of each automaton are classified as either "input", "output", or "internal". In the system 
being modelled, the distinctions are that input actions are not under the system's control, output actions 
are under the system's control and are externally observable, and internal actions are under the system's 
control but are not externally observable. In order to describe this classification formally, each 
automaton comes equipped with an "action signature". 

An action signature S is an ordered triple consisting of three pairwise-disjoint sets of actions. We 
write in(S), out(S) and int(S) for the three components of S, and refer to the actions in the three sets as 
the input actions, output actions and internal actions of S, respectively. We let ext(S) = in(S) u out(S) 
and refer to the actions in ext(S) as the external actions of S. Also, we let local(S) = int(S) u out(S), and 
refer to the actions in local(S) as the locally-controlled actions of S. Finally, we let acts(S) = in(S) t j  
out(S) u int(S), and refer to the actions in acts(S) as the actions of S. An external action signature is an 
action signature consisting entirely of external actions, that is, having no internal actions. If S is an 
action signature, then the external action signature of S is the action signature extsig(S) = 
(in(S),out(S),O), i.e., the action signature that is obtained from S by removing the internal actions. 

4This viewpoint differs from that taken in much of the algorithm specification work in the research literature, in which 
properties of the states are taken to be of primary concern. 
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2.3 Input/Output Automata 
An input~output automaton A (also called an BO automaton or simply an automaton) consists of four 

components: 

• an action signature sig(A), 

• a set states(A) of states, 

• a nonempty set start(A) c_ states(A) of  start states, and 

• a transition rela,tion steps(A) ~ states(A) × acts(sig(A)) x states(A), with the property that 
for every state s and input action ~ there is a transition (s ,re,s) in steps(A). 5 

Note that the set of states need not be finite. We refer to an element (s',Tz,s) of  steps(A) as a step of 
A. The step (s',rc,s) is called an input step of A if ~ is an input action, and output steps, internal steps, 
external steps and locally-controlled steps are defined analogously. If (s',r~,s) is a step of A, then r~ is 
said to be enabled in s'. Since every input action is enabled in every state, automata are said to be 
input-enabled. The input-enabling property means that an automaton is not able to block input actions. 

If A is an automaton, we sometimes write acts(A) as shorthand for acts(sig(A)), and likewise for 
in(A), out(A), etc. An automaton A is said to be closed if all its actions are locally-controlled, i.e., if 
in(A) = O. 

An execution fragment of A is a finite sequence s0r~lSl~2...rCnS n or infinite sequence s0r~lSl~2...~nSn... 
of alternating states and actions of A such that (si,xi+l,Si+l) is a step of A for every i. An execution 
fragment beginning with a start state is called an execution. We denote the set of  executions of A by 
execs(A), and the set of  finite executions of  A byfinexecs(A). A state is said to be reachable in A if it is 
the final state of  a finite execution of  A. 

The schedule of an execution fragment c~ of A is the subsequence of ~ consisting of actions, and is 
denoted by sched(~). We say that ~ is a schedule of A if ~ is the schedule of  an execution of A. We 
denote the set of  schedules of  A by scheds(A) and the set of finite schedules of  A byfinscheds(A). We 
say that a finite schedule ~ of  A can leave A in state s if  there is some finite execution ~ of A with final 
state s and with sched(c0 = 9. The behavior of a sequence ~ of actions in acts(A), denoted by beh(~), is 
the subsequence of  I~ consisting of actions in ext(A). The behavior of an execution fragment ~ of  A, 
denoted by beh(~), is defined to be beh(sched(~)). We say that 13 is a behavior of  A if 13 is the behavior 
of an execution of A. We denote the set of behaviors of A by behs(A) and the set of  finite behaviors of A 
by finbehs(A ). 

An extended step of an automaton A is a triple of  the form (s',13,s), where s' and s are in states(A), ~ is 
a finite sequence of  actions in acts(A), and there is an execution fragment of A having s" as its first state, 
s as its last state and 13 as its schedule. (This execution fragment might consist of  only a single state, in 
the case that 1~ is the empty sequence.) 

If [3 is any sequence of  actions and • is a set of  actions, we write [31~ for the subsequence of  
consisting of actions in ~ .  If A is an automaton, we write ~lA for [31acts(A). We call this the projection 
of [3 on A. It can be thought of as the portion of 13 observable by A. 

2.4 C o m p o s i t i o n  
I/O automata may be combined by means of a composition operator, as defined in this section. As a 

preliminary step, we first define composition of  action signatures. Let I be an index set that is at most 
countable. A collection {Si}iE I of  action signatures is said to be strongly compatible 6 i f  for all i, j ~ I, 

5I/O automata, as defined in [LT], also include a fifth component, an equivalence relation part(A) on local(sig(A)). This 
component is used for describing fair executions, and is not needed for the results described in this paper. 

6A weaker notion called "compatibility" is defined in [LT], consisting of the first two of the three given properties only. In 
this paper, only the stronger notion will be required. 
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we have 

1. out(Si) n out(Sj) = O, 

2. int(S i) ~ acts(Sj) = ~ ,  and 

3. no action is in acts(Si) for infinitely many i. 
Thus, no action is an output of  more than one signature in the collection, and internal actions of  any 
signature do not appear in any other signature in the collection. Moreover, we do not permit actions 
involving infinitely many component signatures. 

The composition S = Yli~ iSi of a collection of strongly compatible action signatures { S i }i~ I is defined 
to be the action signature with 

* in(S) = Lgie iin(Si) - ui~ iout(Si), 

• out(S) = ui~ IOUt(Si), and 

• int(S) = ui~ iint(Si). 
Thus, output actions are those that are outputs of any of the component signatures, and similarly for 
internal actions. Input actions are any actions that are inputs to any of  the component signatures, but 
outputs of no component signature. 

Now we define composition of automata. A collection {Ai}iE I of automata is said to be strongly 
compatible if  their action signatures are strongly compatible. The composition A = Hie iAi of a strongly 

compatible collection of automata {Ai}ie I has the following components: 7 

• sig(A) = Fli~ I sig(Ai), 

* states(A) = l-lie I states(Ai), 

• start(A) = rlie I start(Ai), and 

• steps(A) is the set of  triples (s',~,s) such that for all i e I, (a) if  r c e  acts(Ai) then 

(s'[i],r~,s[i]) e steps(Ai), and (b) if 7~ ¢ acts(Ai) then s'[i] = s[i]. 8 

Since the automata A i are input-enabled, so is their composition, and hence their composition is an 
automaton. Each step of  the composition automaton consists of  all the automata that have a particular 
action in their action signature performing that action concurrently, while the automata that do not have 
that action in their signature do nothing. We will often refer to an automaton formed by composition as 
a "system" of automata. Using the obvious isomorphisms, composition of  automata is associative and 
commutative when defined. 

If o~ = s07~lSl.., is an execution of A, let alA i, the projection of ~ on A i, be the sequence obtained by 
deleting ~;s;j J when r~;j is not. an action of  A;l, and replacing the remaining sj by sj[i]. Recall that we have 
previously defined a projection operator for action sequences. The two projection operators are related 
in the obvious way: sched(alAi) = sched(a)lA i, and similarly beh(alAi) = beh(a)lA i. 

We close this subsection with some basic results relating executions, schedules and behaviors of  a 
system of automata to those of the automata being composed. The first result says that the projections 
of executions of  a system onto the components are executions of the components, and similarly for 
schedules, etc. 

Proposit ion 1: Let {Ai}iE I be a strongly compatible collection of automata, and let A = 

YIiEIA i, If  ~ ~ execs(A) then ~IA i ~ execs(Ai) for all i ~ I. Moreover, the same result holds 
for finexecs, scheds, finscheds, behs and finbehs in place of execs. 

7Note that the second and third components listed are just ordinary Cartesian products, while the first component uses a 
previous definition. 

8We use the notation s[i] to denote the i th component of the state vector s. 
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Certain converses of the preceding proposition are also true. In particular, we can prove that 
schedules of  component automata can be "patched together" to form a schedule of the composition, and 
similarly for behaviors. In order to prove these results, we first state two preliminary lemmas, one 
involving schedules and one involving behaviors, that say that executions of component automata can be 
patched together to form an execution of the composition. 

Lemma  2: Let { A i}i~ I be a strongly compatible collection of  automata, and let A = Hie IAi. 
Let oq be an execution of  A i, for all i e I. Suppose ~ is a sequence of  actions in acts(A) such 
that ~IA i = sched(~) for every i. Then there is an execution c¢ of A such that [~ = sched(0~) and 
0t i = (xlA i for all i. 

L e m m a  3: Let {Ai}ic I be a strongly compatible collection of automata, and let A = rl i~iA i. 
Let c¢ i be an execution of  A i, for all i ~ I. Suppose [~ is a sequence of  actions in ext(A) such 
that [~IA i = beh(ai) for every i. Then there is an execution ¢x of A such that 13 = beh(cx) and c¢ i 
= (zlA i for all i. 

Now the results about patching together schedules and patching together behaviors follow easily. 

Proposition 4: Let {Ai}ie I be a strongly compatible collection of automata, and let A = 

I-lie iAi . 
1. Let [~ be a sequence of  actions in acts(A). If 131A i e scheds(A i) for all i e I, then 13 

scheds(A). 

2. Let 13 be a finite sequence of actions in acts(A). If [31A i e finscheds(Ai) for all i e I, 

then 13 ~ finscheds(A). 

3. Let [3 be a sequence of  actions in ext(A). If 13IA i e behs(Ai) for all i e I, then 13 
behs(A). 

4. Let [~ be a finite sequence of actions in ext(A). If [31A i e finbehs(Ai) for all i e I, then 

e finbehs(A). 

Proof: By Lemmas 2 and 3. 

Proposition 4 provides a method for showing that certain sequences are behaviors of a composition A: 
first show that its projections are behaviors of the components of A and then appeal to Proposition 4. 

2.5 Correspondences Between Automata 
In this subsection, we define the notion of "implementation" which is useful in stating correctness 

conditions to be satisfied by automata. Let A and B be automata with the same external action 
signature, i.e., with extsig(A) = extsig(B). Then A is said to implement B if finbehs(A) ~ finbehs(B). 
One reason for the usefulness of the notion of implementation as a correctness condition is the following 
fact: if A implements B, then replacing B by A in any system yields a new system in which all finite 
behaviors are behaviors of the original system. In fact, as the following proposition shows, we can take 
any collection of components of  a system and replace each by an implementation, and the resulting 
system wilt implement the original one. 

Proposition 5: Suppose that { A i}ie I is a strongly compatible collection of automata, and let 
A = I]ie IA i, Also suppose that {Bi}iE I is a strongly compatible collection of automata, and let 
B = Ylie IB i. If for each index i in I, A i implements Bi, then A implements B. 

In order to show that one automaton implements another, it is often useful to demonstrate a 
correspondence between states of the two automata. Such a correspondence can often be expressed in 
the form of a kind of abstraction mapping that we call a "possibilities mapping", defined as follows. 
Suppose A and B are automata with the same external action signature, and suppose f is a mapping from 
states(A) to the power set of states(B). That is, if  s is a state of A, f(s) is a set of  states of B. The 
mapping f is said to be apossibilities mapping from A to B if the following conditions hold: 

1. For every start state s o of A, there is a start state t o of B such that t o e f(s0). 
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2. Let s' be a reachable state of A, t '  ~ f(s') a reachable state of B, and (s',~,s) a step of 
A. Then there is an extended step, (t',7,t), of B (possibly having an empty schedule) such 
that the following conditions are satisfied: 

a. ~ext(B) = glext(A), and 

b. t ~ f(s). 

Proposition 6: Suppose that A and B are automata with the same external action signature 
and there is a possibilities mapping, f, from A to B. Then A implements B. 

2.6 Preserving Properties 
Although an automaton in our model is unable to block input actions, it is often convenient to restrict 

attention to those behaviors in which the environment provides inputs in a "sensible" way, that is, where 
the interaction between the automaton and its environment obeys certain "well-formedness" restrictions. 
A useful way of  discussing such restrictions is in terms of  the notion that an automaton "preserves" a 
property of  behaviors: as long as the environment does not violate the property, neither does the 
automaton. Such a notion is primarily interesting for properties that are "prefix-closed" and "limit- 
ctosed": formally, a set of  sequences P is prefix-closed provided that whenever [~ ~ P and "/is a prefix of 
9, it is also the case that Y ~ P. A set of sequences P is limit-closed provided that any sequence all of 
whose finite prefixes are in P is also in P. 

Let • be a set of  actions and P be a nonempty, prefix-closed, limit-closed set of  sequences of actions 
in ~ (i.e., a nonempty, prefix-closed, limit-closed "property" of such sequences). Let A be an 
automaton with <b c_ ext(A). We say that A preserves P if [~rr ~ finbehs(A), 7z ~ out(A) and ~l~b ~ P 
together imply that ~rcl~ ~ P. Thus, if an automaton preserves a property P, the automaton is not the 
first to violate P: as long as the environment only provides inputs such that the cumulative behavior 
satisfies P, the automaton will only perform outputs such that the cumulative behavior satisfies P. Note 
that the fact that an automaton A preserves a property P does not imply that all of  A 's  behaviors, when 
restricted to ~b, satisfy P; it is possible for a behavior of A to fail to satisfy P, if  an input causes a 
violation of P. However, the following proposition gives a way to deduce that all of a system's 
behaviors satisfy P. The lemma says that, under certain conditions, if all components of a system 
preserve P, then all the behaviors of the composition satisfy P. 

Proposition 7: Let {Ai}ie I be a strongly compatible collection of automata, and suppose 

that A, the composition, is a closed system. Let • _c ext(A), and let P be a nonempty, prefix- 
closed, limit-closed set of sequences of actions in ~ .  Suppose that for each i E I, one of the 
following is true. 

1. qb ~ ext(Ai) and A i preserves P, or 

2. • c7 ext(Ai) = O. 

If ~ e behs(A), then ~Ig9 ~ P. 

3 Serial Systems and Correctness 
In this section, we develop the formal machinery needed to define correctness for transaction- 

processing systems. Correctness is expressed in terms of a particular kind of system called a "serial 
system". We define serial systems here, using I/O automata. 

3.1 Overview 
Transaction-processing systems consist of  user-provided transaction code, plus transaction-processing 

algorithms designed to coordinate the activities of different transactions. The transactions are written by 
application programmers in a suitable programming language. In some transaction-processing systems 
such as the Argus system, transactions have a nested structure, so that transactions can invoke 
subtransactions and receive responses from the subtransactions describing the results of their processing. 
In addition to invoking subtransactions, transactions can also invoke operations on data objects. 
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In a transaction-processing system, the transaction-processing algorithms interact with the 
transactions, making decisions about when to schedule the creation of subtransactions and the 
performance of operations on objects. In order to carry out such scheduling, the transaction-processing 
algorithms may manipulate locks on objects, multiple copies of objects, and other convenient data 
structures. One popular organization divides the transaction processing into a "scheduler algorithm" and 
a "database" of objects. In this organization, the scheduler has the power to decide when operations are 
to be performed on the objects in the database, but not to perform more complex manipulations on 
objects (such as maintaining multiple copies). Although this organization is popular, it does not 
encompass all the useful system designs. 

In our work, each component of a transaction-processing system is modelled as an I/O automaton. In 
particular, each transaction is an automaton, and all the transaction-processing algorithms together 
comprise another automaton. 

It is not obvious at first how one ought to model the nested structure of transactions within the/ /O 
automaton model. One might consider defining special kinds of automata that have a nested structure, 
for example. However, it appears that the cleanest way to model this structure is to describe each 
subtransaction in the transaction nesting structure as a separate automaton. If a parent transaction T 
wishes to invoke a child transaction T' ,  T issues an output action that "requests that T' be created". The 
transaction-processing algorithms receive this request, and at some later time might decide to issue an 
action that is an input to the child T'  and corresponds to the "creation" of T ' .  Thus, the different 
transactions in the nesting structure comprise a forest of automata, communicating with each other 
indirectly through the transaction-processing automaton. The highest-level user-defined transactions, 
i.e., those that are not subtransactions of any other user-defined transactions, are the roots in this forest. 

It is actually more convenient to model the transaction nesting structure as a tree than a forest. Thus, 
we add an extra "root" automaton as a sort of "dummy transaction", located at the top of the transaction 
nesting structure. The highest-level user-defined transactions are considered to be children of this new 
root. The root can be thought of as modelling the outside world, from which invocations of top-level 
transactions originate and to which reports about the results of such transactions are sent. We often find 
that the formal reasoning we want to do about this dummy root transaction is very similar to our 
reasoning about ordinary transactions; thus, regarding the root as a transaction leads to economy in our 
formal arguments. 

The primary goal of this section is to define correcmess conditions to be satisfied by transaction- 
processing systems. As we discussed in the introduction, it seems most natural and general to define 
correctness conditions in terms of the actions occurring at the boundary between the transactions 
(including the root transaction) and the transaction-processing automaton. For it is immaterial how the 
transaction-processing algorithms work, as long as the outside world and the transactions see "correct" 
behavior. We define correct behavior for a transaction-processing system in terms of the behavior of a 
particular and very constrained "serial" transaction-processing system, which processes all transactions 
serially. 

Serial systems consist of transaction automata and "serial object automata" composed with a "serial 
scheduler automaton". Transaction automata have already been discussed above. Serial object automata 
serve as specifications for permissible object behavior. They describe the responses the objects should 
make to arbitrary sequences of operation invocations, assuming that later invocations wait for responses 
to previous invocations. Serial objects are very much like the ordinary abstract data objects that are 
used in sequential programming languages. 

The serial scheduler handles the communication among the transactions and serial objects, and 
thereby controls the order in which the transactions take steps. It ensures that no two sibling 
transactions are active concur ren t ly - -  that is, it runs each set of sibling transactions serially. The serial 
scheduler is also responsible for deciding if a transaction commits or aborts. The serial scheduler can 
permit a transaction to abort only if its parent has requested its creation, but it has not actually been 
created. Thus, in a serial system, all sets of sibling transactions are run serially, and in such a way that 
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no aborted transaction ever performs any steps. 

A serial system would not be an interesting transaction-processing system to implement. It allows no 
concurrency among sibling transactions, and has only a very limited ability to cope with transaction 
failures. However, we are not proposing serial systems as interesting implementations; rather, we use 
them exclusively as specifications for correct behavior of  other, more interesting systems. In our work, 
we describe many systems that do allow concurrency and recovery from transaction failures. (That is, 
they undo the effects of aborted transactions that have performed significant activity.) We prove that 
these systems are correct in the sense that certain transactions, and in particular T O , cannot distinguish 
them from corresponding serial systems. It appears to the transactions as i f  all siblings are run serially, 
and aborted transactions are never created, even though in reality, the systems allow concurrency and 
recovery from transaction failures. 

In the remainder of  this section, we develop the necessary machinery for defining serial systems and 
correctness. First, we define a type structure used to name transactions and objects. Then we describe 
the general structure of a serial system - -  the components it includes, the actions the components 
perform, and the way the components ate interconnected. We define several concepts involving the 
actions of  a serial system. We then go on to define the components of  a serial system in detail, and state 
some basic properties of  serial systems. Finally, we use serial systems to state correctness conditions for 
transaction-processing systems. 

3 .2  S y s t e m  Types 
We begin by defining a type structure that will be used to name the transactions and objects in a serial 

system. 

A system type consists of  the following: 

• a set 7"of transaction names, 

• a distinguished transaction name T O ~ U, 

• a subset accesses of 7 'not  containing T 0, 

• a mapping parent: 7"- {To} --+ 7, which configures the set of transaction names into a tree, 
with T O as the root and the accesses as the leaves, 

• a set X o f  object names, 

• a mapping object: accesses --+ -E, and 

• a set Vof return values. 
In referring to the transaction tree, we use standard tree terminology, such as "leaf node", "internal 
node", "child", "ancestor", and "descendant". As a special case, we consider any node to be its own 
ancestor and its own descendant, i.e. the "ancestor" and "descendant" relations are reflexive. We also 
use the notion of a "least common ancestor" of two nodes. 

The transaction tree describes the nesting structure for transaction names, with T O as the name of the 
dummy "root transaction". Each child node in this tree represents the name of  a subtransaction of the 
transaction named by its parent. The children of  T o represent names of  the top-level user-defined 
transactions. The accesses represent names for the lowest-level transactions in the transaction nesting 
structure; we will use these lowest-level transactions to model operations on data objects. Thus, the 
only transactions that access data directly are the leaves of the transaction tree. The internal nodes 
model transactions whose function is to create and manage subtransactions, but not to access data 
directly. 

The tree structure should be thought of  as a predefined naming scheme for all possible transactions 
that might  ever be invoked. In any particular execution, however, only some of these transactions will 
actually take steps. We imagine that the tree structure is known in advance by all components of a 
system. The tree will, in general, be an infinite structure with infinite branching. 
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Classical concurrency control theory considers transactions having a simple nesting structure. As 
modelled in our framework, that nesting structure has three levels; the top level consists of the root T O , 
modelling the outside world, the next level consists of all the user-defined transactions, and the lowest 
level consists of the accesses to data objects. 

The set AVis the set of names for the objects used in the system. Each access transaction name denotes 
an access to some particular object, as designated by the "object" mapping. If X e X, the set of accesses 
T for which object(T) = X is called accesses(X). 

The set Y of return values is the set of possible values that might be returned by successfully- 
completed transactions to their parents. If T is an access transaction name, and v is a return value, we 
say that the pair (T,v) is an operation of the given system type. Thus, an operation designates a 
particular access to an object and a particular value returned by the access. 

3.3 General Structure of  Serial Systems 
A serial system for a given system type is a closed system consisting of a "transaction automaton" 

A(T) for each non-access transaction name T, a "serial object automaton" S(X) for each object name X, 
and a single "serial scheduler automaton". Later in this chapter, we will give a precise definition for the 
serial scheduler automaton, and will give conditions to be satisfied by the transaction and object 
automata. Here, we just describe the signatures of the various automata, in order to explain how the 
automata are interconnected. 

The following diagram depicts the structure of a serial system. 
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Figure 1: Serial System Structure 
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The transaction nesting structure is indicated by dotted lines, and the direct connections between 
automata (via shared actions) are indicated by solid lines. Thus, the transaction automata interact 
directly with the serial scheduler, but not directly with each other or with the object automata. The 
object automata also interact directly with the serial scheduler. 
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CREATE(T t ~EQUEST_CO MMIT(T,v) 

~ T '  child o f t  a 

Figure 2: Transaction Automaton 

Figure 2 shows the interface of a transaction automaton in more detail. Transaction T has an input 
CREATE(T) action, which is generated by the serial scheduler in order to initiate T's processing. We 
do not include arguments to a transaction in our model; rather we suppose that there is a different 
transaction for each possible set of arguments, and so any input to the transaction is encoded in the name 
of the transaction. T has REQUEST_CREATE(T') actions for each child T'  of T in the transaction 
nesting structure; these are requests for creation of child transactions, and are communicated directly to 
the serial scheduler. At some later time, the scheduler might respond to a REQUEST_CREATE(T') 
action by issuing a CREATE(T') action, an input to transaction T'.  T also has 
REPORT_COMMIT(T',v) and REPORT_ABORT(T') input actions, by which the serial scheduler 
informs T about the fate (commit or abort) of its previously-requested child T'. In the case of a commit, 
the report includes a return value v that provides information about the activity of T'; in the case of an 
abort, no information is returned. Finally, T has a REQUEST_COMMIT(T,v) output action, by which it 
announces to the scheduler that it has completed its activity successfully, with a particular result as 
described by return value v. 

MIT('I"v) 

(T~I) an access to X 

Figure 3: Object Automaton 

Figure 3 shows the object interface. Object X has input CREATE(T) actions for each T in 
accesses(X). These actions should be thought of as invocations of operations on object X. Object X also 
has output actions of the form REQUEST_COMMIT(T,v), representing responses to the invocations. 
The value v in a REQUEST_COMMIT(T,v) action is a return value returned by the object as part of its 
response. We have chosen to use the "create" and "request_commit" notation for the object actions, 
rather than the more familiar "invoke" and "respond" terminology, in the interests of uniformity: there 
are many places in our formal arguments where access transactions can be treated uniformly with non- 
access transactions, and so it is useful to have a common notation for them. 



54 

, 

~EQUEST_CREATE(T) I REPORT_COMMIT(T,v)~ REPORT_ABORT(T){ 
COMMIT(T] ABORT(T) ] ....... 

3 
 R ATE(T) REQUEST OOMMIT(T v) l 

Figure 4: Serial Scheduler Automaton 

Figure 4 shows the serial scheduler interface. The serial scheduler receives the previously-mentioned 
REQUEST_CREATE and REQUEST_COMMIT actions as inputs from the other system components. 
It produces CREATE actions as outputs, thereby awakening transaction automata or invoking operations 
on objects. It also produces COMMIT(T) and ABORT(T) actions for arbitrary transactions T * T 0, 
representing decisions about whether the designated transaction commits or aborts. For technical 
convenience, we classify the COMMIT and ABORT actions as output actions of  the serial scheduler, 
even though they are not inputs to any other system component. Finally, the serial scheduler has 
REPORT_COMMIT and REPORT_ABORT actions as outputs, by which it communicates the fates of 
transactions to their parents. 

As is always the case for a composition of  I/O automata, the components of  a serial system are 
determined statically. Even though we refer to the action of "creating" a child transaction, the model 
treats the child transaction as if  it had been there all along. The CREATE action is treated formally as 
an input action to the child transaction; the child transaction will be constrained not to perform any 
output actions until such a CREATE action occurs. A consequence of  this method of modelling 
dynamic creation of  transactions is that the system must include automata for all possible transactions 
that might ever be created, in any execution. In most interesting cases, this means that the system will 
include infinitely many transaction automata. 

3.4 Serial Actions 
The serial actions for a given system type are defined to be the external actions of  a serial system of 

that type. These are just the actions listed in the preceding section: CREATE(T) and 
REQUEST_COMMIT(T,v),  where T is any transaction name and v is a return value, and 
REQUEST_CREATE(T),  COMMIT(T), ABORT(T), REPORT_COMMIT(T,v), and 
REPORT_ABORT(T) where T ~ T O is a transaction name and v is a return value. 

In this subsection, we define some basic concepts involving serial actions, for use later in the paper. 
All these definitions are based on the set of serial actions only, and not on the specific automata in the 
serial system. For this reason, we present the definitions here, before going on (in the next subsection) 
to give more information about the system components. 

3.4.1 Basic Definitions 
The COMMIT(T) and ABORT(T) actions are called completion actions for T, while the 

REPORT_COMMIT(T,v) and REPORT_ABORT(T) actions are called report actions for T. 

We define the "transaction" of  an action that appears in the interface of a transaction or object 
automaton - -  that is, of any non-completion action. Let T be any transaction name. If n is one of the 
serial actions CREATE(T), REQUEST_COMMIT(T,v), or REQUEST_CREATE(T'),  
REPORT_COMMIT(T' ,v ' )  or REPORT_ABORT(T'),  where T '  is a child of T, then we define 
transaction(n) to be T. If  n is a completion action, then transaction(n) is undefined. We wilt sometimes 
want to associate a transaction with completion actions as well as other serial actions; since a 
completion action for T can be thought of as occurring "in between" T and parent(T), we will sometimes 
want to associate T and sometimes parent(T) with the action. Thus, we extend the "transaction(n)" 
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definition in two different ways. If n is any serial action, then we define hightransaction(n) to be 
transaction(n) if  n is not a completion action, and to be parent(T), if  n is a completion action for T. Also, 
if n is any serial action, we define lowtransaction(n) to be transaction(n) if rc is not a completion action, 
and to be T, if  n is a completion action for T. In particular, hightransaction(~t) = lowtransaction(n) = 
transaction(n) for all serial actions other than completion actions. 

We also require notation for the object associated with any serial action whose transaction is an 
access. If n is a serial action of  the form CREATE(T) or REQUEST COMMIT(T,v), where T is an 
access to X, then we define object(n) to be X. 

We extend the notation in the preceding paragraphs to events as well as actions. For example, if ~ is 
an event, then we write transaction(n) to denote the transaction of  the action of which n is an 
occurrence. 

Recall that an operation is a pair (T,v), consisting of a transaction name and a return value. We can 
associate operations with a sequence of serial actions, as follows. If ~ is a sequence of serial actions, we 
say that the operation (T,v) occurs in 13 if there is a REQUEST_COMMIT(T,v) event in 13. Conversely, 
we can associate serial actions with a sequence of operations. For any operation (T,v), let perform(T,v) 
denote the two-action sequence CREATE(T) REQUEST COMMIT(T,v), the expansion of  (T,v) into its 
two parts. This definition is extended to sequences of operations in the natural way: if  ~ is a sequence 
of operations of  the form ~'(T,v), then perform(~) = perform(~') performS,v).  Thus, the "perform" 
function expands a sequence of  operations into a corresponding alternating sequence of  CREATE and 
R E Q U E S T C O M M I T  actions. 

Now we require terminology to describe the status of a transaction during execution. Let ~ be a 
sequence of serial actions. A transaction name T is said to be active in 13 provided that 13 contains a 
CREATE(T) event but no REQUEST_COMMIT event for T. Similarly, T is said to be live in l] 
provided that 13 contains a CREATE(T) event but no completion event for T. Also, T is said to be an 
orphan in l] i f  there is an ABORT(U) action in 13 for some ancestor U of T. 

We have already used projection operators to restrict action sequences to particular sets of  actions, and 
to actions of  particular automata. We now introduce another projection operator, this time to sets of  
transaction names. Namely, i f  13 is a sequence of  serial actions and U i s  a set of  transaction names, then 
131Uis defined to be the sequence 13t{n: transaction(n) ~ U}. If  T is a transaction name, we sometimes 
write l]lT as shorthand for 131{T}. Similarly, if 13 is a sequence of  serial actions and X is an object name, 
we sometimes write l])X to denote 131{r¢: object(n) = X}. 

Sometimes we will want to use definitions from this subsection for sequences of actions chosen from 
some other set besides the set of serial actions - -  usually, a set containing the set of serial actions. We 
extend the appropriate definitions of this subsection to such sequences by applying them to the 
subsequences consisting of serial actions. Thus, if I~ is a sequence of actions chosen from a set ¢ of 
actions, define serial(13) to be the subsequence of l] consisting of  serial actions. Then we say that 
operation (T,v) occurs in It exactly if it occurs in serial(I]). A transaction T is said to be active in 13 
provided that it is active in serial(13), and similarly for the "live" and "orphan" definitions. Also, 131Uis 
defined to be serial(l])l~ and similarly for projection on an object. 

3.4.2 Well-Formedness 
In the definition of a serial system in the following subsection, we will place very few constraints on 

the transaction automata and serial object automata. However, we will want to assume that certain 
simple properties are guaranteed; for example, a transaction should not take steps until it has been 
created, and an object should not respond to an operation that has not been invoked. Such requirements 
are captured by "well-formedness conditions", certain properties of sequences of external actions of the 
transaction and object components. We define those conditions here. 

First we define "transaction well-formedness". Let T be any transaction name. A sequence 13 of serial 
actions n with transaction(rQ = T is defined to be transaction well-formed for T provided the following 
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conditions hold. 
1. The first event in 13, if any, is a CREATE(T) event, and there are no other CREATE 

events. 

2. There is at most one REQUEST_CREATE(T')  event in [~ for each child T'  of  T. 

3. Any report event for a child T'  of T is preceded by REQUEST_CREATE(T')  in 13. 

4. There is at most one report event in 13 for each child T' of T. 

5. If  a REQUEST_COMMIT event for T occurs in 13, then it is preceded by a report event for 
each child T'  o f t  for which there is a REQUEST CREATE(T')  in 13- 

6. If  a REQUEST_COMMIT event for T occurs in 13, then it is the last event in 13. 
In particular, if  T is an access transaction name, then the only sequences that are transaction well-formed 
for T are the prefixes of the two-event sequence CREATE(T) REQUEST_COMMIT(T,v).  For any T, it 
is easy to see that the set of  transaction well-formed sequences for T is nonempty, prefix-closed and 
limit-closed. 

Now we define "serial object well-formedness". Let X be any object name. A sequence of  serial 
actions ~ with object(Tr) = X is defined to be serial object well-formed for X if it is a prefix of  a 
sequence of the form CREATE(T1) REQUEST COMMIT(TI,Vl) CREATE(T2) 
REQUEST_COMMIT(T2,v2) .... where T i ~ Tj when i ~ j. The following connection between serial 
object well-formedness and transaction weU-formedness is immediate. 

Lemma 8: Let 13 be a sequence of  serial actions rr with object(~z) = X. If 13 is serial object 
well-formed for X and T is an access to X, then 131T is transaction well-formed for T. 

3.5 Serial Systems 
We are now ready to define "serial systems". Serial systems are composed of  transaction automata, 

serial object automata, and a single serial scheduler automaton. There is one transaction automaton 
A(T) for each non-access transaction name T, and one serial object automaton S(X) for each object 
name X. We describe the three kinds of components in turn. 

3.5.1 Transaction Automata 
A transaction automaton A(T) for a non-access transaction name T of a given system type is an I/O 

automaton with the following external action signature. 

Input: 
CREATE(T) 
REPORT_COMMIT(T' ,v),  for T'  a child of T, and v a return value 
REPORT_ABORT(T') ,  for T'  a child of T 

Output: 
REQUEST_CREATE(T') ,  for T '  a child of T 
REQUEST_COMMIT(T,v),  for v a return value 

In addition, A(T) may have an arbitrary set of internal actions. We require A(T) to preserve 
transaction well-formedness for T, as defined in the previous section. As discussed earlier, this does not 
mean that all behaviors of A(T) are transaction well-formed, but it does mean that as long as the 
environment of A(T) does not violate transaction well-formedness, A(T) will not do so. Except for that 
requirement, transaction automata can be chosen arbitrarily. Note that if 13 is a sequence of actions, then 
131T = 131ext(A(T)). 

Transaction automata are intended to be general enough to model the transactions defined in any 
reasonable programming language. Of  course, there is still work required in showing how to define 
appropriate transaction automata for the transactions in any particular language. This correspondence 
depends on the special features of each language, and we do not describe techniques for establishing 
such a correspondence in this paper. 
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3.5.2 Serial Object Automata 
A serial object automaton S(X) for an object name X of a given system type is an I/O automaton with 

the following external action signature. 

Input: 
CREATE(T), for T an access to X 

Output: 
REQUEST_COMMIT(T,v),  for T an access to X 

In addition, S(X) may have an arbitrary set of internal actions. We require S(X) to preserve serial 
object well-formedness for X, as defined in the previous section. As with transaction automata, serial 
object automata can be chosen arbitrarily as long as they preserve serial object well-formedness. 

3.5.3 Serial Scheduler  
There is a single serial scheduler automaton for each system type. It runs transactions according to a 

depth-first traversal of the transaction tree, running sets of sibling transactions serially. The serial 
scheduler can choose nondeterministically to abort any transaction after its parent has requested its 
creation, as long as the transaction has not actually been created. In the context of  this scheduler, the 
"semantics" of an ABORT(T) action are that transaction T was never created. The scheduler does not 
permit any two sibling transactions to be live at the same time, and does not abort any transaction while 
any of  its siblings is active. We now give a formal definition of  the serial scheduler automaton. 

The action signature of the serial scheduler is as follows. 

Input: 
REQUEST_CREATE(T),  T ~ T O 
REQUEST_COMMIT(T,v) 

Output: 
CREATE(T) 
COMMIT(T), T .  T o 

ABORT(T), T .  T o 
REPORT_COMMIT(T,v), T ~ T o 

REPORT_ABORT(T), T ~ T o 

Each state s of the serial scheduler consists of six sets, denoted via record notation: 
s.create requested, s.created, s.commit_requested, s.committed, s.aborted and s.reported. The set 
s.commit_requested is a set of  operations. The others are sets of  transactions. There is exactly one start 
state, in which the set create_requested is {To}, and the other sets are empty. We use the notation 
s.completed to denote s.committed ~ s.aborted. Thus, s.completed is not an actual variable in the state, 
but rather a "derived variable" whose value is determined as a function of the actual state variables. 

The transition relation of the serial scheduler consists of  exactly those triples (s',rc, s) satisfying the 
preconditions and yielding the effects described below, where rt is the indicated action. By convention, 
we include in the effects only those conditions on the state s that may change with the action. If a 
component of s is not mentioned in the effects, it is implicit that the set is the same in s '  and s. 

REQUEST_CREATE(T),  T ~ T O 
Effect: 

s.create_requested = s'.create_requested ~ { T } 

REQUEST_COMMIT(T,v) 
Effect: 

s.commit_requested = s'.commit_requested u { (T,v) } 

CREATE(T) 
Precondition: 

T e s'.create_requested - s'.created 
T ~ s'.aborted 
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siblings(T) c3 s'.created ~ s'.completed 
Effect: 

s.created = s'.created w {T} 

COMMIT(T), T ,  T O 
Precondition: 

(T,v) e s'.commit_requested for some v 
T ~ s'.completed 

Effect: 
s.committed = s'.committed u {T} 

ABORT(T), T ~ T o 
Precondition: 

T ~ s'.create_requested - s' .completed 
T ~ s'.created 
siblings(T) n s'.created ~ s'.completed 

Effect: 
s.aborted = s'.aborted u {T} 

REPORT_COMMIT(T,v),  T * T o 
Precondition: 

T ~ s' .committed 
(T,v) ~ s'.commit_requested 
T ~ s'.reported 

Effect: 
s.reported = s'.reported u {T} 

REPORT_ABORT(T), T # T O 
Precondition: 

T ~ s'.aborted 
T ~ s'.reported 

Effect: 
s.r~ported = s'.reported u { T } 

Thus, the input actions, REQUEST_CREATE and REQUEST_COMMIT, simply result in the request 
being recorded. A CREATE action can occur only if a corresponding REQUEST_CREATE has 
occurred and the CREATE has not already occurred. Moreover, it cannot occur if  the transaction was 
previously aborted. The third precondition on the CREATE action says that the serial scheduler does 
not create a transaction until each of its previously created sibling transactions has completed (i.e., 
committed or aborted). That is, siblings are run sequentially. A COMMIT action can occur only if it 
has previously been requested and no completion action has yet occurred for the indicated transaction. 
An ABORT action can occur only if a corresponding REQUEST_CREATE has occurred and no 
completion action has yet occurred for the indicated transaction, Moreover, it cannot occur if the 
transaction was previously created. The third precondition on the ABORT action says that the scheduler 
does not abort a transaction while there is activity going on on behalf of any of its siblings. That is, 
aborted transactions are dealt with sequentially with respect to their siblings. The result of a transaction 
can be reported to its parent at any time after the commit or abort has occurred. 

The following lemma describes simple relationships between the state of  the serial scheduler and its 
computational history. 

Lemma  9: Let 13 be a finite schedule of the serial scheduler, and let s be a state such that 13 
can leave the serial scheduler in state s. Then the following conditions are true. 

1. T ~ s.create_requested exactly if  T = T O or 13 contains a REQUEST_CREATE(T) 
event. 

2. T e s.created exactly if  [3 contains a CREATE(T) event. 
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3. (T,v) ~ s.cornmiLrequested exactly if ~ contains a REQUEST_COMMIT(T,v) event. 

4. T ~ s.committed exactly if [5 contains a COMMIT(T) event. 

5. T ~ s.aborted exactly if ~ contains an ABORT(T) event. 

6. T ~ s.reported exactly if ~ contains a report event for T. 

7. s.committed n s.aborted = ~ .  

8. s.reported ~ s.committed t j  s.aborted. 

The following lemma gives simple facts about the actions appearing in an arbitrary schedule of the 
serial scheduler. 

Lemma 10: Let 13 be a schedule of the serial scheduler. Then all of the following hold: 
1. If a CREATE(T) event appears in 13, then a REQUEST-CREATE(T) event precedes it 

in t3. 

2. At most one CREATE(T) event appears in 13 for each transaction T. 

3. If a COMMIT(T) event appears in 13 then a REQUEST-COMMIT(T,v) event 
precedes it in [5 for some return value v. 

4. If an ABORT(T) event appears in 13 then a REQUEST-CREATE(T) event precedes it 
in 13. 

5. If a CREATE(T) or ABORT(T) event appears in I~ and is preceded by a CREATE(T') 
event for a sibling T '  ofT,  then it is also preceded by a completion event for T ' .  

6. At most one completion event appears in 15 for each transaction. 

7. At most one report event appears in [5 for each transaction. 

8. If a REPORT-COMMIT(T,v) event appears in [~, then a COMMIT(T) event and a 
REQUEST_COMMIT(T,v) event precede it in [5. 

9. If a REPORT-ABORT(T) event appears in t3, then an ABORT(T) event precedes it in 
9. 

Proof: By Lemma 9 and the serial scheduler preconditions. 

The final lemma of this subsection says that the serial scheduler preserves the well-formedness 
properties described earlier. 

Lemma 11: 
1. Let T be any transaction name. Then the serial scheduler preserves transaction weli- 

formedness for T. 

2. Let X be any object name. Then the serial scheduler preserves serial object wetl- 
formedness for X. 

Proof: By the definitions and the characterization given in Lemma 10. 

3.5.4 Serial Systems, Executions, Schedules and  Behaviors 
A serial system of a given system type is the composition of a strongly compatible set of automata 

indexed by the union of the set of non-access transaction names, the set of object names and the 
singleton set {SS} (for "serial scheduler"). Associated with each non-access transaction name T is a 
transaction automaton A(T) for T. Associated with each object name X is a serial object automaton S(X) 
for X. Finally, associated with the name SS is the serial scheduler automaton for the given system type. 
When the particular serial system is understood from context, we will sometimes use the terms serial 
executions, serial schedules and serial behaviors for the system's executions, schedules and behaviors, 
respectively. 

A fundamental property of serial behaviors is that they are well-formed for each transaction and object 
n a m e .  
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Proposition 12: If [~ is a serial behavior, then the following conditions hold. 

1. For every transaction name T, 131T is transaction well-formed for T. 

2. For every object name X, 131X is serial object well-formed for X. 

Proof: For non-access transaction names T, or arbitrary object names X, the result is 
immediate by Lemma 7, the definitions of transaction and object automata, and Lemma 11. 
Suppose that T is an access to X. Since [3IX is serial object well-formed for X, Lemma 8 
implies that 131T is transaction well-formed for T. 

Another fundamental property of serial behaviors is that the live transactions always form a chain of 
ancestors, as indicated below. 

Proposition 13: Let ~ be a serial behavior. 
1. If T is live in 13 and T '  is an ancestor of T, then T'  is live in [3. 

2. If T and T'  are transaction names such that both T and T'  are live in [~, then either T 
is an ancestor of T'  or T'  is an ancestor of  T. 

In the remainder of  the paper, we fix an arbitrary system type and serial system, with A(T) as the 
non-access transaction automaton for each transaction name T, and S(X) as the serial object automaton 
for each object name X. 

3.6 Correctness Conditions 
Now that we have defined serial systems, we can use them to state correctness conditions for other 

transaction-processing systems. It is reasonable to use serial systems in this way because of the 
particular constraints the serial scheduler imposes on the orders in which transactions and objects can 
perform steps. We contend that the given constraints correspond precisely to the way nested transaction 
systems ought to appear to behave; in particular, these constraints yield a natural generalization of the 
notion of serial execution in classical transaction systems. We arrive at a number of correctness 
conditions by considering for which system components this appearance must be maintained: for the 
external environment T O , for all transactions, or for all non-orphan transactions. 

To express these correctness conditions we define the notion of "serial correctness" of a sequence of 
actions for a particular transaction name. We say that a sequence 13 of actions is serially correct for 
transaction name T provided that there is some serial behavior Y such that 131T = ~T. (Recall that if T is 
a non-access, we have 131T = 131ext(A(T)) and ylT = ~ext(A(T)). If  T is a non-access transaction, serial 
correctness for T is a condition that guarantees to implementors of T that their code will encounter only 
situations that can arise in serial executions. 

The principal notion of  correctness that we will use in this paper is the serial correctness of  all finite 
behaviors for the root transaction name T O . This says that the "outside world" cannot distinguish 
between the given system and the serial system. 

Many of the algorithms we study satisfy stronger correctness conditions. A fairly strong and possibly 
interesting correctness condition is the serial correctness of all finite behaviors for all transactions 
names. Thus, neither the outside world nor any of the individual user transactions can distinguish 
between the given system and the serial system. Note that the definition of serial correctness for all 
transactions does not require that all the transactions see behavior that is part of  the same execution of 
the serial system; rather, each could see behavior arising in a different execution. 

We will also consider intermediate conditions such as serial correctness for all non-orphan transaction 
names. This condition implies serial correctness for T O because the serial scheduler does no~ have the 
action ABORT(T0) in its signature, so T O cannot be an orphan. Most of  the popular algorithms for 
concurrency control and recovery guarantee serial correctness for all non-orphan transaction names. 
Our Serializability Theorem gives sufficient conditions for showing that a behavior of a transaction- 
processing system is serially correct for an arbitrary non-orphan transaction name, and can be used to 
prove this property for many of these algorithms. The usual algorithms do not guarantee serial 



61 

correctness for orphans, however; in order to guarantee this as well, the use of  a special "orphan 
management" algorithm is generally required. Such algorithms are described and their correctness 
proved in [HLMW]. 

We close this subsection with a proposition that shows that serial correctness with respect to a 
transaction name T, a notion defined in terms of behaviors of T, implies a relationship between 
executions of  T in the two systems. 

Proposit ion 14: Let {Bi}ie I be a strongly compatible set of automata and let B = l-IielB i. 
Suppose that non-access transaction name T is in the index set I and suppose that B T and A(T) 
are the same automaton. Let ¢t be a finite execution of B, and suppose that beh(ct) is serially 
correct for T. Then there is a serial execution ix' such that c~lB T = t~'IA(T). 

Proof: Proposition 1 implies that c¢IB T is an execution of B T, and then Lemma 3 can be 
used to patch together the desired execution. 

4 Simple S y s t e m s  
It is desirable to state our Serializability Theorem in such a way that it can be used for proving 

correctness of many different kinds of transaction-processing systems, with radically different 
architectures. We therefore define a "simple system", which embodies the common features of most 
transaction-processing systems, independent of their concurrency control and recovery algorithms, and 
even of their division into modules to handle different aspects of transaction-processing. A "simple 
system" consists of the transaction automata together with a special automaton called the "simple 
database". Our theorem is stated in terms of simple systems. 

Many complicated transaction-processing algorithms can be understood as implementations of the 
simple system. For example, a system containing separate objects that manage locks and a "controller" 
that passes information among transactions and objects can be represented in this way, and so our 
theorem can be used to prove its correctness. The same strategy works for a system containing objects 
that manage timestamped versions and a controller that issues timestamps to transactions. 

4.1 Simple Database 
There is a single simple database for each system type. The action signature of the simple database is 

that of the composition of the serial scheduler with the serial objects: 

Input: 
REQUEST_CREATE(T),  T ~ T O 
REQUEST_COMMIT(T,v),  T a non-access 

Output: 
CREATE(T) 
COMMIT(T), T * T o 

ABORT(T), T ~ T o 
REPORT_COMMIT(T,v),  T ~ T o 

REPORT_ABORT(T), T • T o 
REQUEST COMMIT(T,v), T an access 

States of the simple database are the same as for the serial scheduler, and the initial states are also the 
same. The transition relation is as follows. 

REQUEST_CREATE(T),  T * T o 
Effect: 

s.create_requested = s'.create_requested u {T} 

REQUEST_COMMIT(T,v),  T a non-access 
Effect: 

s.commit_requested = s'.commit_requested u { (T,v) } 
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CREATE(T) 
Precondition: 

T e s'.create__requested - s'.created 
Effect: 

s.created = s'.created ~9 {T} 

COMMIT(T), T ;e T O 
Precondition: 

(T,v) e s'.commit_requested for some v 
T ~ s'.completed 

Effect: 
s.committed = s'.committed u {T} 

ABORT(T), T :# T O 
Precondition: 

T e s'.create_requested - s ' .completed 
Effect: 

s.aborted = s'.aborted • {T} 

REPORT_COMMIT(T,v), T ~ T O 
Precondition: 

T e s' .committed 
(T,v) e s'.commit_requested 
T ff s'.reported 

Effect: 
s.reported = s'.reported u {T} 

REPORT_ABORT(T), T # T O 
Precondition: 

T • s'.aborted 
T ~ s'.reported 

Effect: 
s.reported = s'.reported k) {T} 

REQUEST_COMMIT(T,v),  T an access 
Precondition: 

T • s'.created 
for all v ' ,  (T,v') ~ s'.commit_requested 

Effect: 
s.commit_requested = s ' .commiLrequested u { (T,v) } 

The next two lemmas are analogous to those previously given for the serial scheduler. 

Lemma  15: Let 13 be a finite schedule of the simple database, and let s be a state such that 13 
can leave the simple database in state s. Then the following conditions are true. 

1. T is in s.create_requested exactly if T = T O or 13 contains a REQUEST_CREATE(T) 
event. 

2. T is in s.created exactly if  1~ contains a CREATE(T) event. 

3. (T,v) is in s.commit_requested exactly if  13 contains a REQUEST_COMMIT(T,v) 
event. 

4. T is in s.committed exactly if 13 contains a COMMIT(T) event. 

5. T is in s.aborted exactly if ~ contains an ABORT(T) event. 

6. T is in s.reported exactly if ~ contains a report event for T. 

7. s.committed n s.aborted = O. 

8. s.reported ~ s.committed k) s.aborted. 
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Lemma 16: Let 13 be a schedule of the simple database. Then all of the following hold: 
1. If a CREATE(T) event appears in 13, then a REQUEST-CREATE(T) event precedes it 

in 13. 

2. At most one CREATE(T) event appears in 13 for each transaction T. 

3. If a COMMIT(T) event appears in 13, then a REQUEST-COMMIT(T,v) event 
precedes it in 1~ for some return value v. 

4. If an ABORT(T) event appears in 13, then a REQUEST-CREATE(T) event precedes it 
in 13. 

5. At most one completion event appears in 13 for each transaction. 

6. At most one report event appears in 13 for each transaction. 

7. If a REPORT-COMMIT(T,v) event appears in 13, then a COMMIT(T) event and a 
REQUEST_COMMIT(T,v) event precede it in 13. 

8. If a REPORT-ABORT(T) event appears in 13, then an ABORT(T) event precedes it in 
13. 

9. If T is an access and a REQUEST_COMMIT(T,v) event occurs in 13, then a 
CREATE(T) event precedes it in 13. 

10. I f T  is an access, then at most one REQUESTCOMMIT event for T occurs in 13. 

Proof: By Lemma 15 and the simple database preconditions. 

Thus, the simple database embodies those constraints that we would expect any reasonable 
transaction-processing system to satisfy. The simple database does not allow CREATEs, ABORTs, or 
COMMITs without an appropriate preceding request, does not allow any transaction to have two 
creation or completion events, and does not report completion events that never happened. Also, it does 
not produce responses to accesses that were not invoked, nor does it produce multiple responses to 
accesses. On the other hand, the simple database allows almost any ordering of transactions, allows 
concurrent execution of sibling transactions, and allows arbitrary responses to accesses. We do not 
claim that the simple database produces only serially correct behaviors; rather, we use the simpIe 
database to model features common to more sophisticated systems that do ensure correctness. 

Lemma 17" Let T be any transaction name. Then the simple database preserves transaction 
well-formedness for T. 

Proof: By the definitions and the characterization given in Lemma 16. 

4.2 Simple Systems, Executions, Schedules and Behaviors 
A simple system is the composition of a compatible set of automata indexed by the union of the set of 

non-access transaction names and the singleton set { SD } (for "simple database"). Associated with each 
non-access transaction name T is a transaction automaton A(T) for T, and associated with the name SD 
is the simple database automaton for the given system type. When the particular simple system is 
understood from context, we will often use the terms simple executions, simple schedules and simple 
behaviors for the system's executions, schedules and behaviors, respectively. 

Lemma 18: If 13 is a simple behavior and T is a transaction name, then 131T is transaction 
well-formed for T. 

Proof: By Lemma 17 and the definition of transaction automata. 

The Serializability Theorem is formulated in terms of simple behaviors; it provides a sufficient 
condition for a simple behavior to be serially correct for a particular transaction name T. 
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5 T h e  S e r i a l i z a b i l i t y  T h e o r e m  
In this section, we present our Serializability Theorem, which embodies a fairly general method for 

proving that a concurrency control algorithm guarantees serial correctness. This theorem expresses the 
following intuition: a behavior of a system is serially correct provided that there is a way to order the 
transactions so that when the operations at each object are arranged in the corresponding order, the result 
is a behavior of  the corresponding serial object. The correctness of many different concurrency control 
algorithms can be proved using this theorem. 

This theorem is the closest analog we have for the classical Serializability Theorem of [BHG]. Both 
that theorem and ours hypothesize that there is some ordering on transactions consistent with the 
behavior at each object. In both cases, this hypothesis is used to show serial correctness. Our result is 
somewhat more complicated, however, because it deals with nesting and aborts. In the next two 
subsections, we give some additional definitions that are needed to accomodate these complications. 

5.1 Visibility 
One difference between our result and the classical Serializability Theorem is that the conclusion of 

our result is serial correctness for an arbitrary transaction T, whereas the classical result essentially 
considers only serial correctness for T 0. Thus, it should not be surprising that the hypothesis of our 
result does not deal with all the operations at each object, but only with those that are in some sense 
"visible" to the particular transaction T. In this subsection, we define a notion of "visibility" of one 
transaction to another. This notion is a technical one, but one that is natural and convenient in the 
formal statements of results and in their proofs. Visibility is defined so that, in the usual transaction- 
processing systems, only a transaction T'  that is visible to another transaction T can affect the behavior 
o fT .  

A transaction T'  can affect another transaction T in several ways. First, if  T '  is an ancestor of T, then 
T '  can affect T by passing information down the transaction tree via invocations. Second, a transaction 
T '  that is not an ancestor of T can affect T through COMMIT actions for T '  and all ancestors of T'  up to 
the level of  the least common ancestor with T; information can be propagated from T '  up to the least 
common ancestor via COMMIT actions, and from there down to T via invocations. Third, a transaction 
T'  that is not an ancestor of T can affect T by accessing an object that is later accessed by T; in most of 
the usual transaction-processing algorithms, this is only allowed to occur if  there are intervening 
COMMIT actions for all ancestors of  T '  up to the level of  the least common ancestor with T. 

Thus, we define "visibility" as follows. Let 13 be any sequence of serial actions. If T and T' are 
transaction names, we say that T'  is visible to T in 13 if there is a COMMIT(U) action in [3 for every U in 
ancestors(T') - ancestors(T). Thus, every ancestor of  T '  up to (but not necessarily including) the least 
common ancestor of  T and T '  has committed in 13. 

T0 

T' 

Figure 5: Visibility 
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Figure 5 depicts two transactions, T and T'  neither an ancestor of the other. If the transactions 
represented by all of  the circled nodes have committed in some sequence of serial actions, then the 
definition implies that T '  is visible to T. 

The following lemma describes elementary properties of "visibility". 

Lemma 19: Let 13 be a sequence of actions, and let T, T '  and T "  be transaction names. 
1. If T '  is an ancestor of T, then T '  is visible to T in 13. 

2. T '  is visible to T in 13 if and only if T'  is visible to lca(T,T') in 13. 

3. I f T "  is visible to T '  in 13 and T '  is visible to T in 13, then T "  is visible to T in 13. 

4. If T '  is live in 13 and T '  is visible to T in 13, then T is a descendant of T ' .  

5. If T'  is an orphan in 13 and T' is visible to T in 13, then T is an orphan in 13. 

We use the notion of "visibility" to pick, out of a sequence of actions, a subsequence consisting of the 
actions corresponding to transactions that are visible to a given transaction T. More precisely, if 13 is any 
sequence of actions and T is a transaction name, then visible(13,T) denotes the subsequence of 13 
consisting of serial actions x with hightransaction(x) visible to T in 13. Note that every action occurring 
in visible(13,T) is a serial action, even if 13 itself contains other actions. The following obvious lemma 
says that the "visible" operator on sequences picks out either all or none of the actions having a 
particular transaction. 

Lemma 20: Let 13 be a sequence of actions, and let T and T'  be transaction names. Then 
visible(13,T)lT' is equal to 131T' if T'  is visible to T in 13, and is equal to the empty sequence 
otherwise. 

5.2 Event and Transaction Orders 
The hypothesis of the theorem refers to rearranging the operations at each object according to a given 

order on transactions. The definitions required to describe the appropriate kind of ordering to use for this 
purpose are provided in this subsection. 

5.2.1 Affects Order 
We first def'me a partial order "affects(13)" on the events of a sequence 13 of serial actions. This will be 

used to describe basic dependencies between events in a simple behavior; any appropriate ordering will 
be required to be consistent with these dependencies. We define the affects relation by first defining a 
subrelation that we call the "directly-affects" relation and then taking the transitive closure. For a 
sequence 13 of serial actions, and events ~ and ~ in 13, we say that ~ directly affects ~ in 13 (and that (~,x) 

directly-affects(13)) if at least one of the following is true. 

• transaction(O ) = transaction(~) and ~ precedes x in 13, 9 

• ¢ = REQUEST_CREATE(T) and x = CREATE(T) 

• ~ = REQUEST_COMMIT(T,v) and ~ = COMMIT(T) 

• ~ = REQUEST_CREATE(T) and n = ABORT(T) 

• ~ = COMMIT(T) and ~ = REPORT_COMMIT(T,v) 

• ~ = ABORT(T) and ~ = REPORT_ABORT(T) 

If 13 is a simple behavior, and (¢~,x) e directly-affects(13), then it is easy to see that ~ precedes ~ in 13. 
For a sequence 13 of serial events, define the relation affects(13) to be the transitive closure of the relation 
directly-affects(13). If the pair (~,~) is in the relation affects(13), we also say that ~ affects ~ in 13. The 
following is immediate. 

9This includes accesses as well as non-accesses. 
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Lemma 21: Let [3 be a simple behavior. Then affects(13) is an irreflexive partial order on the 
events in 1~. 10 

The conditions listed in the definition of "directly-affects" should seem like a reasonable collection of 
dependencies among the events in a simple behavior. Here we try to give some technical justification 
for these conditions. In the proof of the theorem, we will attempt to extract serial behaviors from a 
given simple behavior. The transaction orderings used to help in this construction will be constrained to 
be consistent with "affects"; this will mean that the sequences we construct will be closed under 
"affects" and that the orders of events in these sequences are consistent with "affects". Thus, if ~ is a 
simple behavior and (¢,~) E directly-affects(13), all the serial behaviors we construct that contain ~ will 
also contain ¢, and ¢ will precede x in each such behavior. 

The first case of the "directly-affects" definition is used because we are not assuming special 
knowledge of transaction behavior; if we included n and not ~) in our candidate serial behavior, we 
would have no way of proving that the result included correct behaviors of the transaction automata. 
The remaining cases naturally parallel the preconditions of the serial scheduler; in each case, the 
preconditions of rc as an action of the serial scheduler include a test for a previous occurrence of ¢, so a 
sequence of actions with n not preceded by ~) could not possibly be a serial behavior. 

As before, we extend the "affects" definition to sequences 13 of arbitrary actions by saying that 
affects ~ in 13 exactly if ~) affects ~ in serial(p). 

5.2.2 Sibling Orders 
The type of transaction ordering needed for our theorem is more complicated than that used in the 

classical theory, because of the nesting involved here. Instead of just arbitrary total orderings on 
transactions, we will use orderings that only relate siblings in the transaction nesting tree. We call such 
an ordering a "sibling order". Interesting examples of sibling orders are the order of completion of 
transactions or an order determined by assigned timestamps. 

Let SIB be the (irreflexive) sibling relation among transaction names, for a particular system type; 
thus, (T,T') ~ SIB if and only i f T  ~ T '  and parent(T) = parent(T'). If R ~ SIB is an irreflexive partial 
order then we call R a sibling order. Sibling orders are the analog for nested transaction systems of 
serialization orders in single-level transaction systems. Note that sibling orders are not necessarily total, 
in general; totality is not always appropriate for our results. 

A sibling order R can be extended in two natural ways. First, Rtran s is the extension of R to 
descendants of siblings, i.e., the binary relation on transaction names containing (T,T') exactly when 
there exist transaction names U and U '  such that T and T'  are descendants of U and U '  respectively, and 
(U,U') e R. This order echoes the manner in which the serial scheduler runs transactions when it runs 
siblings with no concurrency, in the order specified by R. Second, if 13 is any sequence of actions, then 
Revent(~) is the extension of R to serial events in [3, i.e., the binary relation on events in 13 containing 
(~,r~) exactly when ~) and n are distinct serial events in 13 with lowtransactions T and T'  respectively, 
where (T,T') a Rtran s. It is easy to see that Rtran s is an irreflexive partial order, and for any sequence 13 
of actions, Revent(13 ) is an irreflexive partial order. 

The concept of a "suitable sibling order" describes two basic conditions that will be required of the 
sibling orders to be used in our theorem. The first condition is a technical one asserting that R orders 
sufficiently many siblings, while the second condition asserts that R does not contradict the 
dependencies described by the affects relation. Let 13 be a sequence of actions and T a transaction name. 
A sibling order R is suitable for [~ and T if the following conditions are met. 

1. R orders all pairs of siblings T '  and T "  that are lowtransactions of actions in visible(I],T). 

l°An irreflexive partial order is a binary relation that is irreflexive, anfisymmetric and transitive. 
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2. Revent([~) and affects(p) are consistent partial orders on the events in visible(~,T). 11 

5.3 The Serializability Theorem 
We now present the main result. It says that a simple behavior ~ is serially correct for a non-orphan 

transaction name T provided that there is a suitable sibling order R for which a certain "view condition" 
holds for each object name X. The view condition says that the portion of [3 occurring at X that is visible 
to T, reordered according to R, is a behavior of the serial object S(X). In order to make all of this 
precise, suppose [~ is a finite simple behavior, T a transaction name, R a sibling order that is suitable for 
[~ and T, and X an object name. Let ~ be the sequence consisting of those operations occurring in 
whose transaction components are accesses to X and that are visible to T in 9, ordered according to 
Rtran s on the transaction components. (The first condition in the definition of suitability implies that this 
ordering is uniquely determined.) Define view(~,T,R,X) to be pefform(~). 

Thus, view([~,T,R,X) represents the portion of the behavior [~ occurring at X that is visible to T, 
reordered according to R. Stated in other words, this definition extracts from 13 exactly the 
REQUESTCOMMIT actions for accesses to X that are visible to T; it then reorders those 
REQUEST_COMMIT actions according to R, and then inserts an appropriate CREATE action just prior 
to each REQUEST_COMMIT action. The theorem uses a hypothesis that each view(~,T,R,X) is a 
behavior of the serial object S(X) to conclude that [3 is serially correct for T. 

Theorem 22: (Serializability Theorem) Let ~ be a finite simple behavior, T a transaction 
name such that T is not an orphan in [~, and R a sibling order suitable for ~ and T. Suppose 
that for each object name X, view(~,T,R,X) ~ finbehs(S(X)). Then ~ is serially correct for T. 

Proof: Given 13, T and R, the needed serial behavior is constructed explicitly. The 
construction is done in several steps. First~ visible([~,T), the portion of [3 visible to T, is 
extracted from [3. This sequence is then reordered according to R and affects([~). (There may 
be many ways of doing this.) The reordered sequence is then truncated at an appropriate 
place, just after the last action involving T or any of its descendants. The resulting sequence 7 
is shown to be a serial behavior by showing separately that its projections are behaviors of the 
transaction automata, of the serial object automata, and of the serial scheduler, and then 
applying Proposition 4. 

If T '  is a nonaccess transaction name, Proposition 1 implies that [~lT' is a behavior of A(T'). 
Proposition 20 and the fact that Revent([~) is consistent with affects([~) ensure that ~dT' is a 
prefix of ~IT' and so is a behavior of A(T'). Thus, the projection of Y on each of the 
transaction automata is a behavior of that automaton. 

For each object name X, unwinding the definitions shows that ~X is a prefix of 
view(13,T,R,X). The "view condition" hypothesis of the theorem, that view(l~,T,R,X) 
finbehs(S(X)), implies that ~X is a behavior of S(X). Thus, the projection of T on each of the 
serial object automata is a behavior of that automaton. 

Finally, an explicit argument by induction on the length of T shows that ~,is a behavior of the 
serial scheduler automaton. Consistency with affects(13) is used to show that certain events are 
included in 7, this implies that the serial scheduler preconditions involving occurrence of 
certain events are satisfied. The properties of the "visible" operator are used to show that 
certain events, e.g., those involving live transactions neither ancestors nor descendants of T, 
are not included in 7, this implies that the serial scheduler preconditions involving 
nonoccurrence of certain actions are satisfied. 

The theorem has a straightforward corollary that outlines a strategy for showing that a particular 
system satisfies the correctness condition in which we are mainly interested, i.e., that all its finite 
behaviors are serially correct for T O . 

llTwo binary relations R and S are consistent if their unio, can be extended to an irretlexive partial order (or in other 
words, if their union has no cycles). 
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Corollary 23: Let {Bi}i~ I be a strongly compatible set of automata and let B = IlielB i- 
Suppose that the name T O is in the index set I, and that the automaton A(T0) is associated with 
T O in B. Suppose that for every finite behavior 13 of B, the following conditions hold. 

1. serial(13) is a simple behavior. 

2. There exists a sibling order R suitable for serial(13) and T 0, such that for each object 
name X, view(serial(13),T0,R,X) e finbehs(S(X)). 

Then every finite behavior of B is serially correct for T 0. 

6 Applications of the Serializability Theorem 
We use this theorem elsewhere in our work to reason about the correctness of a wide variety of 

algorithms for implementing atomic transactions. In particular, we carry out correctness proofs for 
several algorithms that use locking and others that use timestamps. 

The locking algorithm of Moss [Moss] is designed for data objects that are accessible only by read and 
write operations. We have developed a similar algorithm, in [FLMW2], that accomodates arbitrary data 
types. These algorithms involve simultaneous locking at different levels of the transaction nesting tree. 
A transaction is only permitted to access a data object if it has a suitable lock on that object. Sometime 
after a transaction commits, its locks are passed up to its parent and associated modifications to the data 
are made available to the parent and its other descendants. On the other hand, when a transaction aborts, 
its locks are released and its modifications to the data are discarded. The decision about whether to 
permit an access transaction to obtain a lock is based on whether any locks for "conflicting" operations 
are held by transactions that are not ancestors of the given access. 

Using Corollary 23 above, we can prove that all the finite behaviors of a system B are serially correct 
for T O if B uses these algorithms. Although the locking algorithms include more actions than the simple 
system, it is not hard to see that serial(13) is a simple behavior, for every finite behavior 13 of B. The 
sibling order R used in the proof is the "completion order", i.e., the order in which sibling transactions 
commit and abort. Proving correctness of this algorithm using the Serializability Theorem highlights the 
key reason why locking algorithms work: roughly speaking, the condition that view(13,T0,R,X ) 
finbehs(S(X)) says that the processing at any object is "consistent" with the transaction completion 
order. The "consistency" mentioned here means that reordering the appropriate, "visible" portion of the 
processing at each object in completion order yields a correct behavior for the corresponding serial 
object automaton. We can also use the Serializability Theorem to prove the stronger statement that the 
locking algorithms mentioned above are serially correct for all non-orphan transactions. 

Our correctness proofs for these algorithms have an interesting structure. Namely, we describe each 
algorithm as the composition of a component automaton for each object plus one global "controller" 
automaton that simply manages communication among the other automata. A local condition called 
"dynamic atomicity" is defined; this condition essentially says that the object satisfies the view condition 
using the completion order. The Serializability Theorem implies that if all the objects are dynamic 
atomic, the system guarantees serial correctness for all non-orphan transaction names. The rest of the 
proof involves showing that the objects that model the given locking algorithms are dynamic atomic. 

This proof structure allows us to obtain much stronger results than just the correctness of the given 
algorithms. As long as each object is dynamic atomic, the whole system will guarantee that any finite 
behavior is serially correct for all non-orphan transaction names. Thus, we are free to use an arbitrary 
implementation for each object, independent of the choice of implementation for each other object, as 
long as dynamic atomicity is satisfied. For example, a simple algorithm such as Moss' can be used for 
most objects, while a more sophisticated algorithm permitting extra concurrency by using type-specific 
information can be used for objects that are "hot spots" (that is, very frequently accessed.) The idea of a 
local condition that guarantees serial correctness was introduced by Weihl [Weihl] for systems without 
transaction nesting. 

The timestamp algorithm of Reed [Reed] is designed for data objects that are accessible only by read 
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and write operations. We have developed a similar algorithm, in [AFLMW], that accomodates arbitrary 
data types. (This work generalizes work of Herlihy [Herlihy] giving a timestamp algorithm for single- 
level transactions using arbitrary data types.) These algorithms both involve assignment of ranges of 
timestamp values to transactions in such a way that the interval of a child transaction is included in the 
interval of its parent, and the intervals of siblings are disjoint. Responses to accesses are determined 
from previous accesses with earlier timestamps. 

We again analyze these algorithms using the Serializability Theorem and its Corollary. This time, the 
sibling order used is the timestamp order. Now the condition that view(~,T0,R,X) ~ finbehs(S(X)) says 
that the processing of accesses to X is "consistent" with the timestamp order, in that reordering the 
processing in timestamp order yields a correct behavior for the corresponding serial object automaton. 
The Corollary then implies that all finite behaviors are serially correct for T 0, and the Serializability 
Theorem implies that the timestamp algorithms are serially correct for all non-orphan transaction names. 
Once again, each algorithm is described as the composition of object automata and a controller. This 
time, a local condition called "static atomicity" is used, saying that an object satisfies the view condition 
using the timestamp order. As long as each object is static atomic, the whole system is serially correct 
for non-orphan transactions. We show that both Reed's algorithm and our version of Herlihy's algorithm 
ensure static atomicity. Again, we have the flexibility to implement objects independently as long as 
static atomicity is guaranteed. 

Objects can be proved to be dynamic atomic or static atomic using standard assertional proof 
techniques and connections between the object's state and history. It is also possible to prove that some 
objects are dynamic atomic or static atomic by showing that they implement other objects of the same 
kind. Possibilities maps and Proposition 6 can be used to show this. This strategy is especially useful in 
cases where the object keeps information in a compact form, whereas the required local property is easy 
to prove for a less compact variant of the algorithm. We refer the interested reader to [FLMW2] and 
[AFLMW] for more details. 

7 Conclusions 
In this paper, we have presented correctness conditions for atomic transaction systems. These 

conditions are stated at the user interface to the system, which is the interface of primary interest. The 
fact that the conditions are stated at this interface makes them quite general; they can be used to state 
appropriate correctness conditions for a wide variety of different algorithms. We have also described 
one general theorem, the Serializability Theorem, which is useful for proving correctness of many 
interesting and apparently dissimilar algorithms. 

The Serializability Theorem is not the only tool we use for our correctness proofs. There are several 
other techniques that we use for decomposing proofs of transaction-processing algorithms. For 
example, in [GL], we provide proofs for replicated data algorithms based on the quorum consensus 
technique of Gifford [Gifford]. We consider replication management algorithms in combination with 
concurrency control and recovery algorithms. Our presentation separates the concerns very cleanly: the 
algorithm is divided into modules that handle replication and modules that handle the concurrency 
control and recovery. Correctness conditions for the two separate algorithms are combined to yield 
correctness for the complete algorithm. In particular, all that is required of the concurrency control and 
recovery algorithms is that they guarantee serial correctness for non-orphan transactions (with respect to 
the individual copies of the data objects); thus, there is considerable flexibility in the choice of 
concurrency control and recovery algorithms. We remark that transaction nesting provides a 
particularly good way to organize this decomposition: the replication part of the algorithm is formally 
described in terms of new copy-management subtransactions that are called by the user-level 
transactions in place of the original user-level accesses to objects. 

We expect that our model in general, and the Serializability Theorem in particular, will prove quite 
useful for reasoning about many more algorithms than those that we have already considered. We are 
also particularly interested in understanding how to reason about multi-level locking algorithms such as 
that considered in [BBG], and in understanding complicated algorithms that are used for concurrency 
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control and recovery in an environment having volatile memory which is lost during a crash. 
Understanding these ideas in our model is work remaining to be done. 

Finally, we remark that our Serializability Theorem still seems somewhat more complicated than the 
classical theorem, even taking the generalizations into account. The classical theorem was stated in 
simple combinatorial terms, while our theorem involves a more complicated fine-gained treatment of 
individual actions. We wonder if it is possible to combine the advantages of the two approaches: 
perhaps there is a simple combinatorial condition that takes suitable account of nesting and failures, and 
that implies the natural and general correctness conditions described in this paper. 
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