
Optimal Synchronization of ABD Networks

Gerard Tel Ephraim Korach Shmuel Zaks

RUU-CS-88-23
May 1988

�
Utrecht University
Department of Computer Science

Padualaan 14, P.O. Box 80.089,

3508 TB Utrecht, The Netherlands,

Tel. : + 31 - 30 - 531454



Optimal Synchronization of ABD Networks

Gerard Tel Ephraim Korach Shmuel Zaks

Technical Report RUU-CS-88-23
May 1988

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands



ISSN: 0924{3275



Optimal Synchronization of ABD

Networks

Gerard Tel� Ephraim Korachy Shmuel Zaksz

Abstract

We present in this paper a simple and e�cient synchronizer algorithm for
Asynchronous Bounded Delay Networks. In these networks each processor
has a local clock, and the message delay is bounded by a known constant.
The algorithm improves on an earlier synchronizer for this network model,
presented by Chou et al.[CCGZ90]. Moreover, using a mathematical model for
this type of synchronizer, we show that the round time of the new synchronizer
is optimal.

1 A Synchronizer Algorithm

Two models of computation have been used for the development of distributed
algorithms: the synchronous and the asynchronousmodel. In the synchronous model
the execution of an algorithm operates in discrete steps called rounds. The actions
of a process in round (i + 1) depend on the state of the process after round i and the
messages sent to it in round i. Note that it is therefore necessary that all messages
that are sent to some process in round i are received before the process starts its
computation of round (i+ 1). We can think of the system as if there were a global
clock, giving pulses at regular intervals. Computation takes place at clock pulses,
and a message that is sent at one pulse is guaranteed to be received before the next
pulse. In the asynchronous model it is assumed that there are no clocks and message
delivery time is not bounded a priori.

�The work of this author was supported by the ESPRIT III Basic Research Actions Program of
the EC under contract no. 7141 (project ALCOM II). Author's address: Department of Computer
Science, University of Utrecht, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands. Email:

gerard@cs.ruu.nl.
yAuthor's address: Department of Industrial Engineering, Ben Gurion University of the Negev,

P.O. Box 653, Beer Sheva 84105, Israel. Email: korach@bgumail.bgu.ac.il.
zAuthor's address: Department of Computer Science, The Technion, Technion City, Haifa

32000, Israel. Email: zaks@cs.technion.ac.il.

1



The synchronous model is stronger than the asynchronous model. Consequently,
distributed algorithms for synchronous networks are more e�cient and easier to de-
sign than algorithms for asynchronous networks. Therefore simulation algorithms
have been designed to simulate synchronous computations on asynchronous net-
works. These simulation algorithms are called synchronizers [Awe85]. The simplest
of these mechanisms ensures that exactly one message is sent over each link of the
network in every round. If the simulated algorithm sends more messages over some
link in some round, these messages must be packed into one larger (logical) mes-
sage. If the simulated algorithm sends no messages over some link in some round,
a special \empty message" must be sent. As a result of this policy, every process
must receive exactly one message from every neighbor after every round. The next
round is simulated when the message of the current round has been received from
every neighbor.

The addition of the empty messages makes the synchronizer ine�cient for com-
putations that are \sparse" in time. The message complexity of the simulated algo-
rithm equals its time complexity multiplied by the number of edges in the network.
Consider, for example, the construction of a breadth �rst search tree in a network
with E bidirectional edges and diameter D. A simple synchronous algorithm uses
2E messages and time D. When the simple synchronizer is used to simulate this
algorithm, 2ED messages are sent in time O(D). The situation is even worse for the
simulation of some recent election and spanning tree algorithms by Vitanyi [Vit85].
These algorithms use a number of messages linear in the number of edges, but
they are exponential in time. The simple synchronizer would increase the message
complexity to exponential.

1.1 Asynchronous Bounded Delay Networks

Chou et al. [CCGZ90] proposed a network model, referred to as Asynchronous
Bounded Delay networks (ABD networks). This model is weaker than the syn-
chronous model, but stronger than the asynchronous model. It is assumed that
processes have local clocks. These clocks run at the same speed, but they are not
synchronized. That is, they need not show the same value at one instant. Further-
more a �xed bound on message delivery time is assumed. We choose our unit of
time equal to this bound and assume henceforth that message delay is bounded by
1. Except in Section 1.3, we assume the network to be bidirectional.

Formally, communication satis�es the Bounded Delay axiom (BD); if � is the
global time of the sending of a message, and � is the global time of its receipt, then

� � � < � + 1: BD

In our analysis we will always refer to a global time, but this global time is of course
invisible to the processes. We assume that local clocks show a real-valued time,
and that time for local processing is 0. These assumptions are justi�ed because the

2



granularity of the clock tick and the time for internal processing are usually very
small compared to message delay time.

In ABD networks a synchronizer can work without the empty messages. An
initial exchange of h start i messages is required to make every process start its local
clock at approximately the same time. After this initialization phase a processor will
use its clock to decide when the next round of the simulated algorithm is executed.
The following two requirements must be satis�ed:

R1. If process q sends a message to its neighbor p in round i, this message must
be received before p simulates round (i+ 1); and

R2. if process p receives a message it must be possible for p to determine to what
round this message belongs.

Requirement R1 must obviously be satis�ed because p's actions in round (i+ 1)
depend on q's message. Failure to meet requirement R2 may lead to incorrect simu-
lation because a message may then be processed as if belonging to a di�erent round.
If the two requirements are satis�ed the synchronous computation is simulated cor-
rectly.

To compare the speed of synchronizers we introduce the concept of round time.
The round time of a synchronizer is the time it takes to simulate one round of the
synchronous algorithm. When the simple synchronizer, described earlier, is used on
an ABD network, it realizes a round time of 1. No mechanism can have a smaller
round time, because the simulated algorithm may be sending messages all the time,
and these messages can take time up to 1 to arrive. Thus, the simple synchronizer
is time-optimal, but it uses a lot of messages. From now on we only consider the
message-e�cient type of synchronizer for ABD networks.

Chou et al. [CCGZ90] presented two synchronizers. The �rst synchronizer has a
round time of 2. To meet requirement R2, one bit is added to every basic message
(i.e., every message of the simulated algorithm) as described in Theorem 2.2. This
extra bit is avoided in the second synchronizer, but this is paid for with a round
time of 3. In this article we present a synchronizer with a round time of 2 that works
without the extra bit. This clearly improves on the results of [CCGZ90].

It remained an open question, whether a round time of 2 is optimal for the
message-e�cient ABD synchronizers under consideration (those that exchange con-
trol messages only during initialization). We develop a mathematical model and
answer this question with \yes" for some cases and with \no" for others. Depending
on their topology, some networks can be synchronized with a round time smaller
than 2, while for others 2 is optimal.

We also consider the case where clocks do not run at exactly the same speed,
but instead su�er from drift. Again we improve on the results of [CCGZ90].

3



var startedp : boolean init false ;
�pq : real for each neighbor q ;

procedure INIT : (* Executed only if not startedp, either spontaneously
or upon receipt of the �rst h start i message *)

begin Cp := 0 ; startedp := true ;
send h start i to every neighbor

end

upon receipt of h start i from neighbor q
do begin if not startedp then INIT ;

�pq := Cp

end

upon receipt of a message M from q

do begin i := bCp��pq+1

2
c ;

store M as a round-i message
end

when Cp = 2i
do Execute round i of the simulated algorithm, using all

round-(i� 1) messages so far.

Algorithm 1: The Synchronizer for Process p.

1.2 The Synchronizer

We �rst describe the initialization phase, explain when rounds are simulated, and
show that R1 and R2 are satis�ed. We refer to a message, sent in round i, as a
round-i message.

In the initialization phase a h start i message is sent in both directions over every
link in the network. Every process resets its local clock to 0 at the moment it sends
h start i messages to all of its neighbors. This is done exactly once in every process.
Each process can start its clock and send the messages spontaneously, but must do
so at the latest upon receipt of the �rst h start i message. Algorithm 1 gives the
program for an arbitrary process p.

Because the receiving times of h start i messages are stored, our algorithm uses
more internal storage than the algorithms in [CCGZ90]. By wp we denote the global
time at which p executes INIT , and by C(t)

p we denote p's clock reading at global
time t. At time wp, Cp is set to 0, and we assume clocks run accurately. Formally,
the clocks satisfy the following Clock Axiom.

C(t)
p = t � wp: CA

Let p and q be arbitrary neighbors in the network and � and � the global time of
sending and receipt of the h start i message that q sends to p. We have � = wq

4



and wp � � by virtue of the algorithm, and � � � < � + 1 by the Bounded Delay
assumption BD. It follows that wp � wq + 1.

At time � , �pq is set to C(�)
p = � � wp. It follows that, as a result of the

Initialization Phase, the �'s and w's satisfy

0 � �pq; wq � wp � �pq < wq � wp + 1: IP

Because a h start i message is sent from p to q also, the same holds with p and q

interchanged. It follows that jwp � wqj < 1 and �pq < 2.
The simulated algorithm operates in rounds 1, 2, 3,... The synchronizer simulates

round i at local time 2i as described in Algorithm 1. It will now be shown that
Algorithm 1 satis�es requirement R1.

Theorem 1.1 Round-i messages arrive before the simulation of round (i+ 1).

Proof. Assume q sends p a message in round m, and let the global times of sending
and receipt of this message be � and � , respectively. By virtue of the algorithm
C(�)
q = 2i. We now have

C(�)
p = � � wp (CA)

< � + 1� wp (BD)

= wq + 2i+ 1� wp (CA)

< 2(i+ 1); (IP)

so p simulates round (i + 1) later than � . �

Next it will be shown that the algorithm ful�lls requirement R2.

Theorem 1.2 The round number of a message is correctly determined from its local
time of receipt and information from the initialization phase.

Proof. Assume q sends p a round-i message, and let the global times of sending
and receipt of this message be � and � , respectively. We now have

C(�)
p � �pq = (� � wp)� �pq (CA)

> (� � wp)� (wq � wp + 1) (BD; IP)

= (wq + 2i� wp)� (wq � wp + 1) (CA)

= 2i� 1:

On the other hand,

C(�)
p � �pq = (� � wp)� �pq (CA)

< (� + 1� wp)� (wq � wp) (BD; IP)

= (wq + 2i+ 1� wp)� (wq � wp) (CA)

= 2i+ 1:

5



It follows that i = b
C

(�)
p ��pq+1

2
c, hence the messages received in Algorithm 1 are

stored under the correct round number. �

Concluding, Algorithm 1 satis�es requirement R1 by Theorem 1.1 and require-
ment R2 (without using additional information in messages) by Theorem 1.2. The
round time of Algorithm 1 is 2.

It is well possible for a process to receive a round-i message before it has itself
simulated round i. It is also possible to receive a round-(i+ 1) message from one
neighbor earlier than a round-i message from another neighbor. The data structure
in which the messages are stored must provide su�cient exibility to do so. In the
most unfavorable situation, all neighbors of p simulate round (i+ 1) earlier than p,
which may force p to simultaneously bu�er all messages sent to p in two consecutive
rounds.

1.3 Unidirectional Networks

We now drop the assumption that the network is bidirectional and show how Al-
gorithm 1 can be adapted to this more general situation. In directed networks, the
existence of an edge qp does not imply that a h start i message is sent from p to q.

The modi�ed algorithm uses the same initialization phase as Algorithm 1. After
this initialization we have (for every edge qp) wp < wq + 1 and we �nd

0 � �pq; wq � wp � �pq < wq � wp + 1 IP

as in Section 1.2. We do not necessarily have wq < wp + 1, but instead we have
wq < wp + d(p; q), where d(p; q) denotes the distance from p to q. De�ne dm as
(maxqp2E d(p; q)), and assume dm to be known by all processes. A process now
simulates round i at local time (dm +1) � i. (The value dm + 1 is known as the girth
of the network.) It is easily seen that all messages now arrive in time. Because
dm � 1, the round time of this synchronizer is at least 2, so there is no need for an
extra bit in messages. As in Theorem 1.2 it can be shown that

(dm + 1)i� 1 < C(�)
p � �pq < (dm + 1)i + 1

if � is the time of receipt of a round-i message from q. Consequently, it su�ces to
change \2" into \dm +1" in the routines to receive a basic message and to simulate
the next round.

2 Optimality of the Synchronizer

Algorithm 1 has a round time of 2 and uses no extra bit in basic messages, which
is a fairly strong result. Yet the question arises whether faster synchronizers exist,
i.e., synchronizers with a round time smaller than 2. The results in this section
concern synchronizers that use the same initialization phase as Algorithm 1. To

6



determine the time of simulation of a round, we allow that all information gathered
in the initialization phase, i.e., the (local) time of receipt of h start i messages, can
be used. We do not allow the use of other information, such as the receipt time of
basic messages.

It will turn out that if the round time of a synchronizer is smaller than 2, one
bit of extra information in basic messages is necessary (Theorem 2.1) and su�cient
(Theorem 2.2) to satisfy requirement R2. If a round time of 2 is acceptable, no addi-
tional bit is necessary as is demonstrated by Algorithm 1. Therefore, we concentrate
on requirement R1. We develop a mathematical model for the type of synchronizer
under consideration, and give a more precise de�nition of the round time. We shall
arrive at the following conclusions.

1. There exist networks (notably, complete networks and stars) that can be syn-
chronized with a round time smaller than 2.

2. There exist networks (notably, rings and cubes) that cannot be synchronized
with a round time smaller than 2.

Therefore, for some classes of networks, and for the case that the network topology
is unknown to the processes, Algorithm 1 is optimal.

We excluded the use of receipt times of basic messages. The low message com-
plexity of our synchronizer is attractive mainly in message sparse computations, as
argued in the introduction of Section 1. In these computations the basic messages
will be of little use. A more sophisticated algorithm could derive from these arrival
times more accurate information about the di�erences between the clock readings
than given in equation IP, and in some executions arrive at a round time close to
1. On the other hand, if, in a certain execution, all messages over one channel have
the same transmission delay, the receipt time of basic messages gives no extra in-
formation at all. Thus the \worst case" behavior of this approach is no better than
that of not using the receipt time of basic messages.

2.1 A Mathematical Model

In this section we will develop a mathematical model for ABD synchronizers to
either improve on the round time of Algorithm 1 or prove its optimality. First the
requirement R2 will be dealt with in the following two theorems.

Theorem 2.1 In a synchronizer with round time smaller than 2, Cp and �pq are
insu�cient for p to determine the round number of a message from q.

Proof. Assume q simulates round i at local time T and round (i+ 1) at local time
T + 2��, for some � > 0.

Now consider �rst the situation that wq = wp + 1� 1
2
�, q's h start i message to

p has delay 0, and q sends a round-i message that su�ers a delay of 1� 1
2
�. Because

7



� > 0, this delay satis�es BD. In this situation, �pq = 1 � 1
2
� and at the moment

of receipt of the message by p, Cp � �pq = T + 1� 1
2
�.

Second, consider the situation that wq = wp, q's h start i message su�ers a delay
of 1� 1

2
�, and q sends a round-(i+ 1) message that has delay 0. Again �pq = 1� 1

2
�

and at the moment of receipt of the message by p, Cp � �pq = T + 1� 1
2
�.

Consequently, when �pq = 1 � 1
2
� and a message is received at local time T +

�pq +1� 1
2
�, it is not possible to determine the round number of this message from

�pq and the local clock time. �

We remark that this result cannot be circumvented by making T dependent of �qp,
because in both situations it is possible to choose the delay of p's h start i message
such that �qp = 0. A consequence is that if the round time of a synchronizer is
smaller than 2 it is necessary to send extra information in messages; one bit su�ces
for this purpose.

Theorem 2.2 If a synchronizer satis�es R1, one bit of extra information per mes-
sage su�ces to satisfy R2 also.

Proof. Suppose p receives a message from q between the simulation of rounds j
and (j + 1), and p must determine the round number i of this message. By R1 and
because p has simulated round j already, i � j. Because it is possible that p will
send a message to q in round j + 1 and by R1, q simulates round (j + 2) later than
p simulates round (j+1), and i � j+1 follows; hence j � i � j+1. Let par be the
parity of i and assume q included par in the message. Now p can compute i using

if par = par(j) then i := j else i := j + 1.

So it su�ces to include the parity of round numbers in messages of the simulated
algorithm. �

Observe that p determines the round numbers without using �pq. Alg. 1 and the two
theorems justify our claim that no additional information is necessary if the round
time is at least 2, and one bit su�ces if the round time is smaller than 2.

We shall, from now on, concentrate on the problem to ful�l requirement R1.
Let G = (V; E) be an undirected graph. A synchronizer, using only information
gathered in the initialization phase, is modeled by a synchronizer function, whose
arguments are the round number and this information.

De�nition 2.3 A synchronizer function F for G is a collection of functions

Fp : N � [0; 2)d ! R for each p 2 V;

where d is the degree of p in G.

The interpretation of a synchronizer function F is as follows. If p has received
h start i messages of its neighbors q1; : : : ; qd at local times �pq1; : : : ; �pqd, then p

simulates round i at local time Fp(i; �pq1 ; : : : ; �pqd). Henceforth we write ~�p for
�pq1 ; :::; �pqd.

8



De�nition 2.4 A scenario for G is a (jV j + jEj)-tuple [wp : p 2 V ; �pq : qp 2 E]
such that wp; �pq 2 R, and for all qp 2 E

max(0; wq � wp) � �pq < wq � wp + 1: SA

Theorem 2.5 An ABD synchronizer satis�es requirement R1 if and only if its syn-
chronizer function F satis�es, for every scenario S, every link qp, and every i:

Fp(i+ 1; ~�p) + wp � Fq(i; ~�q)� wq � 1 � 0: CC

Proof. The rationale behind the proof is that scenarios correspond exactly to
possible executions of the initialization phase of the synchronizer, and the correctness
criterion CC corresponds to the requirement that a round-i message from q to p

arrives in time.
Suppose F satis�es CC (for every S, qp, and i). Consider a message sent from q

to p in round i. This message is sent at global time wq + Fq(i; ~�q) and hence, by BD,

it is received before wq + Fq(i; ~�q) + 1. Process p simulates round i+1 at global time

wp + Fp(i+1; ~�p). From Section 1.2, notably, equation IP, we know that all w and �
obtained during the initialization phase satisfy SA, i.e., [wp : p 2 V ; �pq : qp 2 E]
is a legal scenario. But then, by CC,

wp + Fp(i + 1; ~�p) � wq + Fq(i; ~�q) + 1;

which shows that the message arrives in time.
Suppose CC is not satis�ed for some scenario S = [wp : p 2 V ; �pq : qp 2 E],

some edge qp, and some i, i.e.,

wp + Fp(i + 1; ~�p) < wq + Fq(i; ~�q) + 1:

Construct the following execution of the synchronizer. Process p awakes sponta-
neously at time wp, the h start i message over edge qp arrives at global time wp+�pq.
By SA, all h start i messages satisfy the BD axiom in this execution, and each pro-
cess executes INIT no later than at the receipt of the �rst h start i message. Process

q may send to p a basic message in round i, i.e., at global time wq + Fq(i; ~�q). The
message delay can be arbitrarily close to 1, so tis message may arrive later than at
global time wp+Fp(i+1; ~�p) (but still before wq +Fq(i; ~�q)+ 1). Thus the message
arrives too late, violating R1. �

Thus correct synchronizers correspond with synchronizer functions satisfying CC
for all S, all qp, and all i. In the sequel, when we say a function satis�es CC we
mean that this is the case for all S, all qp, and all i. We also simply say that the
function is correct in this case. We can now give a precise de�nition of the round
time of a synchronizer.

9



De�nition 2.6 For a synchronizer function F , the round time of F is

�(F ) = max
p2G

sup
~�p

lim
i!1

Fp(i; ~�p)

i
:

The correctness of Algorithm 1 can be easily demostrated in this model.

Theorem 2.7 The synchronizer function F with Fp(i; ~�p) = 2i is correct.

Proof. For all S, qp, i we have

Fp(i+ 1; ~�p) + wp � Fq(i; ~�q)� wq � 1

= 2i+ 2 + wp � 2i� wq � 1 (Def: F )

= wp � wq + 1

� 0: (SA)

�

This function clearly has a round time of 2.

2.2 Fast Synchronization

In this section we show that some networks can be synchronized with a round time
smaller than 2. First we consider the network K2 consisting of two processors p and
q, connected by a bidirectional edge pq.

Theorem 2.8 There exists a synchronizer function for K2, satisfying CC, with a
round time of 11

2
.

Proof. Take Fp(i; �pq) = 11
2
i+ 1

2
�pq and Fq(i; �qp) = 11

2
i + 1

2
�qp. For all S; i,

Fp(i + 1; ~�p) + wp � Fq(i; ~�q)� wq � 1

= 11
2
(i+ 1) + 1

2
�pq + wp � 11

2
i� 1

2
�qp � wq � 1 (Def: F )

> 11
2
+ 1

2
(wq � wp) + wp �

1
2
(wp � wq + 1)� wq � 1 (SA)

= 0

The proof for the reverse direction is similar by symmetry. �

Theorem 2.9 A round time of 11
2
is optimal for K2.

Proof. Let F satisfy CC. For any � 2 (0; 1
2
), let S� be the scenario where wq =

wp +
1
2
� �, �pq = �qp =

1
2
. F satis�es CC for S�, so

Fp(i+ 1;
1

2
) � Fq(i;

1

2
) + 1

1

2
� �:

10



This holds for all � > 0, and thus

Fp(i + 1;
1

2
) � Fq(i;

1

2
) + 1

1

2

follows. Repeat this argument with p and q interchanged and �nd Fq(i + 2; 1
2
) �

Fq(i;
1
2
) + 3. It follows that lim

i!1

Fq(i;
1
2
)

i
� 3

2
. �

Complete networks. We generalize the results for K2 in two ways. Let Kn be
the complete network with n nodes, i.e., V = f1; : : : ; ng and E = f(p; q) : p 6= qg.

Theorem 2.10 There exists a synchronizer function for Kn,satisfying CC, with a
round time of 2� 1

n
.

Proof. Take Fp(i; �p1; : : : ; �p;n�1) = (2� 1
n
)i + 1

n
(�p1 + : : :+ �p;n�1). We prove CC

on edge 21.

F1(i + 1; �12; �13; : : :) + w1 � F2(i; �21; �23; : : :)� w2 � 1

= (2� 1
n
)(i+ 1) + 1

n
(�12 + �13 + : : :) + w1 (Def: F )

� (2� 1
n
)i� 1

n
(�21 + �23 + : : :)� w2 � 1

> (2� 1
n
) + 1

n
((w2 � w1) + (w3 � w1) + : : :) + w1 (SA)

� 1
n
((w1 � w2 + 1) + (w3 � w2 + 1) + : : :)� w2 � 1

= 0

The proof for the other edges is similar. �

Theorem 2.11 A round time of (2� 1
n
) is optimal for the Kn.

Proof. (Assume the arguments of Fp are listed in the order �p;p+1; �p;p+2; :::) Let
F be a synchronizer function satisfying CC. For � 2 (0; 1

n
), let S� be the scenario

where wp =
p

n
for p < n, wn = 1� �, �1p =

p�1
n
, �np =

p

n
, and �qp = max(0; p�q

n
) for

1 < q < n. This tuple satis�es SA and, using CC, it follows that

F1(i + 1;
1

n
;
2

n
; : : :) � Fn(i;

1

n
;
2

n
; : : :) + 1 +

n� 1

n
� �:

This holds for all � > 0, and thus

F1(i+ 1;
1

n
;
2

n
; : : :) � Fn(i;

1

n
;
2

n
; : : :) + 1 +

n� 1

n

follows. Repeat this argument n times, with a cyclic shift of process names, and
�nd

Fn(i + n;
1

n
;
2

n
; : : :) � Fn(i;

1

n
;
2

n
; : : :) + 2n� 1:

It follows that �(F ) � 2� 1
n
. �

11



Star Networks. The star network Sn consists of n nodes p; q1; : : : ; qn�1 and n�1
edges pq1; : : : ; pqn�1. Note that K2 = S2. We generalize the results for K2 to Sn.

Theorem 2.12 There exists a synchronizer function for Sn with round time 11
2
.

Proof. Take Fp(i; ~�p) = 11
2
i+ 1

2
and Fqj(i; �qjp) = 11

2
i+ �qjp. Now we have

Fp(i+ 1; ~�p) + wp � Fqj (i; �qjp)� wqj � 1

= 11
2
(i+ 1) + 1

2
+ wp � 11

2
i� �qjp � wqj � 1 (Def: F )

> 11
2
+ 1

2
+ wp � (wp � wqj + 1)� wqj � 1 (SA)

= 0:

and

Fqj(i + 1; �qjp) + wqj � Fp(i; ~�p)� wp � 1

= 11
2
(i + 1) + �qjp + wqj � 11

2
i� 1

2
� wp � 1 (Def: F )

� 11
2
+ (wp � wqj) + wqj �

1
2
� wp � 1 (SA)

= 0:

for all S, j, and i, hence F satis�es CC. �

Theorem 2.13 A round time of 11
2
is optimal for Sn.

Proof. Apply the proof of Theorem 2.9 to any of the edges of Sn. �

We have seen that when the round time is smaller than 2 an extra bit in messages
is necessary. The value of �pq is not needed for determining the round number of a
message in this case. In all synchronizers in this section only the sum of �pq is needed
in a process to determine when a next round is simulated. Thus, all synchronizers
in this section can be implemented in O(1) internal storage (excluding the space
needed for temporary storage of messages of the simulated algorithm).

2.3 Lower Bound Results

In this section we show that a round time of 2 is optimal for rings of size 4 and larger.
Theorem 2.18 facilitates the proof. It says that we may assume that a synchronizer
function for a ring is identical in each process, and symmetric in its two �-arguments.
Recall that an automorphism of G is an isomorphism of G onto itself and Aut(G) is
the group of automorphisms of G.

De�nition 2.14 For a synchronizer function F for G, A 2 Aut(G), F � A is the
synchronizer function H de�ned by

Hp(i; ~�p) = FA(p)(i; ~�p):

(The elements of ~�p are reordered according to A.)

12



Lemma 2.15 If F satis�es CC, so does H = F � A, and �(H) = �(F ).

Proof. Fix a scenario S, edge qp, round number i. By de�nition we have

Hp(i+1; ~�p)+wp�Hq(i; ~�q)�wq� 1 = FA(p)(i+1; ~�p)+wp�FA(q)(i; ~�q)�wq� 1:

Now consider the scenario S 0 where w0p = wA�1(p) and �0pq = �A�1(p)A�1(q). F satis�es
CC for this scenario on edge A(p)A(q), i.e.,

FA(p)(i+ 1; ~�0A(p)) + w0A(p) � FA(q)(i; ~�0A(q))� w0A(q)�1 � 0:

But then
Hp(i+ 1; ~�p) + wp �Hq(i; ~�q)� wq � 1 � 0:

The second part of the lemma is trivial. �

De�nition 2.16 For synchronizer functions F1 and F2, �1; �2 2 R, �1F1+ �2F2 is
the synchronizer function H de�ned by

Hp(i; ~�p) = �1F1;p(i; ~�p) + �2F2;p(i; ~�p):

Lemma 2.17 If F1 and F2 satisfy CC, �1; �2 � 0, �1 + �2 = 1, then H = �1F1 +
�2F2 satis�es CC and �(H) � max (�(F1); �(F2)).

Proof. For every S, qp, i, we have

Hp(i+ 1; ~�p) + wp �Hq(i; ~�q)� wq � 1

= �1(F1;p(i+ 1; ~�p) + wp � F1;q(i; ~�q)� wq � 1) +

�2(F2;p(i+ 1; ~�p) + wp � F2;q(i; ~�q)� wq � 1)

� 0 + 0

because F1 and F2 satisfy CC and �1; �2 � 0. Furthermore, max, sup, and lim com-
mute with multiplication by a constant and distribute over addition in the following
sense:

max (T1 + T2) � max (T1) + max (T2):

(And similar for sup and lim.) It follows that �(H) � �1�(F1) + �2�(F2). �

It will now be shown that for each synchronizer function F , it is possible to construct
a \symmetric" function that is at least as good as F in terms of round time.

Theorem 2.18 For any correct synchronizer function F there is a correct synchro-
nizer function H such that

(i) �(H) � �(F ); and
(ii) for all A 2 Aut(G), H = H � A.

13



Proof. Let F be given. Take k = jAut(G)j and de�ne H =
P

B2Aut(G)
1
k
(F � B).

By Lemmas 2.15 and 2.17, H is again correct and �(H) � �(F ). Furthermore, for
A 2 Aut(G),

H � A = (
P

B2Aut(G)
1
k
(F �B)) � A

=
P

B2Aut(G)
1
k
(F �B � A)

= H;

because Aut(G) � A = Aut(G). �

Lower Bounds for the Ring and Hypercube. The network Rn has n nodes
1; :::; n, and n edges (p; p + 1), where indices are counted modulo n. Note that
bidirectional rings are considered here.

Theorem 2.19 A round time of 2 is optimal for R4.

Proof. Let F be a correct synchronizer function for R4. By Theorem 2.18 we
may assume that each process p has the same local function Fp = F and that this
function is symmetric in its two �-arguments. For � 2 (0; 1), let S� be the scenario
where

w1 = 0; �12 = 1; �14 = 0;
w2 = 1� �; �23 = 1; �21 = 0;
w3 = 1� 1

2
�; �34 = 0; �32 =

1
2
�;

w4 = 0; �41 = 0; �43 = 1:

These values are according to SA, and because F satis�es CC for this scenario on
edge 21 we have F (i+ 1; 0; 1) � F (i; 0; 1) + 2� �. Again this holds for all � > 0,
and F (i+ 1; 0; 1) � F (i; 0; 1) + 2 follows. Thus �(F ) � 2. �

Theorem 2.20 A round time of 2 is optimal for Rn, if n > 4.

Proof. As the previous theorem. Extend scenario S� as given in the proof of
Theorem 2.19 to a scenario for Rn with

�1n = 0; �45 = 0;
wi = 0; �i;i�1 = 0; �i;i+1 = 0 for i > 4:

�

The results for rings can be easily extended to Hypercubes, because each two{
dimensional face of the Hypercube is a ring. The 2N hypercube s the graph CN =
(V; E), where V = f0; 1gN , and E = f(p; q) 2 V 2 : p and q di�er in one bitg.

Theorem 2.21 A round time of 2 is optimal for CN if N � 2.

Proof. Modify the proof of Theorem 2.19 for any surface of the cube. �

14



Summary. Because R3 = K3 and C1 = R2 = K2, we have now determined the
optimal round times for all rings, stars, complete networks, and cubes. If a synchro-
nizer with a round time of 2 is used, there are two options to satisfy requirement R2.
A bit can be added to messages as described in the proof of Theorem 2.2. In this
case the �pq need not be stored during the simulation and the synchronizer can be
implemented in O(1) storage per process. The other option is to use Algorithm 1.
Then no extra bit is necessary, but the internal storage in a process equals its degree
in the network.

3 Drifting Clocks

Until now we have assumed that clocks run accurately. In this section we will develop
synchronizers for the more realistic case where clocks may su�er a small, bounded
drift. By an �-bounded drift we mean that it takes a clock at least (1� �)� and at
most (1 + �)� global time to advance an amount �. In other words, we replace the
clock axiom CA by CA-�:

(1 + �)�1(t� wp) � C(t)
p � (1� �)�1(t� wp): CA-�

The constant � is known from the speci�cation of the underlying hardware clocks.
Typically � is very small, in the order of 10�5 or 10�6. We adhere to the original
bounded delay axiom BD.

3.1 A Linear Algorithm

In this section we will present an algorithm that resembles Algorithm 1. Round i is
simulated at local time �i for some � > 2. It will turn out, as in [CCGZ90], that after
a �nite number of rounds a new execution of the initialization phase is necessary. The
initialization phase of this algorithm (and the algorithm in Section 3.2) is the same
as for Algorithm 1. As in Section 1.2, we �nd that after initialization wp < wq + 1
if edge qp exists. For �pq we have again �pq � 0 and, using CA-� instead of CA,

0 � �pq; (1 + �)�1(wq � wp) � �pq < (1� �)�1(wq � wp + 1): IP-�

As mentioned above, round i is simulated at time �i.

Theorem 3.1 All round-i messages arrive in time for the simulation of round
(i+ 1) if

(i+ 1) �
(1 + �)�� 2

2��
: I1

15



Proof. Again let �; � be the times of sending and receipt of a round-i message from
q to p. By virtue of the algorithm we have C(�)

q = �i. Thus

C(�)
p � (1� �)�1(� � wp) (CA-�)

< (1� �)�1(� + 1� wp) (BD)

� (1� �)�1((1 + �)�i+ wq + 1� wp) (CA-�)

< (1� �)�1((1 + �)�i+ 2): (IP-�)

Round (i+ 1) is simulated by p when Cp = �(i+ 1); clearly the message is in time
if

(1� �)�1((1 + �)�i+ 2) � �(i+ 1);

and this is equivalent to I1. �

Theorem 3.2 The round number of a message can be determined using its local
time of receipt and information from the initialization phase if

i �
(1 + �)2�� 2(1 + 3�)

4��
: I2

Proof. Let �; � be the times of sending and receipt of a round-(i� 1) message;
then

C(�)
p � �pq � (1� �)�1(� � wp)� (1 + �)�1(wq � wp) (CA-�, IP-�)

< (1� �)�1(� + 1� wp)� (1 + �)�1(wq � wp) (BD)

� (1� �)�1((1 + �)�(i� 1) + wq + 1� wp) (CA-�)

� (1 + �)�1(wq � wp)

= 1+�
1��

�(i� 1) + 2�
1��2

(wq � wp) +
1

1��

� 1+�
1��

�(i� 1) + 2 �
1��2

+ 1
1��

(IP-�)

= 1+�
1��

�(i� 1) + 1+3�
1��2

:

On the other hand, if �; � are the times of sending and receipt of a round-i message
we have

C(�)
p � �pq > (1 + �)�1(� � wp)� (1� �)�1(wq � wp + 1) (CA-�, IP-�)

� (1 + �)�1(� � wp)� (1� �)�1(wq � wp + 1) (BD)

� (1 + �)�1((1� �)�i+ wq � wp) (CA-�)

� (1� �)�1(wq � wp + 1)

= 1��
1+�

�i� 2�
1��2

(wq � wp)�
1

1��

> 1��
1+�

�i� 2�
1��2

� 1
1��

(IP-�)

= 1��
1+�

�i� 1+3�
1��2

:

16



So a process can distinguish a round-(i� 1) from a round-i message if

1 + �

1� �
�(i� 1) +

1 + 3�

1� �2
�

1� �

1 + �
�i�

1 + 3�

1� �2

and this is equivalent to I2. �

The reader may verify that (1+�)2��2(1+3�)
4��

� (1+�)��2
2��

(use � � 1 and � � 2),
hence I2 implies I1. With a �xed �, we can either simulate the number of rounds
given by I1, and use an extra bit for recognizing messages, or simulate the (smaller)
number of rounds given by I2 and use no extra bit. After this number of rounds the
initialization phase must be executed again to simulate more rounds. In the �rst
case the synchronizer can be implemented in O(1) storage per process, in the second
case storage in a process equals its degree in the network.

To get a feeling of the values actually involved, and compare this algorithm with
the algorithm in [CCGZ90], we include an example computation. Assume the timers
may drift a tenth of a second a day, which makes � = 1

864000
, and set � = 7. Using

I1 we �nd that 308571 rounds can be simulated before reinitialization is necessary
if an extra bit is used in messages. Using I2 we �nd that 154286 rounds can be
simulated before reinitialization is necessary if no extra bit is used. The algorithm
of [CCGZ90] simulates 142045 rounds when � = 8, using no extra bit. (We compare
with � = 8 because already without drift the algorithm of [CCGZ90] has a round
time one higer than ours, and here we aim to compute the e�ect of drift.)

3.2 An Exponential Algorithm

In this section we develop a faster algorithm to synchronize ABD networks with
drifting clocks. No reinitialization will be necessary at all during simulation. The
initialization phase is again the same as for Algorithm 1. We postulate that round
i is simulated at local time f(i), but do not assume, as in Section 3.1, that f is a
linear function.

Theorem 3.3 All round-(i� 1) messages will arrive in time if

f(i) � a1f(i� 1) + b1; J1

where a1 =
1+�
1��

and b1 =
2

(1��)
.

Proof. Again let �; � be the times of sending and receipt of a round-(i� 1) message
from q to p. By virtue of the algorithm we have C(�)

q = f(i� 1). Thus

C(�)
p � (1� �)�1(� � wp) (CA-�)

< (1� �)�1(� + 1� wp) (BD)

� (1� �)�1((1 + �)f(i� 1) + wq + 1� wp) (CA-�)

< (1� �)�1((1 + �)f(i� 1) + 2) (IP-�)

= a1f(i� 1) + b1:

17



So the message is clearly in time if f(i) � a1f(i� 1) + b1. �

Theorem 3.4 The round number of a message can be determined using its local
time of receipt and information from the initialization phase if

f(i) � a2f(i� 1) + b2; (J2)

where a2 =
�
1+�
1��

�2
and b2 =

2+6�
(1��)2

.

Proof. Let �; � be as above; then

C(�)
p � �pq � (1� �)�1(� � wp)� (1 + �)�1(wq � wp) (CA-�, IP-�)

< (1� �)�1(� + 1� wp)� (1 + �)�1(wq � wp) (BD)

� (1� �)�1((1 + �)f(i� 1) + wq + 1� wp) (CA-�)

� (1 + �)�1(wq � wp)

= 1+�
1��

f(i� 1) + 2�
1��2

(wq � wp) +
1

1��

� 1+�
1��

f(i� 1) + 2�
1��2

+ 1
1��

(IP-�)

= 1+�
1��

f(i� 1) + 1+3�
1��2

:

On the other hand, for a round-i message we have

C(�)
p � �pq > (1 + �)�1(� � wp)� (1� �)�1(wq � wp + 1) (CA-�, IP-�)

� (1 + �)�1(� � wp)� (1� �)�1(wq � wp + 1) (BD)

� (1 + �)�1((1� �)f(i) + wq � wp) (CA-�)

� (1� �)�1(wq � wp + 1)

= 1��
1+�

f(i)� 2�
1��2

(wq � wp)�
1

1��

> 1��
1+�

f(i)� 2�
1��2

� 1
1��

(IP-�)

= 1��
1+�

f(i)� 1+3�
1��2

:

So a process can distinguish a round-(i� 1) message from a round-i message if

1� �

1 + �
f(i)�

1 + 3�

1� �2
�

1 + �

1� �
f(i� 1) +

1 + 3�

1� �2
;

or f(i) � a2f(i� 1) + b2. �

Because a2 � a1 and b2 � b1, again J2 implies J1. We note that the function
f(i) = ba

i
�1

a�1
satis�es f(i) = af(i� 1) + b. Hence, we can use the function

f1(i) = b1
ai1 � 1

a1 � 1

18



and use an extra bit for recognizing messages, or use

f2(i) = b2
ai2 � 1

a2 � 1

and no extra bit. These functions are exponential in i and thus have an unbounded
round time. Yet, for all values for which they can be compared with the functions
in Section 3.1, they perform better.

First consider the case where an extra bit is used in messages. In the previous
section, using � = 7, reinitialization was necessary after the 308571th round. This
round is simulated at time 7� 308571 = 2159997. The synchronizer in this section
simulates this round at local time f1(308571) = 900915. With no extra bit, reini-
tialization was necessary after the 154286th round. This round is simulated at time
7 � 154286 = 1080002. The synchronizer in this section simulates this round at
local time f2(154286) = 450461.

4 Conclusions

In this article we have studied a class of synchronizers for ABD networks. The
synchronizers in this class use extra control messages only during the initialization
phase. Our starting point was a simple synchronizer by Chou et al. [CCGZ90].
In Section 1.2 we improved on this synchronizer: in our version no extra bit in a
message is necessary to determine its round number.

We studied the e�ect of three changes in the model on the synchronizer algorithm
and its performance. In Section 1.3 we studied unidirectional networks. In Section 2
we made the (local) time of simulation of a round dependent on the (local) time
of receipt of messages in the initialization phase. It was proved that this improves
performance of the synchronizer in stars and complete networks, but not in rings
and cubes. In Section 3 we studied the e�ect of drift of the local clocks and showed
that a (slower) synchronization is still possible.

In our models we considered the e�ect of these three changes separately. Of
course it is possible to make a (more complex) mathematical model including unidi-
rectional networks, use of local receipt times, and drifting clocks at the same time.
We conjecture that no new conclusions are found in this way.

After the initialization phase a process knows the start-time of a neighbor's clock
to be within a certain interval of length 1. Using the receipt time of more messages
the length of this \uncertainty interval" may be decreased. If this information is
spread over the network and used in a proper way, the round time could be decreased
also. We did not study synchronizers using this principle.

There is an intimate relation between the problem of synchronizing an ABD
network and the problem of clock synchronization. Assume the clocks can be syn-
chronized within �, i.e., at any moment t we have jC(t)

p � C(t)
q j < �. It is easy to

see that a process can now simulate round i at local time (1 +�)i, and R1 and R2

19



are satis�ed. In [LL84] it is shown that clocks in the Kn cannot be synchronized
tighter than within 1� 1

n
. This corresponds with our results in Section 2.2.

References

[Awe85] Awerbuch, B. Complexity of network synchronization. J. ACM 32 (1985),
804{823.

[CCGZ90] Chou, C. T., Cidon, I., Gopal, I. S., and Zaks, S. Synchronizing asyn-
chronous bounded delay networks. IEEE Trans. Commun. 38, 2 (1990), 144{
147.

[LL84] Lundelius, J., and Lynch, N. A. An upper and lower bound for clock
synchronization. Information and Control 62 (1984), 190{204.

[Vit85] Vit�anyi, P. M. B. Time-driven algorithms for distributed control. Tech.
Rep. CS{R8510, Centre for Mathematics and Computer Science, Amsterdam,
1985.

Contents

1 A Synchronizer Algorithm 1

1.1 Asynchronous Bounded Delay Networks : : : : : : : : : : : : : : : : : : : : 2
1.2 The Synchronizer : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4
1.3 Unidirectional Networks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

2 Optimality of the Synchronizer 6

2.1 A Mathematical Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7
2.2 Fast Synchronization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10
2.3 Lower Bound Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

3 Drifting Clocks 15

3.1 A Linear Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15
3.2 An Exponential Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

4 Conclusions 19

20


