
AN APPLICATION OF ABSTRACT INTERPRETATION

IN SOURCE LEVEL PROGRAM TRANSFORMATION.

Daniel De Schreye, Maurice Bruynooghe

Department of Computer Science

Katholieke Universiteit Leuven

Celestijnenlaan 200A,]3-3030 Heverlee, Belgium.

Abstract. We describe an application of abstract interpretation within the field of source-to-

source program transformation for pure Horn clause logic programs. Using a very concrete

setting, we aim to provide a comprehensible introduction to the technique of abstract

interpretation, particularly suited for the novice in the fxeld. Also, we argue that abstract

interpretation is not only suited for applications in code optimization, but provides an excellent

tool to support techniques in source level program transformation.

1 . I n t r o d u c t i o n .

If one aims to prove general properties of programs, it is of crucial importance ~ have the ability

of performing some kind of data abstraction. Although the runtime behavior observed during a

concrete execution of a program may provide an example to support our expectations on the

presence or absence of certain properties, a technique for interpreting the program using abstract

data is needed to be able to prove these properties in general.

P.Cousot and R,Cousot in [10] were the first to thoroughly describe a general mechanism for the

abstract interpretation of imperative programs. Very recently, several successful efforts were

made to adapt their technique to logic programming. Gener~ reformulations have been presented

by C.S.Mellish [22], N.D.Jones and H.Sondergaard [20],T.Kanamari and T.Kawamura [21] and

M.Bruynooghe [6], applications in code optimization for logic programs have been described by

S.K.Debray and D.S.~Varren [12] and M.Bruynooghe et al. [5]. Also, a first description of the use

of abstract interpretation in program transformation - more particularly in program specialization

- is presented by J.Gallagher and M.Codish [16].

The increasing attention that abstract interpretation has obtained from researchers active in the

field of logic programming can beexplained by severat reasons. First, there is the desire to obtain a

better runtime efficiency for declarative programming languages such as Prolog. Through code

optimizations obtained from mode inference, type inference and compile time garbage collection,

there is high hope of eventually achieving runtime efficiencies of logic programs that are

comparable to those of their imperative equivalents` Also, there is the ease with which abstract

interpretation can be described and implemented within the setting of logic programming. This is

partially due to the fact that a language such as Prolog contains its own meta-language, increasing

the ability of writing various types of interpreters for the language. A second reason is that,

because of its high declarativity and its data structuring facilities, the language is particularly

well suited for symbol manipulation.

36

From the currently available literature on the abstract interpretation of programs, a general

impression that one obtains, is that the theory is quite complex and hard to comprehend.

Contributions to the field, such as [12], [5] and, most notably, [6], have improved the accesibility

of the subject to some extend. However, most authors prefer to introduce the theory in a setting

covering a wide range of potential applications. In doing so, they increase the level of abstraction

of their presentation and end up giving the non-expert a hard time figuring out how this most

powerful technique can be applied to solve his problem at hand.

This paper mainly addresses the novice in the field. It does not contribute any essential new

features to the theory of [i0], nor does it improve on the reformulation of abstract interpretation

within the setting of logic programming by M.Bruynooghe [6]. It is merely an attempt to illustrate

the type of considerations and the degree of creativity that are required to make abstract

interpretation work for you.

In order to do so, we start with a concrete problem selected from the field of source-to-source

transformation for logic programs. This application was thoroughly described in [3], [4] and [13]

and deals with the compilation of ideal control rules into existing declarative Horn clause

programs. It was selected for various reasons. First, it seemed appropriate not to focus on a

problem within the field of code optimization, to illustrate that the applicability of the technique

is not limited to this field of research. Secondly, several topics in program transformation, such as

loop detection [2], [25], partial evaluation [16], fold/unfold [7], [19], [27], and the elimination of

redundant computation [14], make use of techniques that are closely related to abstract

interpretation, without explicitly refering to it. Finally, the selected problem involves a

combination of mode-, structure- and aliasing inference and is composed of different layers where

abstract interpretation is of use, so that even with one concrete application, we can illustrate most

of the power of the technique.

We start off with some preliminaries on Horn clause logic and a first, high level introduction to

the different steps that are encountered in building an application of abstract interpretation in

section 2. Section 3, introduces the example application in program transformation and provides

more details on the different steps that are encountered in a first layer solution for the application.

In section 4, a more complete, second layer solution to the same problem is provided. Finally, we

end with a discussion of the wide range of potential applications for the technique within the field

of program transformation.

2. Prellmi~q~ies and high level approach.

The language for which both the transformation technique and the abstract interpretation are

discussed is that of pure Horn clause logic with the SLD-resolution mechanism of Prolog. In this

language, a program is a finite set of Horn clauses which are of the form:

A*'-BI, B2, " " , B a , n ~ 0 ,

and a goal clause or query

,-Q~.Q2. "" .Qn. n>~l.

37

where A, B1, B2, " ' " , Bn and QI, Q2, " ' ' , Qa are atomic formulae of the form

P (t l , t2, " " , t i n) , m>~O,

with an m-ary predicate symbol P and terms tl , t2, • • •, tra. Terms are either variables, constants

or are constructed from functors whose arguments are again terms.

The query activates the program. The computation rule selects a subgoal Qi from the query; the

search rule selects a clause A .-- B1, B2, " ' ' , Ba whose left hand side (head), A, has the same

predicate symbol as Qi. An attempt is made to find a most general unifier (mgu) O such that Qi 0 =

A 0 (for the clause a fresh set of variables is supplied). The query is replaced by the new goal

4- QI O, ' ' ' , Qi-1 O, BI O, . . . ,Ba O, Qi+I O, . . . , Qr O.

if unification succeeds. For some predicates (such as arithmetic operations) the predicate's

definitions are built into the system. With a depth first strategy, the computation always proceeds

with the most recently generated goal for which there are untried clauses matching the selected

subgoal Qi. The original query succeeds when the empty goal is derived and the composition of all

mgu's applied on the variables of the original query yields the answer. All solutions are generated

when all selected subgoals have exhausted their candidate clauses.

The order in which the subgoals in the query are selected for unification is determined by the

computation rule. The standard computation rule of Prolog selects the subgoals in the query from

left to right.

For a given query, we can represent the execution of a program under such a rule in a proof tree.

The different goals obtained during the execution are the nodes in the tree. The proof tree contains

an arc from one goal to another for every successful resolution step. The mgu is added as a label

on the arc (for simplicity we will only specify the substitutions caused on the variables of the

subgoal). The sequence of resolution steps performed by the theorem prover is found by tracing

the tree depth-first, left-to-right.

Before giving an example to illustrate this, we sum up some conventions. Variable names start

with a lower case character; constants, functors and predicate names with an upper case character.

The infix notation x.y is used to denote a list with head x and tail y.

The example program is Permutation.._sort, consisting of the following Horn clauses:

Sort(x, y) e- Perm(x, y), O r d (y) .

Perm(Nil, Nil) ~--.

Perm(x.y, u.v) .-- Del(u, x.y, w), Perm(w, v) .

Del(x, x.y, y) . - .

Del(x, y.u.t, y.v) .-- Del(x, u.t, v) .

Ord(Nil) .--.

Ord(x.NU) e - .

Ord(x.y.z) . - x~<y, Ord(y .z) .

38

This program sorts a list of numbers by first permuting rt and next testing whether the permuted

list is ordered. Wi th an initial query , - Sort(2.1.Nil, x), we get the proof tree of Fig.1.

Along wi th the procedural interpretat ion of 1ogle programs described above, there is a declarative

one. Informal ly , in this second interpretat ion a Horn clause

A+-Bt, Bz, "",Bn, n>/O,

expresses that for al l possible assignments of values (taken f rom some predefmed universe) to the

variables occurring in A, B1, B2, " ' " and Bn , the instantiated predicate A wi l l hold ff the

conjunction of a l l the lnstantiated predicates B 1, 132, " ' ' , Bn holds, A query

~-Q1, Qz, " " , Q n , n > / 1 ,

states that no va lue assignment for the variables in Q1, Q2, "" " and Qn can exist, such that the

conjunction of instantiated predicates Q1, Q2, " " , Qn holds. Augmenting the program wi th a

query can be viewed as adding the hypothesis that no solutions for Q1, Qz, " ' " and Qn can be

deduced f rom the given set of Horn clauses in the program. The computat ion uses unification and

the modus tolens deduction rule f rom mathematical logic, to derive a new hypothesis

*-- Q1 0, ' ' ' , Qi-1 0, Bt 0, ' ' ' ,Bn 0, Qi+t O , " " " , Qr 0 .

again expressing tha t no fu r the r substi tut ions for variables in these predicates can exist such that

the conjunction holds. The ul t imate goal is to obtain the empty query (. - .) , which is a notation for

contradiction. At this point, a proof by contradiction is completed for the initial conjunction of

goals Q1, Q2, " " ", Qn, and the composition of a l l parameter substi tutions yields a set of values

such that the conjunction holds.

In this sense, a Prolog computat ion can be v iewed as proving a theorem. For the P e r m u t a t i o n s o r t

example above, the query . - Sort(2.l .Nil , x) activates a proof for the fact that x / l .2 .Ni l is a

substitution for which Sort(2. l .Nil , 1.2.Nil) is true. This is the main reason w h y Prolog is an

excellent programming envi ronment for performing abstract interpretation. The same theorem

prover that is used to compute the results of programs, can - wi th some adaptation - be used to

prove theorems concerning the program's behavior. As an easy example: i f we redefine the buil t in

predicate 4/2 to succeed for any two arguments, then by activating the program wi th a query ~-

Sort(x.y.Nil, z) we prove that if the first argument of Sort /2 is a list of length 2 then the second

argument of Sort /2 must also have this s tructure. Here, we made abstraction of the explicit

content and type of the arguments x and y in the list. Therefore, the resolution mechanism had to

be altered in such a way that any explicit reference to those values or types is omited. So, 4/2
was redefined.

However, in this easy example, the abstractions x and y st i l l constitute Prolog variables and the

unification mechanism of Prolog can deal w i th them precisely in the w a y we expect i t to. This is

not always the case. If we wou ld be interested in the mode behavior of our program for instance,

then we could assign meaning to , - Sort(Ground, Var) as being an abstract representation for the

mode pattern we wish to investigate our program's behavior for. But wi thou t adaptation, the

39

Prolog unification algorithm, is unable to perform even one single resolution step starting from

this query. Thus, along with the abstract representation we wish to use, the unification algorithm

will be redefined.

In general, there are six different types of activities involved in building a concrete application

using abstract interpretation:

I. Chosing the desired level of data-abstractlon, What type of information do we wish to

make abstraction of and what (other) information has to remain explicit during the

interpretation. This step is highly dependent on the application at hand. It determines the

class of abstract substitutions that are allowed for each predicate occurring in the program

(the abstract domain).

2. Closely related to the choice of the abstraction level is the selection of a representat ion for

the abstract substitutions.

3. The unification mechanism has to be redefined to be able to cope with resolution within the

predehued abstract domain and its representation.

4. The behavior of bu i l t i n predicates has to be specified explicitly. More specifically, for each

builtin predicate and each possible abstract pattern with which it may be invoked during the

interpretation, the outcoming abstract substitution (and therefore the effect on the current

set of pending goal statements) has to be made explicit.

5. A special purpose in te rp re te r has to be written to support the abstract interpretation. This

interpreter is not only intended to incorporate the new unification mechanism and builtin

behavior, but should also serve the purpose of avoiding infinite loops, which will occur more

frequently in an abstract interpretation than in a corresponding concrete execution due to the

data abstraction.

6. Some applications require that the abstract interpretation behaves in a deterministic way. In

particular, for code optimization problems, we are not interested in type- or mode inference

wtlhtn each branch in the search tree separately, but we want to deduce the strongest

possible statement which holds for all possible solutions for the given procedure. This means

that whenever nondeterminism occurs, a least generalization of all the computed abstract

output substitutions has to be made.

Each of these six steps will be further explained and illustrated in the following sections.

3. A simple application : building abstract proof t r e ~

The problem discussed in [4] and [13] is as follows. Suppose that a highly declarative - but

inefficient - Horn clause program is given, together with a special computation rule (different from

the standard computation rule of Prolog, described above) for this program. From these two,

synthesize a new Horn clause program that has the same computational behavior under the

standard computation rule as the old program has under the special rule.

40

The solution for this problem, proposed in [4] and developed in more detail in [13], consists of two

parts: first build a symbolic (abstract) proof tree for the execution o£ the original program under

the new computation rule; then generate new Horn clauses that synthesize all the observed

transitions in the obtained tree. Here, we focus on the first of these objectives. It gives rise to a

first layer within the problem, where abstract interpretation is of use.

In this phase of the transformation method, an abstract query and an appropriate computation

rule for the given program and query are specified. Then, the abstract proof is constructed. It

traces the computation that will occur for any concrete query matching the abstract query

pattern. Therefore - but also to distinguish it from a concrete proof tree -, we will refer to it as

the trace tree in what follows.

3.1 Selecting t h e abs trac t ion l e v e l

The process of generating the trace tree must be guided by the computation rule. Therefore, it is

essential to determine what kind of information the computation rule will need to perform this

task. Several researchers have worked on the control of logic programs and have proposed

mechanisms for expressing and enforcing new control rules. Some suggest the use of meta

interpreters [17], [26] leading to languages with extremely rich control features. Others propose

logic programming environments which include a separate control language to enforce the

appropriate goal- or clause selection at run time [18], [8], [23], [30], [9]. A third group describe

methods to compile control rules through source-to-source program transformation [19], [27], [4],

[24].

All the annotations, declarations or meta-predicates suggested in these papers aim at contyolling

the execution of programs on the basis of one of the following criteria:

• A goal is selected for expansion if it is sufficiently instantiated. This type of condition is quite

simple to verify; it merely requires the ability to test whether some variable is either free

(uninstantiated) or ground (ful ly instantiated). We call this type of control information

'static'.

• A goal is selected for expansion if certain of its variables will not become further instantiated

due to this additional expansion. Here the condition is more complicated since a further

resolution step has to be performed to detect whether a variable becomes instantiated. We call

it control of the 'dynamic' type.

As in [4], [13] we use 'static' information to describe our computation rules, since the idea of

selecting subgoals on the basis of their obtained instantiation pattern is quite natural and easy to

understand and support. Since the computation rule will select a subgoal from the most recently

obtained state (node) in the abstract trace tree, the abstraction level that we will use within the

tree should contain information on whether a variable is free or ground. As an example, an

appropriate abstract query pattern for the Permutation_sort program could be

• -- Sort(x , y) , where x is ground and y is free.

A second piece of information in our data of which we do not want to make abstraction are the

functors appearing in the arguments of the goals. With the clauses for the predicate Ord/1 in the

41

Permutauon. sort program, it seems quite appropriate to expand

and

• - O r d (x) , where x is ground,

• - Ord(x.y.z) , where x and y are ground and z is free

but inappropriate to expand goals of type

and

4- Oral(x) , where x is free

• - O r d (x .y) , where x is ground and y is free.

In the second of these four abstract queries, the two first members in the list are instantiated and

therefore the test x ~ y is ready to be performed. Obviously, this is not the case in query three

and four.

Finally, we want to include in the abstraction level, all information concerning bindings between

(free) variables. The reason why this is needed should be clear from the following example.

Suppose that at some point during the computation we obtain a state of type

~- A(x, y) , B(y, z) , C (z) , where x, y and z are free.

If the program contains a clause such as

A(0, 0).

then selecting the goal A(x, y) for expansion will lead to a new state

• - B(y, z) , C (z) , where y is ground and z is free.

However, without the information on the binding between the second parameter of A/2 and the

first of]3/2, this result could not be obtained and the information on instantiation in the trace tree

would be incorrect. In fact, it is very unlikely that there exists an application of abstract

interpretation which does not rely on binding or sharing between variables at all.

3.2 Representing the data-abstraction.

A general way to describe the abstract pattern which a predicate has obtained at some point during

the computation uses abstract substitutions [6]. An abstract substitution is a high level description

of the set of concrete substitutions for the arguments of the predicate. Through such sets of

substitutions we can express abstract patterns. As an example, an abstract instantlation pattern

for the predicate Ord/1

Ord(x .y .y) , where x is ground and y is free

could be represented as the pair

42

(Ord (x) ,

{ x .-- y . z . t ,

y ~ g round ,

z ,-- f r ee ,

binding(t, z) }) .

Here, the second ent ry in the pair is a description of the set of all concrete substi tutions for x

which, during a concrete execution of the program, may sti l l occur. In principle, there is no

restriction on the syntax that is used to describe these abstract substitutions. The user is free to

define them in any w a y he wants. Only, he must ensure that each syntactic expression occurring

in the abstract substi tut ions is properly supported by his new definition of the unification

algorithm and of the effect of calls to bull t in predicates. As another example, the description

{ x, y, possible_.share(x, y), type(x, Int) }

is a typical abstract subst i tut ion of a type-inference application.

However, since the choice of syntax is free, we wi l l use a more compact representation to describe

the instantiation patterns of predicates in our application. The example pattern for Ord/1 given

above, wi l l be represented as

Ord(G.V1.V1) ,

where G is a constant representing any ground term and Vi, i E]hi is a constant representing a

particular free variable. Bindings between variables are made explicit by using the same index i for

all occurrences of the variable throughout the state.

Although this representation is elegant in the sense that i t does not introduce complex new

notations, i t suffers f rom the inconvenience that different abstract patterns in this representation

refer to the same state. Renumbering the indices i in the Vi's amounts to an equivalent

representation and the replacement of a term including no Vi's by G results in a pattern which

describes the state as well , e.g.

4-- Perm(G.G.G, V1), Ord(V1) .

could also be represented as

~-- Perm(G, V2), Oral(Vz).

In order to overcome this, one must define a canonical abstract representation of a state. Here, i t is

introduced as a representation of the above type, in which the first occurrences of each Vi are

numbered starting f rom 0 and ascending f rom the lef t hand to the right hand side in the state and

where each term containing no Vi's is replaced by G.

3.3 Redefining the unification algorithm.

Obviously, some redefinition is needed since the unification for calls of type

43

o r

~- O r d (0) .

*- Ord(V 1).

with the clauses for Oral/1 using the Prolog unification mechanism will simply fail, which does

not correspond to our intentions. This problem can easily be solved if the abstract interpretation is

itself described as a Horn clause logic program. If this is the case, then the following steps can be

taken:

1. Replace every occurrence of G in the abstract state by a fresh free variable and each different

occurrence of a Vi as well (using the same variable for all occurrences of Vi with the same

index i). At the same time, build a list containing all new variables associated to a G and a

second list containing corresponding pairs of new variables and their associated V~'s (see the

example below for a concrete illustration).

2. Perform a resolution step with the selected goal from the newly obtained state and a clause

from the program, using the Prolog unification mechanism.

3. Now, because of the resolution step, the appropriate substitution has been applied ~ the free

variables - not only in the state itself, but also in the two lists expressing the

correspondences. What remains to be done is to reconvert the obtained state into the proper

abstract form. It is for this purpose that the two correspondence lists are kept. They are used

in three steps:

• Replace all ground terms occurring in the first list by G and instantiate every free

variable in it to G.

• Replace all ground terms occurring in the first argument of a pair in the second list by G

and unify each first argument of a pair which is still uninstantiated with the

corresponding second argument.

• Finally, instantiate all remaining free variables in the new goal list by Vj's, where the j's

are fresh indices.

This leads to a program scheme of the form:

Expandselected(selected goal, other_.goals, new__goals).--

Build._free._state(selectedgoal .othergoals ,

free...goal.free._others,

variables for_Gs, pairs of variables and Vi),

Clause(free_.goal, g o a l s f r o m b o d y) ,

Append(goals._frombody, other_goals, new goals),

Instantiate_ground list(variables_for Gs),

Instantiate._variables list (pairs__of _variables and_.Vi),

Iustantiate new var iables(goals ._frombody) .

and for an example query such as

44

• -- Expand_selected(Perm(G, V1), Ord(V1).Nil, new_goals).

and through unification with the second clause for Perm, this results in the following computation

• Build _free state/4:

free goal.free others , - Perm(x, y).Ord(y) ,
variables_for Gs ,-- x~Vil,
pairs_ of variables and .Vt ,-- (V1, y).Nil

• Clause/2:

x ~ - z Z , y ~-- v . w

goals_from body ~- Del(v, zz, u).Perm(u, w).Nil

Observe that these first two substitutions also cause the instantlatious

variables for_ Gs .-- z:t.Nil, and

pairs of varlables._and_.Vi ,-- (V1, v.w).Nil

• Append/3:

n e w g o a l s ~- Del(v, zZ, u).Perm(u, w).Ord(v.w).Nil

• Instantiate._ground list/1:

z * - G , t*- -G

• Instantiate variables list/1 performs no instantiattons

(pairs of variables and_ Vt = (V1, v.w).Nil contains no ground terms nor free variables in a

second argument of a pair)

• Instantiate._new._vartables/1:

v~-Vz, w . -V~ , u+-V4

Thus, this results in the new abstract state:

~- De1(V2, G.G, V4), Perm(V4, V3), Ord(V2.V3)

3.4 Redefining t h e b u i l t i n predicates.

Again, the problem is that presenting abstract calls to builtin predicates causes failure (or runtime

errors) for most cases and results in an undesired behavior for others. Typical examples in our

setting are:

+- V1 ~ G, (fails, where it should instantiate V1)

~- V1 = V2, (fails, where it should cause a binding)

*-- V1 ~ V2, (succeeds, where it should fail)

The only way it can be handled is by predefming the desired effect for calls to bulltin predicates

for each possible call-pattern. This could, for instance, be done with a predicate

Abstract__bulltln/2, for which we define - among many others - the following Horn clauses, in

45

order to deal with the examples above:

Abstract_.builtin(V1 ffi G, (V1/G.Nil).Nil).

Abstract._bulltin(V1 = V2, (V2/V1.Nil).NI1).

Abstract builtin(VI ~ V2, Nil).

The first argument of Abstract builtin/2 contains a canonical abstract call-pattern to a builtin

predicate. The second is a list of lists, containing one sublist for each different abstract output

substitution with which the given abstract call can succeed. These abstract substitutions are

needed, since they must be applied to all goals occurring in the state where the abstract call to the

builtin predicate was selected from.

In the clauses stated above, we express that the call-pattern V1 ffi G can only succeed with one

possible output substitution, namely V1 *-- G. This is also the case for V1 ffi V2, with V2 ~ V1.

The third example deals with a failing call-pattern.

3.5 The interpreter for solving an abstract goal.

The techniques described in the previous subsections are sufficient to be able to develop an abstract

trace tree for Pe rmuta t ionsor t with the abstract query pattern ,-- Sort(G, V 1) and a computation

rule that differs only from the standard computation rule in its eagerness to expand any call to

Ord/1 with lnstantiation

Ord(G) or Ord(O.O.VI).

A finite part of the resulting trace tree is very similar to the one displayed in Fig.2, except that it

contains additional branches originating from the expansion of the Del(Vi, G.G, Vj) goals.

The special way in which the expansion in the trace tree of Fig.2 deals with the Del(Vi, G.G, Vj)

goals is due to the following pragmatic - but for large-size program transformations essential -

observation. Often, a program consists of two types of procedures: those that need additional

control directives - mostly coroutining - in order to become efficient, and those that already

behave efficiently under the standard computation rule. In the example, calls to Del(Vi, G.G, Vj)

do not play an active role in the coroutining process between Perm/2 and Ord/1 and are therefore

of the second type. If we were to use the abstract interpretation to expand all goals, even when

most of them do not need a transformation, then for real-life problems, the size of the resulting

trace trees would become unacceptably large.

The way we will deal with goals for which transformation is unnecessary is very similar to the

way we approach bufltin predicates. The only information regarding them that should be made

explicit in the trace tree consists of the abstract pattern of the goal before the call and the

outcomming substitution obtained from completely solving it with the standard computation rule.

This substitution must then be applied to the remaining goals in the state. In fact, we could make

the approach completely similar to that of the builtin predicates by adding a fact of type

Builtin pattern/2 for each such call and abstract pattern. However, this would mean that new

46

facts of this type would have to be produced by the user for each new transformation session.

Instead, we will use the abstract interpretation itself to determine the abstract substitutions

resulting from completely solving a given abstract goal. This is where some new and more

interesting aspects regarding the design of the application turn up.

Solving an abstract goal is different from building Ca finite part of) its abstract trace tree because

recursive programs have infinite abstract trace trees. Thus, during the expansion we need criteria

to determine whether or not additional output substitutions, different from the ones we already

obtained, exist. In other words: abstractly solving a goal usually leads to an infinite number of

success nodes, even if each corresponding concrete goal - each instance of the abstract pattern -

results in a finite computation. The reason is that although certain calls occurring in a concrete

execution contain different data, their abstractions may become identical and therefore the

interpretation may infinitely loop.

The problem of infinite looping turns up when the recursive expansion of an abstract goal A1 and

the goals descending from it, eventually leads to the expansion of a descendent goal A'I, such that

At and A'l have identical canonical patterns. A good way to formally describe and solve the

problem is by representing the computation by means of an abstract AND-OR tree, since this type

of tree is very explicit in representing the ancestor-descendent relation between the subgoals of the

states.

An AND-OR tree is similar to the trace trees we have used so far, but instead of representing a

conjunction of goal statements (what we called a state) as a node in the graph, we represent

• each subgoal individually (OR-node),

• for each clause which can be applied to the query in the OR-node, a descending node containing

the conjuction of all the subgoals obtained from the body of the clause, after the unification of

the query with the head has been performed (AND-node).

• for each AND-node, we represent all the subgoals in this node a second time, as the OR-nodes

descending from it.

In Fig.3 we have drawn the - abstract - AND-OR-tree which describes the infinite loop situation

in abstract interpretation.

To avoid entering infinite loops and still guarantee that all solutions be computed, the following

technique is built into the abstract interpreter:

• We do not expand the descendent goal A'i, but instead we freeze and record the entire

computation (including the resulting substitutions) leading from the ancestor Ai over all

intermediate AND- and OR- nodes to A'i.

• Then, the computation is continued as if the query (-- A'i has failed. It backtracks to the latest

OR-node in the tree for which there are untried clauses in the program.

• When eventually an output substitution for the goal A1 has been computed, a proper renaming

of the Vi's occurring in this output substitution yields an output substitution for the

suspended OR-nodes A'l as well, because At and A'l have identical canonical forms. Using the

renaming as the output pattern that would result from solving A'i, we can reactivate the

suspended AND-OR-subtree and continue its computation in an attempt to derive additional

output patterns for A 1.

47

• This process is continued until saturation occurs, i.e. until all output patterns obtained for A1

have been used for A 1 and no further new patterns for A, can be derived in this way.

This method involves the following potential disadvantages:

1. If the computation for A1 terminates without generating at least one output substitution for

A1, or if it does not terminate at all - due to an infinite subtree descending from some OR-

node which is not of the loop type described above - then none of the suspended

computations can ever be reactivated. Thus, we could possibly has lost some output patterns

for At.

2. For some programs, infinitely many dit~erent output instantiation patterns exist, so that the

point of saturation is never reached.

First, we discuss the reactivation of suspended goals. Assuming that the application has been built

correctly - see [6] for criteria and proofs on correctness -, the AND-OR-tree for a concrete query

with instantiation pattern +-- A1 is obtainable by taking a subtree from the abstract AND-OR-tree

and replacing the abstract goals by their appropriate concrete instances. For the problem case with

a terminating computation, this implies that the concrete AND-OR-tree will not produce a success

node either. For a nonterminating computation the matter is more problematic. Here, it is possible

that, although the abstract interpretation - using a depth-first search on the AND-OR-tree - can

never continue its search for further solutions outside the infinite subtree, a corresponding

concrete computation may fail at some point within the infinite branch and eventually lead to

more solutions when backtracking.

Such infinite subtrees (di~erent from the ones we suspend in the algorithm) can only occur in

applications involving an infinite abstract domain. This is clear, since the OR-nodes in any

descending path of a branch in the abstract AND-OR-tree must be either mutual ly distinct or

suspended. This is why most applications of abstract interpretation make use of finite domains.

This ensures termination of the interpretation and in most cases a finite domain is a necessary

condition for completeness (see [6] for more details).

In our application, this is ditticult to realize, because in principle recursive data structures can

create functors with arbitrary complex instantiation patterns. The way that i t is dealt with in

[13], is by introducing an additional constant A to describe the abstract patterns. This constant

takes its place among the abstract terms O and Vi and is used as an abstraction for any term,

whatever its instantiation pattern. However, it is not allowed to occur within the actual abstract

resolution, but only within some predefined declarations concerning certain positions within

certain predicates. Its use is to express an upper bound beyond which the instantiation of a

(recursively defined) term within a predicate becomes irrelevant to the computation.

For instance, a declaration of the form Ord(G.O.G.A) expresses that we are not interested in

computations that provide instantiations of Ord(x) beyond the first three ground members of the

list x.

Obviously, such declarations must be provided by the user, since they require knowledge

regarding the semantics of the program. Their sole purpose is to interrupt possible infinite

48

computations and to force the abstract interpretation to backtrack within the AND-OR-tree. In

some sense, it can be regarded as an artificial way to reduce the abstract domain to a finite size.

Although the second problem, concerning the generation of infinitely many output patterns for a

suspended query pattern has a quite different origine, the solution is identical. The declarations we

have just described, will also cause the termination of these infinite processes.

3.6 Generalizatiom

Computing the output pattern obtained from solving an abstract goal is a non deterministic

application of abstract interpretation. It generates a number of different solutions. F.ach different

resulting pattern will give rise to a new branch in the abstract trace tree we originally set out to

construct. For many applications however, it is more interesting to obtain only one abstract

substitution that generalizes all those obtained in the different underlying branches. This is the

case for all applications regarding code optimization. One implication is that the generalization of

a set of abstract substitutions must be possible. To ensure this, the abstract domain of the

application should be designed with the structure of a partially ordered set with a largest element.

In order to obtain powerful results, a lattice is preferable. So, for each set of abstract

substitutions (which are representations for sets of concrete substitutions themselves), there

should be a least general abstract substitution, representing a set of concrete substitutions

containing all concrete substitutions in the original abstract ones. A second implication is that the

interpreter has to be deveioped with a breath-first approach instead of the depth-first approach we

used in the previous subsection. The reason is that for every OR-node, all different solution should

first be obtained, then generalized and finally the generalized solution should be passed to the

ancestor nodes. With our previously described method, each individual solution to an OR-node is

passed on to the ancestors.

We will not go into more detail on the matter of generalization, since it is our experience that in

applications of program transformation there is very little need for it.

4..& second layer of abstract interpretation: completeness.

In the previous section we showed how the solutions of an infinite AND-OR-tree are computed by

a special algorithm. However, if recursive clauses are expanded, the abstract tree for the original

query is also infintte~ After a finite number of steps, the expansion has to be stopped. The problem

is to determine at which point sufficient information regarding the computation has been gathered

in the tree, in order to be able to synthesize a new program from it, equivalent to the old one.

Again, abstract interpretation is an adequate tool for performing this task.

The idea is as follows. The original program contains only a finite number of clauses. If we assume

that the new computation rule is finitely expressable in terms of a fiuite number of different

instantiation patterns which may occur during the computation (see [13] for a formal definition of

instanti~ion based comptc~ion rules), then the number of essentially different transitions

occurring in the trace tree is finite as well. With essentially different we mean that either

® a different instantiation atom was selected from the initial state, or

49

• a different clause from the program was used for the expansion, or

• the changes in the instantiation patterns of the remaining subgoals in the state caused by the

expansion are different (i.e. the bindings between the selected subgoal and the other goals in the

initial state are different).

The synthesis algorithm of [13] generates a new Horn clause for every equivalence class of

mutually similar (not essentially different) transitions observed in the trace. The problem lef t to

the abstract interpretation is to determine, at which point during the expansion of the tree, al l the

equivalence classes have been obtained.

In order to accomplish this, we introduce a fur ther abstraction on nodes (states) in the abstract

trace tree. This abstraction wil l be refered to as a state description. To introduce them on an

informal basis, we recall some observations made in the manual completeness proof for the Sieve

of]~ratosthenos example in section 3 of [4].

The program is defined by the following set of Horn clauses:

Primes(n,p) .-- Integers(2,i), Sift(i,p), Length(p,n).

Integers(n,Nil) . - .

Integers(n,n.i) ~-- m is n+l , Integers(m,i).

Sfft(n.i,n.p) , - Filter(n,i,f), Sift(f ,p).

Sift(Nil,Nil) , - .

Filter(n,m.i,f) . - Divides(n,m), Filter(n,i,f).

Filter(n,m.i,m.f) .-- not Divides(n.m), Filter(n,i,f).

Filter(n,Nil,Nil) .--.

Length(Nil,0) .--.

Length(h.t,n) ~- n > 0, m is n - 1, Length(t,n).

The completeness proof in [4] considers a number of s/mEat states from a finite subtree of the

abstract trace tree, e.g.

. Integers(G,V1), Filter(O,G.V1,V2), Sfft(Vz,V3), Length(V~,G)

• Integers(G,V1), Filter(G,G.V1,Vz), Filter(G,Vz,V3), Sift(V3,V4), Length(V4,G)

• Integers(G,V1), Filter(G,V1,V2), Fllter(G,G.Vz,V s), Sift(V 3,V4), Length(V4,G)

• Integers(G,V1), Filter(O,V1,V2), Fllter(G,G.V2,V~), Filter(G,V3,V4), Sfft(V4,Vs), Length(Vs,G)

and associates to them a general description of instantiation patterns and bindings occurring in

them:

Integers(G,Vy), Filter(G,V 1,V2), "" ", Filter(G,Vi-l,Vi), Filter(G,G.Vi,Vi+l),

Filter(G,Vi+l,Vi+~), • • • ,Filter(G,Vn-l,Vn), Sift(Vn,Vn+l), Length(Vn+l,G)

The pattern is that each example state contains precisely one goal of the types Integers(G,V1),

Filter(G,G.Vi,Vi+l), Sift(Vn,Vn+l) and Length(Vn+l,G). Also, it contains 0 or more goals of type

Filter(G,Vi,Vi+l). The binding pattern is a chain connecting the Integer/2 goal to 0 or more

Filter(G,Vi,Vi+t) goals, then to the more instantiated Filter/3, which is again connected to 0 or

more Filter(G,Vi,Vi+ 1) goals and finally to the pair Sift(Vn,Vn+l), Length(Vn+l,G).

50

Different patterns of the above type are generated, so that eventually every state in the finite part

of the trace tree is an instance of a state description. Then, it is proved that starting from any of

these descriptions and performing a resolution step expanding the subgoal selected by the

computation rule, an instance of another state description is obtained.

When for a given finite part of the abstract trace tree this result can be proved, it implies that all

relevant transitions have been gathered from the trace and that the abstract expansion is in some

particular sense (depending on the abstraction in the descriptions) complete,

4.1 A short review of the six steps.

We aim to perform resolution on the state descriptions. Therefore, these descriptions should at

least contain the information retained for the previous application: the instantlation patterns of

the goals within the state, functors within the arguments of those goals and bindings between

their variables.

These leave little space for further abstraction. As shown in the example description for the Sieve

of Eratosthenos program, what we make abstraction of is the number of goals that occur in chains

of identically instantiated goals with identical bindings linking them together.

As an example, the state description in the Sieve of Eratosthenos program contains two such

chains, both with base block

Filter(G, Vi, Vi+l),

which is linked to a previous block Filter(G, Vi-1, Vi) through its second argument and to the

next Filter(G, Vi+l, Vi+2) through its third argument.

In order to deal with general states, a state description usually will contain chains, of which the

base blocks reveal a much more complicated structure than the ones in the example. Often base

blocks are sets of abstract goals (with connecting bindings) themselves. In some cases they even

take the form of chains. We do not discuss these technical observations in more detail, but simply

stress the fact that abstraction must be made of the frequency with which repeating structures

occur within the state.

As for most applications, representing the abstraction can be performed in many different ways.

The unification mechanism and the behavior for builtln predicates can be dealt with similarly as in

the previous section. We do not discuss them in further detail.

In the interpreter, special care must be taken of the selection of snbgoals and the generation of new

descriptions. Both must be dealt with during each resolution step. A resolution step now consists

of

• selecting a appropriate goal from the description - using the new computation rule -,

• expanding or solving the abstract goal using the mechanism of section 3,

• applying the resulting abstract substitution to the entire state description

• building a new description that represents the newly obtained state. This may include a case

study, distinguishing between the presence of one or more base blocks in a chain. It also

includes verifying whether or not newly created goals can be combined with existing goals to

obtain new chains in the description.

51

After each'resolution step, the obtained state description must be compared to all previously

obtained descriptions (not just to the ancestors). If its canonical form is equal to that of a previous

description, then no further resolution for that branch of the abstract trace tree is needed.

5. Discussion.

The main objective of this paper was to present an informal introduction to the topic of abstract

interpretation with the aim of reducing the effort which is required from a novice in the field in

order to be able to develop his application. Using an example from the field of source-to-source

program transformation we illustrated the main activities involved in building such applications.

The solution to the problem was split up into two different layers, with increasing difficulty, such

that the combination of the two is both correct and complete. We deliberately did not provide

rigorous proofs of the termination nor of the correctness of the method, since we are convinced

that they would decrease the comprehensibility of the paper. For more details on these, within a

general framework on abstract interpretation, we refer to [6]. In the more specific framework of

program transformation, the topic is dealt with in [16].

We conclude by discussing the applicability of abstract interpretation as a basic tool for different

kinds of program transformation. The motivation is simple: most program transformation

methods start off with an analysis of the runtime behavior of the input program to detect which

inefficiencies may occur. This is obviously the case for techniques for loop=detection and

-avoidance (e.g. [2], [25]) as well as for those dealing with the detection and elimination of

redundant computations [14]. Here, abstract interpretation will provide an automated way to

detect these inefficiencies, together with sufficient information on the computational history to

perform the transformation which is adequate.

Next, there are the methods based on the synthesis of programs from traces of example

computations. Research in this field has been initiated by A. Biermann in [2]. Using abstract

interpretation to construct the traces, significantly increases the power of these methods, because

1. more computational paths can be covered with a single (abstract) top level query,

2. completeness of the synthesized program can be ensured in an automated way.

Both these advantages where illustrated in our example application. [4] and [13] describe a

technique of the above type aiming at the conversion of any generate and test program into a more

efficient - but logically equivalent - one, involving a coroutlning control regime. V.Turchin

proposes a similar technique for functional languages in [28], majorly aiming at a further

automation of the Unfold/Fold method.

A promising extension of the work presented in [4], again based on synthesizing example traces, is

the conversion of generate and test algorithms into equivalent forward checking algorithms. Here,

it will not be sufficient to abstractly interpret a given program following a new computation rule

as a basis for synthesis, but minor transformations on the logical component of the program will

be needed as well. P.Van Hentenryck in [29] has thoroughly studied the relationship between

these two control mechanisms and in our further work we aim to develop a transformation

scheme on the basis of his results.

52

The Unfold~Fold technique of Burstall and Darlington [7] offer another application of abstract

interpretation. In [19] S.Gregory illustrates through his many examples that the mechanism of

unfolding (abstract expansion) and folding (recognition of fixed points within an abstract

execution trace) are strongly related to abstract interpretation. In a more recent paper [11],

J.Darlington recasts the original ideas on Unfold/Fold within a setting based on symbolic

execution.

Closely related to code optimization is the automatic generation of mode declarations using

abstract interpretation. This source level transformation method has been successfully developed

and implemented at our research centre as an auxiliary result of the interpretation described in the

previous sections.

A final, but certainly not less important application domain is situated in the field of partial

evaluation. Practical use of part ial evaluation as an independent technique in program

transformation has lost of its credibility in the last years, because no halting condition for the

expansion of recursive clauses can be formulated. A possible solution to the problem is the use of

automatically generated wa#-declarations, as proposed by LNaish in [23]. However, the range of

applicability for this technique has not clearly been established. More convincing is the idea to

derive partiaUy evaluated programs for given top level query patterns, where abstract

interpretation guides the evaluation of recurslve clauses. This idea was elaborated by J.Gatlagher

and M.Codish in [16] for the case of program specialization. This paper recasts the theoretical

framework of abstract interpretation within the field of program transformation in a rigorous

manner and is therefore highly recommended as further reading. Possibly, the synthesis of the

specialized program can be sl ightly improved using the flowchart analysis technique described in

[3]. At this time, several other researchers in the field (e.g. H,Fujlta [15]) are exploring the

possibilities of combined partial evaluation and abstract interpretation. We are convinced that

these efforts wil l lead to a further breakthrough of both.

6. Acknowledgement.

We are indebted to G.Janssens, A.Callebout, B.Demoen and A.Marien for communications on their

early work in the field. Also thanks to B. Mignon for his implementation of a mode declaration

generator. D.De Schreye is supported by the Belgian I.W.O.N.L.-I.R.SJ.A. under contract number

4856. M.Bruynooghe is supported as research associate by the Belgian National Fund for Scientific

Research.

References.

[1] Biermann A., On the inference of Turing machines from sample computations, Artificial

Intelligence, Vol. 3, 1972.

[2] Brough D.R., Walker A., Some practical properties of logic programming interpreters, in Proc.

FGCS conference, 1984, pp. 149-156.

[3] Bruynooghe M., De Schreye D. and Krekels B., Compiling Control, Proc.Third International

Symposium on Logic Programming, 1986, pp. 70-78.

53

[4] Bruynooghe M., De Schreye D. and Krekels B., Compiling Control, J.Logic Programming, to

appear.

[5] Bruynooghe M., Janssens G., Callebout A., Demoen B., Abstract interpretation: towards the

global optimisation of Prolog programs, Proc. Fourth International Symposium on Logic
Programming, 1987.

[6] Bruynooghe M., A framework for the abstract interpretation of logic programs, report CW62,
1987, K.U.Leuven.

[7] BurstaLl R.M. and Darlington J., A transformation system for developing recurslve programs,
JACM, 24, 1977, pp. 44-67.

[8] Clark K.L, McCabe F.G., Gregory S., IC-Prolog language features, Logic programming, ed.
Clark/Tarnlund, 1982, pp. 254-266.

[9] Colmerauer A., Prolog II, manuel de reference et modele theoretique, Marseille, 1982.

[10] Cousot P., Cousot R., Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximation of fixpoints, in Proc. 4th ACM POPL symposium,
1977, pp. 238-252.

[11] Darlington J., Pull H., A program development methodology based on a unified approach to
execution and transformation, in Proc.workshop on partial evaluation and mixed computation,
1987, Denmark.

[12] Debray S.K., Warren D.S., Automatic mode inferencing for Prolog programs, Proc.Third
International Symposium on Logic Programming, 1986, pp. 78-88.

[13] De Schreye D., Bruynooghe M. On the transformation of logic programs with instantiation
based computation rules, J.Symbolic Computation, to appear.

[14] Fronhofer B., Double work as a reason for inefficiency of programs, Technical report T.U.M.
Munchen, 1987.

[15] Fujita H., Abstract interpretation and partial evaluation of prolog programs, ICOT technical
report, 1986.

[16] Gallagher J., Codish M., Speciallsation of Prolog and FCP programs using abstract

interpretation, in Proceedings of the workshop on partial evaluation and mixed computation, 1987,
Denmark.

[17] Gallaire H. and Laserre C., A control meta language for logic programming, in
]_~gicProgramming, eds. Clark L. and Tarnlund S.A., Academic Press, 1982, pp. 173-185.

[18] Genesereth M.R. and Ginsberg M.L, Logic Programming, CACM 28(9), Sept. 1985, pp. 933-
941.

[19] Gregory S., Towards the compilation of annotated logic programs, Res.Report DOC80/16, June
1980, Imperial College.

[20] Jones N.D., Sondergaard H., A semantics based framework for the abstract interpretation of
Prolog, in Abstract interpretation of declarative languages, eds. Abramsky S. and Hankin C., Ellis
Horwood, in print.

54

[21] Kanamari T., Kawamura T., Analyzing succes patterns of Logic programs by abstract hybrid
interpretation, ICOT technical report, TR 279, 1987.

[22] Mellish C.S,, Abstract interpretation of prolog programs, in Proc. 3rd International
Conference on Logic Programming, 1986, LNCS 225, Sprlnger-Verlag, 1986, pp. 463-474.

[23] Naish L., Automating control for logic programs, J. Logic Programming 2, 1985, pp. 167~183.

[24] Narain S., A technique for doing lazy evaluation in Logic, J.Logic Programming 3 (3), 1986,
pp. 259-276.

[25] Pelhat S., Analysis and control of recursivity in Prolog programs, Technical report CRIL,
Universite de Paris-sud, 1987.

[26] Pereira LM,, Logic control with logic, in Implementations of Prolog, ed. Cambell, Ellis,
Horwood, 1984, pp.177-193.

[27] Sato T., Tamaki H., Transformational logic program synthesis, FGCS '84, Tokyo, 1984.

[28] Turchln V.F., The concept of a supercompller, ACM Transactions on Programming Languages
and Systems 8 (3), 1986, pp. 292-325.

[29] Van Hentenryck P., Consistency techniques in logic programming, Ph.D. thesis FUNDF,
Namur, Belgium, 1987.

[30] Warren D.H.D., Coroutlntng facilities for Prolog, implemented in Prolog, DAI working paper,
Edinburgh, 1979.

55

Sort(2.1.Nil, x)

Perm(2.l.Nil, x),Ord(x)

I X "= U.V

Del(u, 2.1.Nil, w),Perm(w, v), Ord(u.v)

/ u "= 2, w = 1.Nil

Perm(l.Nil, v),Ord(2.v)

V :~ U 1.v 1

Del(ul, 1.Nil, wl),Perm(wl, vl),Ord(2.u1.vl)

U ;= 1, WI:= Nil

Perm(Nil, vl),Ord(2.1.v 1)

vt := Nil

Ord(2.1.Nil)

2 ~< 1,Ord(1.Nil)

/
fail

~ w := 2.w2

De1(u, 1.Nil, wz),Perm(2.wz, v),Ord(u.v)

:~ w2 := U 1, Nil

Perm(2.Nil, v),Ord(1.v)

U2.V 2

Del(u2, 2.Nil, wz),Perm(wz, v2),Ord(1.u2.v2)

u2 := 2, w2 :s Nil

Perm(Nil, v2),Ord(1.2.v2)

I v2 := Nil

Ord(1.2.Nil)
I

1 ~ 2!Ord(2.NIl)

t
Ord(2.Nil)

[]

Fig. 1
Proof tree for .-- Sort(2.1.Nil) under the standard computation rule of Prolog.

56

O:= N i l /
Vl:= ~ / /

T3
Ord(Nil)

/
[]

O:= Nil /
V3:~ N ~ /

T6
Ord(G.Nii)

l []

Zl
Sort(G,V~)

t
T2

Perm(G,V1), Ord(V1)

G:~ G.G
V1 := V2.Vs

T4
Del(V2,G.G,V4), Perm(V4,V3), Ord(V2.V 3)

V2:= G
V4:~ O

%
Perm(O,Vs), Ord(O.Va)

Vs :~ V6.V7

T7
Del(V6,G.G,Vs), Perm(Vs,VT), Ord(G.V6.V7)

:~ O
=G

Ts
Perm(G,V7), Ord(G.G.V 7)

f
T9

Perm(G,VT), G ~ G, Ord(G.VT)

J
T~o

Perm(G,V7), Ord(G.V 7)
/ \

Fig. 2
Abstract trace tree of Slowsort

The selected subgoal is in Italic (e.g.Perm(G,V1)).

57

A1

B1, B2, " " " ,Bn B y , B2', " " " ,Bn'

/>-..
B1 B2 " '" Bn

A I ' , A2 ' , " " " ,An,

A v A 2 ' • ' • A . ,

F i g . 3 A b s t r a c t A N D - O R - t r e e .

