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Abstract. We describe an application of abstract interpretation within the field of source-to- 

source program transformation for pure Horn clause logic programs. Using a very concrete 

setting, we aim to provide a comprehensible introduction to the technique of abstract 

interpretation, particularly suited for the novice in the fxeld. Also, we argue that abstract 

interpretation is not only suited for applications in code optimization, but provides an excellent 

tool to support techniques in source level program transformation. 

1 .  I n t r o d u c t i o n .  

If one aims to prove general properties of programs, it is of crucial importance ~ have the ability 

of performing some kind of data abstraction. Although the runtime behavior observed during a 

concrete execution of a program may provide an example to support our expectations on the 

presence or absence of certain properties, a technique for interpreting the program using abstract 

data is needed to be able to prove these properties in general. 

P.Cousot and R,Cousot in [10] were the first to thoroughly describe a general mechanism for the 

abstract interpretation of imperative programs. Very recently, several successful efforts were 

made to adapt their technique to logic programming. Gener~ reformulations have been presented 

by C.S.Mellish [22], N.D.Jones and H.Sondergaard [20],T.Kanamari and T.Kawamura [21] and 

M.Bruynooghe [6], applications in code optimization for logic programs have been described by 

S.K.Debray and D.S.~Varren [12] and M.Bruynooghe et al. [5]. Also, a first description of the use 

of abstract interpretation in program transformation - more particularly in program specialization 

- is presented by J.Gallagher and M.Codish [16]. 

The increasing attention that abstract interpretation has obtained from researchers active in the 

field of logic programming can beexplained by severat reasons. First, there is the desire to obtain a 

better runtime efficiency for declarative programming languages such as Prolog. Through code 

optimizations obtained from mode inference, type inference and compile time garbage collection, 

there is high hope of eventually achieving runtime efficiencies of logic programs that are 

comparable to those of their imperative equivalents` Also, there is the ease with which abstract 

interpretation can be described and implemented within the setting of logic programming. This is 

partially due to the fact that a language such as Prolog contains its own meta-language, increasing 

the ability of writing various types of interpreters for the language. A second reason is that, 

because of its high declarativity and its data structuring facilities, the language is particularly 

well suited for symbol manipulation. 
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From the currently available literature on the abstract interpretation of programs, a general 

impression that one obtains, is that the theory is quite complex and hard to comprehend. 

Contributions to the field, such as [12], [5] and, most notably, [6], have improved the accesibility 

of the subject to some extend. However, most authors prefer to introduce the theory in a setting 

covering a wide range of potential applications. In doing so, they increase the level of abstraction 

of their presentation and end up giving the non-expert a hard time figuring out how this most 

powerful technique can be applied to solve his problem at hand. 

This paper mainly addresses the novice in the field. It does not contribute any essential new 

features to the theory of [i0], nor does it improve on the reformulation of abstract interpretation 

within the setting of logic programming by M.Bruynooghe [6]. It is merely an attempt to illustrate 

the type of considerations and the degree of creativity that are required to make abstract 

interpretation work for you. 

In order to do so, we start with a concrete problem selected from the field of source-to-source 

transformation for logic programs. This application was thoroughly described in [3], [4] and [13] 

and deals with the compilation of ideal control rules into existing declarative Horn clause 

programs. It was selected for various reasons. First, it seemed appropriate not to focus on a 

problem within the field of code optimization, to illustrate that the applicability of the technique 

is not limited to this field of research. Secondly, several topics in program transformation, such as 

loop detection [2], [25], partial evaluation [16], fold/unfold [7], [19], [27], and the elimination of 

redundant computation [14], make use of techniques that are closely related to abstract 

interpretation, without explicitly refering to it. Finally, the selected problem involves a 

combination of mode-, structure- and aliasing inference and is composed of different layers where 

abstract interpretation is of use, so that even with one concrete application, we can illustrate most 

of the power of the technique. 

We start off with some preliminaries on Horn clause logic and a first, high level introduction to 

the different steps that are encountered in building an application of abstract interpretation in 

section 2. Section 3, introduces the example application in program transformation and provides 

more details on the different steps that are encountered in a first layer solution for the application. 

In section 4, a more complete, second layer solution to the same problem is provided. Finally, we 

end with a discussion of the wide range of potential applications for the technique within the field 

of program transformation. 

2. Prellmi~q~ies and high level approach. 

The language for which both the transformation technique and the abstract interpretation are 

discussed is that of pure Horn clause logic with the SLD-resolution mechanism of Prolog. In this 

language, a program is a finite set of Horn clauses which are of the form: 

A*'-BI, B2, " " , B a ,  n ~ 0 ,  

and a goal clause or query 

,-Q~.Q2. "" .Qn.  n>~l. 
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where A, B1, B2, " ' " ,  Bn and QI, Q2, " ' ' ,  Qa are atomic formulae of the form 

P ( t l ,  t2, " " , t i n )  , m>~O, 

with an m-ary predicate symbol P and terms tl ,  t2, • • •, tra. Terms are either variables, constants 

or are constructed from functors whose arguments are again terms. 

The query activates the program. The computation rule selects a subgoal Qi from the query; the 

search rule selects a clause A .-- B1, B2, " ' ' ,  Ba whose left hand side (head), A, has the same 

predicate symbol as Qi. An attempt is made to find a most general unifier (mgu) O such that Qi 0 = 

A 0 (for the clause a fresh set of variables is supplied). The query is replaced by the new goal 

4- QI O, ' ' ' ,  Qi-1 O, BI O, . . .  ,Ba O, Qi+I O, . . . ,  Qr O. 

if unification succeeds. For some predicates (such as arithmetic operations) the predicate's 

definitions are built  into the system. With a depth first strategy, the computation always proceeds 

with the most recently generated goal for which there are untried clauses matching the selected 

subgoal Qi. The original query succeeds when the empty goal is derived and the composition of all  

mgu's applied on the variables of the original query yields the answer. All solutions are generated 

when all selected subgoals have exhausted their candidate clauses. 

The order in which the subgoals in the query are selected for unification is determined by the 

computation rule. The standard computation rule of Prolog selects the subgoals in the query from 

left to right. 

For a given query, we can represent the execution of a program under such a rule in a proof tree. 

The different goals obtained during the execution are the nodes in the tree. The proof tree contains 

an arc from one goal to another for every successful resolution step. The mgu is added as a label 

on the arc (for simplicity we will  only specify the substitutions caused on the variables of the 

subgoal). The sequence of resolution steps performed by the theorem prover is found by tracing 

the tree depth-first, left-to-right. 

Before giving an example to illustrate this, we sum up some conventions. Variable names start 

with a lower case character; constants, functors and predicate names with an upper case character. 

The infix notation x.y is used to denote a list with head x and tail y. 

The example program is Permutation.._sort, consisting of the following Horn clauses: 

Sort( x, y) e- Perm( x, y), O r d ( y ) .  

Perm( Nil, Nil) ~--. 

Perm( x.y, u.v) .-- Del( u, x.y, w), Perm( w, v ) .  

Del( x, x.y, y)  . - .  

Del( x, y.u.t, y.v) .-- Del( x, u.t, v ) .  

Ord(Nil)  .--.  

Ord(x.NU) e - .  

Ord(x.y.z) . -  x~<y, Ord(y .z ) .  
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This program sorts a list of numbers  by first permuting rt and next testing whether  the permuted 

list is ordered. Wi th  an initial query  , -  Sort( 2.1.Nil, x), we  get the proof tree of  Fig.1.  

Along wi th  the procedural  interpretat ion of  1ogle programs described above, there is a declarative 

one. Informal ly ,  in this second interpretat ion a Horn clause 

A+-Bt, Bz, "",Bn, n>/O, 

expresses that  for  al l  possible assignments of  values ( taken f rom some predefmed universe)  to the 

variables occurring in A, B1, B2, " ' "  and Bn , the instantiated predicate A wi l l  hold ff the 

conjunction of a l l  the lnstantiated predicates B 1, 132, " ' ' ,  Bn holds, A query  

~-Q1, Qz, " " , Q n ,  n > / 1 ,  

states that  no va lue  assignment for  the variables in Q1, Q2, "" " and Qn can exist, such that  the 

conjunction of instantiated predicates Q1, Q2, " " ,  Qn holds. Augmenting the program wi th  a 

query can be viewed as adding the hypothesis that  no solutions for  Q1, Qz, " ' "  and Qn can be 

deduced f rom the given set of Horn clauses in the program. The computat ion uses unification and 

the modus tolens deduction rule  f rom mathematical  logic, to derive a new hypothesis 

*-- Q1 0, ' ' '  , Qi-1 0, Bt 0, ' ' '  ,Bn 0, Qi+t O ,  " " "  , Qr 0 .  

again expressing tha t  no fu r the r  substi tut ions for  variables in these predicates can exist such that  

the conjunction holds. The ul t imate  goal is to obtain the empty  query  ( . - . ) ,  which is a notation for  

contradiction. At  this point, a proof by contradiction is completed for the initial conjunction of  

goals Q1, Q2, " " ", Qn, and the composition of  a l l  parameter substi tutions yields a set of  values 

such that  the conjunction holds. 

In this sense, a Prolog computat ion can be v iewed as proving a theorem. For the P e r m u t a t i o n s o r t  

example above, the query  . -  Sort( 2.l .Nil ,  x) activates a proof for  the fact  that  x / l .2 .Ni l  is a 

substitution for  which Sort( 2. l .Nil ,  1.2.Nil) is true. This is the main reason w h y  Prolog is an 

excellent programming envi ronment  for  performing abstract interpretation. The same theorem 

prover that  is used to compute the results  of programs, can - wi th  some adaptation - be used to 

prove theorems concerning the program's behavior. As an easy example: i f  we  redefine the buil t in 

predicate 4/2  to succeed for any two  arguments, then by activating the program wi th  a query  ~- 

Sort( x.y.Nil, z) we prove that  if  the first argument  of Sort /2 is a list of length 2 then the second 

argument of  Sort /2 must  also have this s tructure.  Here, we made abstraction of  the explicit 

content and type of the arguments  x and y in the list. Therefore, the resolution mechanism had to 

be altered in such a way  that  any explicit reference to those values or types is omited. So, 4/2  
was redefined. 

However, in this easy example, the abstractions x and y st i l l  constitute Prolog variables and the 

unification mechanism of Prolog can deal w i th  them precisely in the w a y  we expect i t  to. This is 

not always the case. If we wou ld  be interested in the mode behavior of our  program for  instance, 

then we could assign meaning to , -  Sort( Ground, Var) as being an abstract representation for  the 

mode pattern we wish to investigate our  program's behavior for.  But wi thou t  adaptation, the  
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Prolog unification algorithm, is unable to perform even one single resolution step starting from 

this query. Thus, along with the abstract representation we wish to use, the unification algorithm 

will be redefined. 

In general, there are six different types of activities involved in building a concrete application 

using abstract interpretation: 

I. Chosing the desired level of data-abstractlon,  What type of information do we wish to 

make abstraction of and what (other) information has to remain explicit during the 

interpretation. This step is highly dependent on the application at hand. It determines the 

class of abstract substitutions that are allowed for each predicate occurring in the program 

(the abstract domain). 

2. Closely related to the choice of the abstraction level is the selection of a representat ion for 

the abstract substitutions. 

3. The unification mechanism has to be redefined to be able to cope with resolution within the 

predehued abstract domain and its representation. 

4. The behavior of bu i l t i n  predicates has to be specified explicitly. More specifically, for each 

builtin predicate and each possible abstract pattern with which it may be invoked during the 

interpretation, the outcoming abstract substitution (and therefore the effect on the current 

set of pending goal statements) has to be made explicit. 

5. A special purpose in te rp re te r  has to be written to support the abstract interpretation. This 

interpreter is not only intended to incorporate the new unification mechanism and builtin 

behavior, but  should also serve the purpose of avoiding infinite loops, which will  occur more 

frequently in an abstract interpretation than in a corresponding concrete execution due to the 

data abstraction. 

6. Some applications require that the abstract interpretation behaves in a deterministic way. In 

particular, for code optimization problems, we are not interested in type- or mode inference 

wtlhtn each branch in the search tree separately, but we want to deduce the strongest 

possible statement which holds for all possible solutions for the given procedure. This means 

that whenever nondeterminism occurs, a least generalization of all the computed abstract 

output substitutions has to be made. 

Each of these six steps will  be further explained and illustrated in the following sections. 

3. A simple application : building abstract proof t r e ~  

The problem discussed in [4] and [13] is as follows. Suppose that a highly declarative - but 

inefficient - Horn clause program is given, together with a special computation rule (different from 

the standard computation rule of Prolog, described above) for this program. From these two, 

synthesize a new Horn clause program that has the same computational behavior under the 

standard computation rule as the old program has under the special rule. 
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The solution for this problem, proposed in [4] and developed in more detail in [13], consists of two 

parts: first build a symbolic (abstract) proof tree for the execution o£ the original program under 

the new computation rule; then generate new Horn clauses that synthesize all the observed 

transitions in the obtained tree. Here, we focus on the first of these objectives. It gives rise to a 

first layer within the problem, where abstract interpretation is of use. 

In this phase of the transformation method, an abstract query and an appropriate computation 

rule for the given program and query are specified. Then, the abstract proof is constructed. It 

traces the computation that will  occur for any concrete query matching the abstract query 

pattern. Therefore - but also to distinguish it from a concrete proof tree -, we will  refer to it as 

the trace tree in what follows. 

3.1 Selecting t h e  abs trac t ion  l e v e l  

The process of generating the trace tree must be guided by the computation rule. Therefore, it is 

essential to determine what kind of information the computation rule will  need to perform this 

task. Several researchers have worked on the control of logic programs and have proposed 

mechanisms for expressing and enforcing new control rules. Some suggest the use of meta 

interpreters [17], [26] leading to languages with extremely rich control features. Others propose 

logic programming environments which include a separate control language to enforce the 

appropriate goal- or clause selection at run time [18], [8], [23], [30], [9]. A third group describe 

methods to compile control rules through source-to-source program transformation [19], [27], [4], 

[24]. 

All the annotations, declarations or meta-predicates suggested in these papers aim at contyolling 

the execution of programs on the basis of one of the following criteria: 

• A goal is selected for expansion if it is sufficiently instantiated. This type of condition is quite 

simple to verify; it merely requires the ability to test whether some variable is either free 

(uninstantiated) or ground (ful ly  instantiated). We call this type of control information 

'static'. 

• A goal is selected for expansion if certain of its variables will  not become further instantiated 

due to this additional expansion. Here the condition is more complicated since a further 

resolution step has to be performed to detect whether a variable becomes instantiated. We call 

it control of the 'dynamic' type. 

As in [4], [13] we use 'static' information to describe our computation rules, since the idea of 

selecting subgoals on the basis of their obtained instantiation pattern is quite natural and easy to 

understand and support. Since the computation rule will  select a subgoal from the most recently 

obtained state (node) in the abstract trace tree, the abstraction level that we will  use within the 

tree should contain information on whether a variable is free or ground. As an example, an 

appropriate abstract query pattern for the Permutation_sort program could be 

• -- Sort( x ,  y)  , where x is ground and y is free. 

A second piece of information in our data of which we do not want to make abstraction are the 

functors appearing in the arguments of the goals. With the clauses for the predicate Ord/1 in the 
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Permutauon. sort program, it seems quite appropriate to expand 

and 

• - O r d ( x ) ,  where x is ground, 

• - Ord( x.y.z) ,  where x and y are ground and z is free 

but inappropriate to expand goals of type 

and 

4- Oral(x) ,  where x is free 

• - O r d (  x .y) ,  where x is ground and y is free. 

In the second of these four abstract queries, the two first members in the list are instantiated and 

therefore the test x ~ y is ready to be performed. Obviously, this is not the case in query three 

and four. 

Finally, we want to include in the abstraction level, all information concerning bindings between 

(free) variables. The reason why this is needed should be clear from the following example. 

Suppose that at some point during the computation we obtain a state of type 

~- A( x, y ) ,  B( y, z ) ,  C ( z )  , where x, y and z are free. 

If the program contains a clause such as 

A( 0, 0). 

then selecting the goal A( x, y) for expansion will  lead to a new state 

• - B( y, z ) ,  C ( z )  , where y is ground and z is free. 

However, without the information on the binding between the second parameter of A/2 and the 

first of ]3/2, this result could not be obtained and the information on instantiation in the trace tree 

would be incorrect. In fact, it is very unlikely that there exists an application of abstract 

interpretation which does not rely on binding or sharing between variables at all. 

3.2 Representing the data-abstraction. 

A general way to describe the abstract pattern which a predicate has obtained at some point during 

the computation uses abstract substitutions [6]. An abstract substitution is a high level description 

of the set of concrete substitutions for the arguments of the predicate. Through such sets of 

substitutions we can express abstract patterns. As an example, an abstract instantlation pattern 

for the predicate Ord/1 

Ord( x .y .y) ,  where x is ground and y is free 

could be represented as the pair 
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( Ord (x ) ,  

{ x .-- y . z . t ,  

y ~ g round ,  

z ,-- f r ee ,  

binding( t, z) } ) .  

Here, the second ent ry  in the pair is a description of the set of all  concrete substi tutions for  x 

which, during a concrete execution of the program, may  sti l l  occur. In principle, there is no 

restriction on the syntax  that  is used to describe these abstract substitutions.  The user is free to 

define them in any w a y  he wants.  Only,  he must  ensure that  each syntactic expression occurring 

in the abstract substi tut ions is properly supported by his new definition of the unification 

algorithm and of  the effect of calls to bull t in predicates. As another example, the description 

{ x, y, possible_.share( x, y),  type( x, Int)  } 

is a typical abstract subst i tut ion of a type-inference application. 

However, since the choice of syntax  is free, we wi l l  use a more compact representation to describe 

the instantiation patterns of predicates in our  application. The example pattern for Ord/1 given 

above, wi l l  be represented as 

Ord( G.V1.V1 ) ,  

where G is a constant representing any ground term and Vi, i E ]hi is a constant representing a 

particular free variable. Bindings between variables are made explicit by using the same index i for  

all occurrences of the variable throughout  the state. 

Although this representation is elegant in the sense that  i t  does not  introduce complex new 

notations, i t  suffers f rom the inconvenience that  different abstract patterns in this representation 

refer to the same state. Renumbering the indices i in the Vi's amounts  to an equivalent  

representation and the replacement of a term including no Vi's by G results  in a pattern which 

describes the state as well ,  e.g. 

4-- Perm( G.G.G, V1), Ord(V1) .  

could also be represented as 

~-- Perm( G, V2), Oral(Vz).  

In order to overcome this, one must  define a canonical abstract representation of a state. Here, i t  is 

introduced as a representation of the above type, in which the first occurrences of each Vi are 

numbered starting f rom 0 and ascending f rom the lef t  hand to the right hand side in the state and 

where each term containing no Vi's is replaced by G. 

3.3 Redefining the unification algorithm. 

Obviously, some redefinition is needed since the unification for calls of type 
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o r  

~- O r d ( 0 ) .  

*- Ord( V 1). 

with the clauses for Oral/1 using the Prolog unification mechanism will simply fail, which does 

not correspond to our intentions. This problem can easily be solved if the abstract interpretation is 

itself described as a Horn clause logic program. If this is the case, then the following steps can be 

taken: 

1. Replace every occurrence of G in the abstract state by a fresh free variable and each different 

occurrence of a Vi as well (using the same variable for all occurrences of Vi with the same 

index i). At the same time, build a list containing all new variables associated to a G and a 

second list containing corresponding pairs of new variables and their associated V~'s (see the 

example below for a concrete illustration). 

2. Perform a resolution step with the selected goal from the newly obtained state and a clause 

from the program, using the Prolog unification mechanism. 

3. Now, because of the resolution step, the appropriate substitution has been applied ~ the free 

variables - not only in the state itself, but also in the two lists expressing the 

correspondences. What remains to be done is to reconvert the obtained state into the proper 

abstract form. It is for this purpose that the two correspondence lists are kept. They are used 

in three steps: 

• Replace all ground terms occurring in the first list by G and instantiate every free 

variable in it to G. 

• Replace all ground terms occurring in the first argument of a pair in the second list by G 

and unify  each first argument of a pair which is still uninstantiated with the 

corresponding second argument. 

• Finally, instantiate all remaining free variables in the new goal list by Vj's, where the j's 

are fresh indices. 

This leads to a program scheme of the form: 

Expandselected( selected goal, other_.goals, new__goals).-- 

Build._free._state( selectedgoal .othergoals ,  

free...goal.free._others, 

variables for_Gs, pairs of variables and Vi), 

Clause( free_.goal, g o a l s f r o m b o d y ) ,  

Append( goals._frombody, other_goals, new goals), 

Instantiate_ground list( variables_for Gs), 

Instantiate._variables list ( pairs__of _variables and_.Vi), 

Iustantiate new var iables(goals ._frombody) .  

and for an example query such as 
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• -- Expand_selected( Perm( G, V1), Ord( V1).Nil, new_goals). 

and through unification with the second clause for Perm, this results in the following computation 

• Build _free state/4: 

free goal.free others , -  Perm( x, y).Ord( y) ,  
variables_for Gs ,-- x~Vil, 
pairs_ of variables and .Vt ,-- ( V1, y).Nil 

• Clause/2: 

x ~ -  z Z ,  y ~-- v . w  

goals_from body ~- Del( v, zz, u).Perm( u, w).Nil 

Observe that these first two substitutions also cause the instantlatious 

variables for_ Gs .-- z:t.Nil, and 

pairs of varlables._and_.Vi ,-- ( V1, v.w).Nil 

• Append/3: 

n e w g o a l s  ~- Del( v, zZ, u).Perm( u, w).Ord( v.w).Nil 

• Instantiate._ground list/1: 

z * - G ,  t*- -G 

• Instantiate variables list/1 performs no instantiattons 

( pairs of variables and_ Vt = ( V1, v.w).Nil contains no ground terms nor free variables in a 

second argument of a pair) 

• Instantiate._new._vartables/1: 

v~-Vz, w . -V~ ,  u+-V4 

Thus, this results in the new abstract state: 

~- De1( V2, G.G, V4), Perm( V4, V3), Ord(V2.V3) 

3.4 Redefining t h e  b u i l t i n  predicates. 

Again, the problem is that presenting abstract calls to builtin predicates causes failure (or runtime 

errors) for most cases and results in an undesired behavior for others. Typical examples in our 

setting are: 

+- V1 ~ G,  (fails, where it should instantiate V1 ) 

~- V1 = V2, (fails, where it should cause a binding) 

*-- V1 ~ V2, (succeeds, where it should fail) 

The only way it can be handled is by predefming the desired effect for calls to bulltin predicates 

for each possible call-pattern. This could, for instance, be done with a predicate 

Abstract__bulltln/2, for which we define - among many others - the following Horn clauses, in 
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order to deal with the examples above: 

Abstract_.builtin( V1 ffi G, (V1/G.Nil).Nil). 

Abstract._bulltin( V1 = V2, (V2/V1.Nil).NI1). 

Abstract builtin( VI ~ V2, Nil). 

The first argument of Abstract builtin/2 contains a canonical abstract call-pattern to a builtin 

predicate. The second is a list of lists, containing one sublist for each different abstract output 

substitution with which the given abstract call can succeed. These abstract substitutions are 

needed, since they must be applied to all goals occurring in the state where the abstract call to the 

builtin predicate was selected from. 

In the clauses stated above, we express that the call-pattern V1 ffi G can only succeed with one 

possible output substitution, namely V1 *-- G. This is also the case for V1 ffi V2, with V2 ~ V1. 

The third example deals with a failing call-pattern. 

3.5 The interpreter for solving an abstract goal. 

The techniques described in the previous subsections are sufficient to be able to develop an abstract 

trace tree for Pe rmuta t ionsor t  with the abstract query pattern ,-- Sort( G, V 1) and a computation 

rule that differs only from the standard computation rule in its eagerness to expand any call to 

Ord/1 with lnstantiation 

Ord(G) or Ord(O.O.VI). 

A finite part of the resulting trace tree is very similar to the one displayed in Fig.2, except that it 

contains additional branches originating from the expansion of the Del( Vi, G.G, Vj) goals. 

The special way in which the expansion in the trace tree of Fig.2 deals with the Del( Vi, G.G, Vj) 

goals is due to the following pragmatic - but for large-size program transformations essential - 

observation. Often, a program consists of two types of procedures: those that need additional 

control directives - mostly coroutining - in order to become efficient, and those that already 

behave efficiently under the standard computation rule. In the example, calls to Del( Vi, G.G, Vj) 

do not play an active role in the coroutining process between Perm/2 and Ord/1 and are therefore 

of the second type. If we were to use the abstract interpretation to expand all goals, even when 

most of them do not need a transformation, then for real-life problems, the size of the resulting 

trace trees would become unacceptably large. 

The way we will  deal with goals for which transformation is unnecessary is very similar to the 

way we approach bufltin predicates. The only information regarding them that should be made 

explicit in the trace tree consists of the abstract pattern of the goal before the call and the 

outcomming substitution obtained from completely solving it with the standard computation rule. 

This substitution must  then be applied to the remaining goals in the state. In fact, we could make 

the approach completely similar to that of the builtin predicates by adding a fact of type 

Builtin pattern/2 for each such call and abstract pattern. However, this would mean that new 
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facts of this type would have to be produced by the user for each new transformation session. 

Instead, we will use the abstract interpretation itself to determine the abstract substitutions 

resulting from completely solving a given abstract goal. This is where some new and more 

interesting aspects regarding the design of the application turn up. 

Solving an abstract goal is different from building Ca finite part of) its abstract trace tree because 

recursive programs have infinite abstract trace trees. Thus, during the expansion we need criteria 

to determine whether or not additional output substitutions, different from the ones we already 

obtained, exist. In other words: abstractly solving a goal usually leads to an infinite number of 

success nodes, even if each corresponding concrete goal - each instance of the abstract pattern - 

results in a finite computation. The reason is that although certain calls occurring in a concrete 

execution contain different data, their abstractions may become identical and therefore the 

interpretation may infinitely loop. 

The problem of infinite looping turns up when the recursive expansion of an abstract goal A1 and 

the goals descending from it, eventually leads to the expansion of a descendent goal A'I, such that 

At and A'l have identical canonical patterns. A good way to formally describe and solve the 

problem is by representing the computation by means of an abstract AND-OR tree, since this type 

of tree is very explicit in representing the ancestor-descendent relation between the subgoals of the 

states. 

An AND-OR tree is similar to the trace trees we have used so far, but instead of representing a 

conjunction of goal statements (what we called a state) as a node in the graph, we represent 

• each subgoal individually (OR-node), 

• for each clause which can be applied to the query in the OR-node, a descending node containing 

the conjuction of all the subgoals obtained from the body of the clause, after the unification of 

the query with the head has been performed (AND-node). 

• for each AND-node, we represent all the subgoals in this node a second time, as the OR-nodes 

descending from it. 

In Fig.3 we have drawn the - abstract - AND-OR-tree which describes the infinite loop situation 

in abstract interpretation. 

To avoid entering infinite loops and still guarantee that all solutions be computed, the following 

technique is built into the abstract interpreter: 

• We do not expand the descendent goal A'i, but instead we freeze and record the entire 

computation (including the resulting substitutions) leading from the ancestor Ai over all 

intermediate AND- and OR- nodes to A'i. 

• Then, the computation is continued as if the query (-- A'i has failed. It backtracks to the latest 

OR-node in the tree for which there are untried clauses in the program. 

• When eventually an output substitution for the goal A1 has been computed, a proper renaming 

of the Vi's occurring in this output substitution yields an output substitution for the 

suspended OR-nodes A'l as well, because At and A'l have identical canonical forms. Using the 

renaming as the output pattern that would result from solving A'i, we can reactivate the 

suspended AND-OR-subtree and continue its computation in an attempt to derive additional 

output patterns for A 1. 
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• This process is continued until  saturation occurs, i.e. until  all output patterns obtained for A1 

have been used for A 1 and no further new patterns for A, can be derived in this way. 

This method involves the following potential disadvantages: 

1. If the computation for A1 terminates without generating at least one output substitution for 

A1, or if it does not terminate at all - due to an infinite subtree descending from some OR- 

node which is not of the loop type described above - then none of the suspended 

computations can ever be reactivated. Thus, we could possibly has lost some output patterns 

for At. 

2. For some programs, infinitely many dit~erent output instantiation patterns exist, so that the 

point of saturation is never reached. 

First, we discuss the reactivation of suspended goals. Assuming that the application has been built 

correctly - see [6] for criteria and proofs on correctness -, the AND-OR-tree for a concrete query 

with instantiation pattern +-- A1 is obtainable by taking a subtree from the abstract AND-OR-tree 

and replacing the abstract goals by their appropriate concrete instances. For the problem case with 

a terminating computation, this implies that the concrete AND-OR-tree will  not produce a success 

node either. For a nonterminating computation the matter is more problematic. Here, it is possible 

that, although the abstract interpretation - using a depth-first search on the AND-OR-tree - can 

never continue its search for further solutions outside the infinite subtree, a corresponding 

concrete computation may fail at some point within the infinite branch and eventually lead to 

more solutions when backtracking. 

Such infinite subtrees (di~erent from the ones we suspend in the algorithm) can only occur in 

applications involving an infinite abstract domain. This is clear, since the OR-nodes in any 

descending path of a branch in the abstract AND-OR-tree must be either mutual ly distinct or 

suspended. This is why most applications of abstract interpretation make use of finite domains. 

This ensures termination of the interpretation and in most cases a finite domain is a necessary 

condition for completeness (see [6] for more details). 

In our application, this is ditticult to realize, because in principle recursive data structures can 

create functors with arbitrary complex instantiation patterns. The way that i t  is dealt with in 

[13], is by introducing an additional constant A to describe the abstract patterns. This constant 

takes its place among the abstract terms O and Vi and is used as an abstraction for any term, 

whatever its instantiation pattern. However, it is not allowed to occur within the actual abstract 

resolution, but only within some predefined declarations concerning certain positions within 

certain predicates. Its use is to express an upper bound beyond which the instantiation of a 

(recursively defined) term within a predicate becomes irrelevant to the computation. 

For instance, a declaration of the form Ord(G.O.G.A) expresses that we are not interested in 

computations that provide instantiations of Ord(x )  beyond the first three ground members of the 

list x. 

Obviously, such declarations must be provided by the user, since they require knowledge 

regarding the semantics of the program. Their sole purpose is to interrupt possible infinite 
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computations and to force the abstract interpretation to backtrack within the AND-OR-tree. In 

some sense, it can be regarded as an artificial way to reduce the abstract domain to a finite size. 

Although the second problem, concerning the generation of infinitely many output patterns for a 

suspended query pattern has a quite different origine, the solution is identical. The declarations we 

have just described, will  also cause the termination of these infinite processes. 

3.6 Generalizatiom 

Computing the output pattern obtained from solving an abstract goal is a non deterministic 

application of abstract interpretation. It generates a number of different solutions. F.ach different 

resulting pattern will  give rise to a new branch in the abstract trace tree we originally set out to 

construct. For many applications however, it is more interesting to obtain only one abstract 

substitution that generalizes all those obtained in the different underlying branches. This is the 

case for all applications regarding code optimization. One implication is that the generalization of 

a set of abstract substitutions must be possible. To ensure this, the abstract domain of the 

application should be designed with the structure of a partially ordered set with a largest element. 

In order to obtain powerful results, a lattice is preferable. So, for each set of abstract 

substitutions (which are representations for sets of concrete substitutions themselves), there 

should be a least general abstract substitution, representing a set of concrete substitutions 

containing all concrete substitutions in the original abstract ones. A second implication is that the 

interpreter has to be deveioped with a breath-first approach instead of the depth-first approach we 

used in the previous subsection. The reason is that for every OR-node, all different solution should 

first be obtained, then generalized and finally the generalized solution should be passed to the 

ancestor nodes. With our previously described method, each individual solution to an OR-node is 

passed on to the ancestors. 

We will  not go into more detail on the matter of generalization, since it is our experience that in 

applications of program transformation there is very little need for it. 

4..& second layer of abstract interpretation: completeness. 

In the previous section we showed how the solutions of an infinite AND-OR-tree are computed by 

a special algorithm. However, if  recursive clauses are expanded, the abstract tree for the original 

query is also infintte~ After a finite number of steps, the expansion has to be stopped. The problem 

is to determine at which point sufficient information regarding the computation has been gathered 

in the tree, in order to be able to synthesize a new program from it, equivalent to the old one. 

Again, abstract interpretation is an adequate tool for performing this task. 

The idea is as follows. The original program contains only a finite number of clauses. If we assume 

that the new computation rule is finitely expressable in terms of a fiuite number of different 

instantiation patterns which may occur during the computation (see [13] for a formal definition of 

instanti~ion based comptc~ion rules), then the number of essentially different transitions 

occurring in the trace tree is finite as well. With essentially different we mean that either 

® a different instantiation atom was selected from the initial state, or 
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• a different clause from the program was used for the expansion, or 

• the changes in the instantiation patterns of the remaining subgoals in the state caused by the 

expansion are different (i.e. the bindings between the selected subgoal and the other goals in the 

initial state are different). 

The synthesis algorithm of [13] generates a new Horn clause for every equivalence class of 

mutually similar (not essentially different) transitions observed in the trace. The problem lef t  to 

the abstract interpretation is to determine, at  which point during the expansion of the tree, al l  the 

equivalence classes have been obtained. 

In order to accomplish this, we introduce a fur ther  abstraction on nodes (states) in the abstract 

trace tree. This abstraction wil l  be refered to as a state description. To introduce them on an 

informal basis, we recall some observations made in the manual completeness proof for the Sieve 

of ]~ratosthenos example in section 3 of [4]. 

The program is defined by the following set of Horn clauses: 

Primes(n,p) .-- Integers(2,i), Sift(i,p), Length(p,n). 

Integers(n,Nil) . - .  

Integers(n,n.i) ~-- m is n+l ,  Integers(m,i). 

Sfft(n.i,n.p) , -  Filter(n,i,f), Sift(f ,p). 

Sift(Nil,Nil) , - .  

Filter(n,m.i,f) . -  Divides(n,m), Filter(n,i,f). 

Filter(n,m.i,m.f) .-- not Divides(n.m), Filter(n,i,f). 

Filter(n,Nil,Nil) .--. 

Length(Nil,0) .--. 

Length(h.t,n) ~- n > 0, m is n - 1, Length(t,n). 

The completeness proof in [4] considers a number of s/mEat states from a finite subtree of the 

abstract trace tree, e.g. 

. Integers(G,V1), Filter(O,G.V1,V2), Sfft(Vz,V3), Length(V~,G) 

• Integers(G,V1), Filter(G,G.V1,Vz), Filter(G,Vz,V3), Sift(V3,V4), Length(V4,G) 

• Integers(G,V1), Filter(G,V1,V2 ), Fllter(G,G.Vz,V s), Sift(V 3,V4 ), Length(V4,G) 

• Integers(G,V1), Filter(O,V1,V2), Fllter(G,G.V2,V~), Filter(G,V3,V4), Sfft(V4,Vs), Length(Vs,G) 

and associates to them a general description of instantiation patterns and bindings occurring in 

them: 

Integers(G,Vy), Filter(G,V 1,V2), "" ", Filter(G,Vi-l,Vi), Filter(G,G.Vi,Vi+l ), 

Filter(G,Vi+l,Vi+~), • • • ,Filter(G,Vn-l,Vn), Sift(Vn,Vn+l), Length(Vn+l,G) 

The pattern is that  each example state contains precisely one goal of the types Integers(G,V1), 

Filter(G,G.Vi,Vi+l), Sift(Vn,Vn+l) and Length(Vn+l,G). Also, it  contains 0 or more goals of type 

Filter(G,Vi,Vi+l). The binding pattern is a chain connecting the Integer/2 goal to 0 or more 

Filter(G,Vi,Vi+t) goals, then to the more instantiated Filter/3, which is again connected to 0 or 

more Filter(G,Vi,Vi+ 1) goals and finally to the pair Sift(Vn,Vn+l), Length(Vn+l,G). 
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Different patterns of the above type are generated, so that eventually every state in the finite part 

of the trace tree is an instance of a state description. Then, it is proved that starting from any of 

these descriptions and performing a resolution step expanding the subgoal selected by the 

computation rule, an instance of another state description is obtained. 

When for a given finite part of the abstract trace tree this result can be proved, it implies that all 

relevant transitions have been gathered from the trace and that the abstract expansion is in some 

particular sense (depending on the abstraction in the descriptions) complete, 

4.1 A short review of the six steps. 

We aim to perform resolution on the state descriptions. Therefore, these descriptions should at 

least contain the information retained for the previous application: the instantlation patterns of 

the goals within the state, functors within the arguments of those goals and bindings between 

their variables. 

These leave little space for further abstraction. As shown in the example description for the Sieve 

of Eratosthenos program, what we make abstraction of is the number of goals that occur in chains 

of identically instantiated goals with identical bindings linking them together. 

As an example, the state description in the Sieve of Eratosthenos program contains two such 

chains, both with base block 

Filter( G, Vi, Vi+l), 

which is linked to a previous block Filter( G, Vi-1, Vi) through its second argument and to the 

next Filter( G, Vi+l, Vi+2) through its third argument. 

In order to deal with general states, a state description usually will  contain chains, of which the 

base blocks reveal a much more complicated structure than the ones in the example. Often base 

blocks are sets of abstract goals (with connecting bindings) themselves. In some cases they even 

take the form of chains. We do not discuss these technical observations in more detail, but simply 

stress the fact that abstraction must be made of the frequency with which repeating structures 

occur within the state. 

As for most applications, representing the abstraction can be performed in many different ways. 

The unification mechanism and the behavior for builtln predicates can be dealt with similarly as in 

the previous section. We do not discuss them in further detail. 

In the interpreter, special care must be taken of the selection of snbgoals and the generation of new 

descriptions. Both must be dealt with during each resolution step. A resolution step now consists 

of 

• selecting a appropriate goal from the description - using the new computation rule -, 

• expanding or solving the abstract goal using the mechanism of section 3, 

• applying the resulting abstract substitution to the entire state description 

• building a new description that represents the newly obtained state. This may include a case 

study, distinguishing between the presence of one or more base blocks in a chain. It also 

includes verifying whether or not newly created goals can be combined with existing goals to 

obtain new chains in the description. 
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After each'resolution step, the obtained state description must be compared to all previously 

obtained descriptions (not just to the ancestors). If its canonical form is equal to that of a previous 

description, then no further resolution for that branch of the abstract trace tree is needed. 

5. Discussion. 

The main objective of this paper was to present an informal introduction to the topic of abstract 

interpretation with the aim of reducing the effort which is required from a novice in the field in 

order to be able to develop his application. Using an example from the field of source-to-source 

program transformation we illustrated the main activities involved in building such applications. 

The solution to the problem was split up into two different layers, with increasing difficulty, such 

that the combination of the two is both correct and complete. We deliberately did not provide 

rigorous proofs of the termination nor of the correctness of the method, since we are convinced 

that they would decrease the comprehensibility of the paper. For more details on these, within a 

general framework on abstract interpretation, we refer to [6]. In the more specific framework of 

program transformation, the topic is dealt with in [16]. 

We conclude by discussing the applicability of abstract interpretation as a basic tool for different 

kinds of program transformation. The motivation is simple: most program transformation 

methods start off with an analysis of the runtime behavior of the input program to detect which 

inefficiencies may occur. This is obviously the case for techniques for loop=detection and 

-avoidance (e.g. [2], [25]) as well as for those dealing with the detection and elimination of 

redundant computations [14]. Here, abstract interpretation will provide an automated way to 

detect these inefficiencies, together with sufficient information on the computational history to 

perform the transformation which is adequate. 

Next, there are the methods based on the synthesis of programs from traces of example 

computations. Research in this field has been initiated by A. Biermann in [2]. Using abstract 

interpretation to construct the traces, significantly increases the power of these methods, because 

1. more computational paths can be covered with a single (abstract) top level query, 

2. completeness of the synthesized program can be ensured in an automated way. 

Both these advantages where illustrated in our example application. [4] and [13] describe a 

technique of the above type aiming at the conversion of any generate and test program into a more 

efficient - but logically equivalent - one, involving a coroutlning control regime. V.Turchin 

proposes a similar technique for functional languages in [28], majorly aiming at a further 

automation of the Unfold/Fold method. 

A promising extension of the work presented in [4], again based on synthesizing example traces, is 

the conversion of generate and test algorithms into equivalent forward checking algorithms. Here, 

it will not be sufficient to abstractly interpret a given program following a new computation rule 

as a basis for synthesis, but minor transformations on the logical component of the program will  

be needed as well. P.Van Hentenryck in [29] has thoroughly studied the relationship between 

these two control mechanisms and in our further work we aim to develop a transformation 

scheme on the basis of his results. 
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The Unfold~Fold technique of Burstall and Darlington [7] offer another application of abstract 

interpretation. In [19] S.Gregory illustrates through his many examples that the mechanism of 

unfolding (abstract expansion) and folding (recognition of fixed points within an abstract 

execution trace) are strongly related to abstract interpretation. In a more recent paper [11], 

J.Darlington recasts the original ideas on Unfold/Fold within a setting based on symbolic 

execution. 

Closely related to code optimization is the automatic generation of mode declarations using 

abstract interpretation. This source level transformation method has been successfully developed 

and implemented at our research centre as an auxiliary result of the interpretation described in the 

previous sections. 

A final, but certainly not less important application domain is situated in the field of partial  

evaluation. Practical use of part ial  evaluation as an independent technique in program 

transformation has lost of its credibility in the last years, because no halting condition for the 

expansion of recursive clauses can be formulated. A possible solution to the problem is the use of 

automatically generated wa#-declarations, as proposed by LNaish  in [23]. However, the range of 

applicability for this technique has not clearly been established. More convincing is the idea to 

derive partiaUy evaluated programs for given top level query patterns, where abstract 

interpretation guides the evaluation of recurslve clauses. This idea was elaborated by  J.Gatlagher 

and M.Codish in [16] for the case of program specialization. This paper recasts the theoretical 

framework of abstract interpretation within the field of program transformation in a rigorous 

manner and is therefore highly recommended as further reading. Possibly, the synthesis of the 

specialized program can be sl ightly improved using the flowchart analysis technique described in 

[3]. At  this time, several other researchers in the field (e.g. H,Fujlta [15]) are exploring the 

possibilities of combined partial  evaluation and abstract interpretation. We are convinced that  

these efforts wil l  lead to a further breakthrough of both. 
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Sort( 2.1.Nil, x) 

Perm(2.l.Nil, x),Ord(x) 

I X "= U.V 

Del( u, 2.1.Nil, w),Perm( w, v), Ord(u.v) 

/ u  "= 2, w = 1.Nil 

Perm( l.Nil, v),Ord(2.v) 

V :~ U 1.v 1 

Del( ul, 1.Nil, wl),Perm( wl, vl),Ord(2.u1.vl) 

U ;= 1, WI:= Nil 

Perm( Nil, vl),Ord( 2.1.v 1) 

vt := Nil 

Ord(2.1.Nil) 

2 ~< 1,Ord(1.Nil) 

/ 
fail 

~ w := 2.w2 

De1( u, 1.Nil, wz),Perm( 2.wz, v),Ord(u.v) 

:~ w2  := U 1, Nil 

Perm( 2.Nil, v),Ord(1.v) 

U2.V 2 

Del( u2, 2.Nil, wz),Perm( wz, v2),Ord(1.u2.v2) 

u2 := 2, w2 :s Nil 

Perm( Nil, v2),Ord(1.2.v2) 

I v2 := Nil 

Ord(1.2.Nil) 
I 

1 ~ 2!Ord(2.NIl) 

t 
Ord(2.Nil) 

[] 

Fig. 1 
Proof tree for .-- Sort(2.1.Nil) under the standard computation rule of Prolog. 
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O:= N i l /  
Vl:= ~ / /  

T3 
Ord(Nil) 

/ 
[] 

O:= Nil / 
V3:~ N ~ /  

T6 
Ord( G.Nii) 

l [] 

Zl 
Sort(G,V~) 

t 
T2 

Perm(G,V1), Ord(V1) 

G:~ G.G 
V1 := V2.Vs 

T4 
Del(V2,G.G,V4), Perm(V4,V3), Ord(V2.V 3) 

V2:= G 
V4:~ O 

% 
Perm(O,Vs), Ord(O.Va) 

Vs :~ V6.V7 

T7 
Del(V6,G.G,Vs), Perm(Vs,VT), Ord(G.V6.V7) 

:~ O 
=G 

Ts 
Perm(G,V7), Ord( G.G.V 7) 

f 
T9 

Perm(G,VT), G ~ G, Ord(G.VT) 

J 
T~o 

Perm(G,V7), Ord(G.V 7) 
/ \ 

Fig. 2 
Abstract trace tree of Slowsort 

The selected subgoal is in Italic (e.g.Perm(G,V1)). 
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