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In 1973, Christopher Strachey wrote a monograph with the above title 
[8]. It began 

There are so many programming languages in existence that it is a 
hopeless task to attempt to learn them all. Moreover many program- 
ming languages are very badly described; in some cases the syntax, 
or rather m o s t  of the syntax, is clearly and concisely defined, but the 
vitally important question of the semantics is almost always dealt with 
inadequately. 

Since that time, there has been a further spectacular increase in the 
variety of languages, and several of them have even entered common use. 
Completely new programming paradigms have emerged, based on logical in- 
ference, on functions and relations, or on the interaction of objects. New lan- 
guage features include communication, non-determinism, type inheritance, 
type inference, and lazy evaluation. Many programmers have become fluent 
in several languages; and many large applications have been constructed 
from parts implemented in different programming notations. Programming 
language designers are attempting to alleviate the resulting problems by 
combining the merits of several paradigms into a single more comprehen- 
sive language; but the signs of success in such a combination are difficult to 
recognise. 

A solution to these problems may emerge from a wider understanding 
and agreement about the nature of programming and the choices available 
to the programming language designer and user. The current state of our 
understanding seems little better now than when Strachey wrote 

Not only is there no generally accepted notation, there is very lit- 
tle agreement even about the use of words. The trouble seems to be 
that programming language designers often have a rather parochial 



outlook axed appear not to be aware of the range of semantic possibili- 
ties for programming languages. As a consequence they never explain 
explicitly some of the most important features of a programming lan- 
guage and the decisions among these, though rarely mentioned (and 
frequently I suspect made unconsciously)~ have a very important effect 
on the general flavour of the language... 
The unsatisfactory nature of our understanding of programming lan- 
guages is shown up by the fact that although the subject is clearly a 
branch of mathematics, we still have virtually no theorems of general 
application and remarkably few specialised results. 

This paper is dedicated to pursuit of the goals that Strachey set himself 
in his own work. 

The main purpose of this paper is to discuss some features of the 
range of semantic possibilities in programming language... A second 
purpose is to advocate a more conventionally mathematical approach 
to the problem of describing a programming language and defining its 
semantics, and, indeed, to the problems of computation generally. 

To lighten the task, this paper concentrates on the following varieties of 
programming language. 

1. Deterministic, like LISP or PASCAL: the possible result of executing 
each program is fully controllable by its environment or user. 

2. Non-deterministic, like occam or Dijkstra's language [2]: the result of 
execution of a program may be affected by circumstances beyond the 
knowledge or control of its environment or user. 

3. Strict, like LISP or Dijkstra's language: each stage of a calculation 
must be completed successfully before the start of the next stage which 
will use its results. 

4. Lazy, like KRC or Miranda1[9]: a calculation is started only when its 
result is found to be needed. 

5. Interactive, llke CSP or occam: the program communicates with its 
environment during execution. 

6. Non-interactive~ like the original FORTRAN: all the data required 
by the program may in principle be accumulated before the program 
starts; and all the results may be accumulated during the calculation 
for eventual output if and when the program terminates successfully. 

1Miranda is a trade mark of Research Software Ltd. 



S u m m a r y  

The next section compares the merits of two methods of studying the math- 
ematics of programming languages. The denotational method, due to Stra- 
chey, requires the construction of a mathematical meaning for each major 
component of each program expressed in each language. The various oper- 
ators which combine the components are defined as functions, on the mean- 
ings of their operands. The algebraic approach avoids giving any meaning to 
the operators and operands; instead it formulates general equations describ- 
ing the algebraic properties of the operators individually and in relation to 
each other. In some cases, this is sufficient to characterise the meaning of 
each operator, at least up to some form of equivalence or isomorphism. The 
algebraic approach seems to offer considerable advantages in the classifica- 
tion of the varieties of programming language, because it permits individual 
features and properties common to a range of languages to be characterised 
independently of each other. 

The next important idea, due to Scott [7], is an ordering relation (ap- 
proximation) between programs. This permits an elegant mathematical con- 
struction for the most essential of programming language features, namely 
recursion or iteration. Other benefits of the ordering include an elegant 
treatment of the phenomena of non-termination or even non-determinism. 
In software engineering, the same ordering can be used for stepwise devel- 
opment of specifications, designs, and programs. 

For classifying the major varieties of programming language, the com- 
bination of the approximation ordering with an algebraic approach seems 
to offer the greatest benefits. Each variety is characterised by the different 
laws which they satisfy; and in many cases, the laws differ from each other 
only in the direction of the ordering between the two sides of an inequation. 
The final sections of this paper give several simple examples, relating to 
zero morphisms (abort) ,  products (records, declarations), and coproducts 
(variants, cases). 

The paper ends with a brief summary of related work, both completed 
and remaining to be started. 

1 Denotational and Algebraic Approaches 

A denotational semantics for a language defines the mathematical meaning 
of every syntactically valid program expressed in the language. A meaning 
is also given to every significant component of the program, in such a way 
that the meaning of the whole program is defined in terms of the meaning 
of its parts. 



The study of denotational semantics has made a significant contribution 
to the development both of mathematics and of computing science. In the 
early days, Church's untyped lambda-calculus was selected as the branch of 
mathematics within which to formalise the meanings of programs. After the 
discovery of reflexive domains by Scott, a much more elegant and abstract 
basis for denotational semantics is found in domain theory. 

In computing science, denotational semantics gives the programming 
language designer and theorist an excellent method of exploring the con- 
sequences of design decisions before committing the resources required to 
implement it, or the even greater resources required to test it in practical 
use. The semantics also provides a basis for the correct design and de- 
velopment of efficient implementations of the language, compatible across a 
variety of machines. It provides a conceptual framework for the user to spec- 
ify programs before they are written, and to write them in a manner which 
reduces the danger of failing to meet that specification. And finally, it re- 
veals most clearly the major structural variations between programming lan- 
guages, even those that result from apparently quite minor decisions about 
individual features. When Dedekind, Frege and Russell gave interpretations 
within set theory of the long-familiar mathematical concept of number, they 
found similar major differences between the natural numbers, the integers, 
the fractions, the reals, and the complex numbers. 

Because denotational semantics is so effective in revealing the differences 
between languages, it is correspondingly less effective in revealing their sim- 
ilarities. The essential similarities between the varieties of number are most 
clearly illuminated by listing the marly algebraic properties which they share; 
the differences can then be isolated by listing the properties which they do 
not share. The dependence or independence of various selections of laws can 
be established by standard algebraic techniques. New kinds of mathematical 
structure can be discovered by combining algebraic laws in new ways. In 
some cases it is possible to prove that the meaning of each primitive concept 
and operation is defined uniquely by the laws which it obeys (perhaps up 
to some acceptable degree of isomorphism or equivalence). And finally, one 
may hope to classify all possible mathematical structures obeying a given 
basic set of reasonable laws. 

All these properties of an algebraic approach are potentially beneficial to 
theorists of computing science. In view of the important role of algebra in 
the development, teaching and use of mathematics, it would be reasonable 
to expect similar benefits to the study of programming languages, their 
design, implementation, teaching and use. The algebraic approach is the one 
adopted in this paper for exploring the varieties of programming language. 

The branch of algebra which seems to be most relevant for programming 



language theory is category theory. Its high level of abstraction avoids the 
clutter of syntactic detail associated with concrete programs, including dec- 
larations, variables, scopes, types, assignment and parameter  passing. Its 
object structure neatly captures and takes advantage of the type structure 
of strictly typed languages, and the scope structure of languages with a 
concept of locality. And finally, it turns out that  many of the features of a 
programming language axe definable as categorical concepts in such a way 
that  their effective uniqueness is guaranteed. 

Exploration of the variety of programming languages requires consider- 
ation of categories which axe enriched by an ordering relation [10]. These 
constitute a particularly simple kind of two-category, in which a preorder is 
given on each of its homsets. However, no knowledge of two-categories or 
even of category theory is required of the reader of this paper. 

2 The Approximation Ordering 

The approximation ordering between programs was originally introduced 
into programming language theory to provide an explanation of recursion. 
We shall use it as a general method of comparing the quality of any two 
programs written in the same language. I fp  and q are programs, p _E q means 
that ,  for any purpose whatsoever and in any context of use, the program q 
will serve as well as program p, or even better. This is an ordering relation 
because it is rettexive and transitive 

P E q  
if p E q a n d q E r t h e n p E _ r .  

We define two programs to be equivalent if they approximate each other 

p = q  ~ pt--_qandqE_p. 

Since we axe willing to tolerate equivalent but  non-identical prograxns, we 
do not require the approximation ordering to be antisymmetric.  

This ordering relation may hold not only between programs but also be- 
tween a specification and a program, or even between two specifications. In 
this case, p _ q means that  p and q are essentially the same specification, or 
that  p is the more abstract or general specification and q is a more concrete 
or detailed specification, closer to the design of a program to meet the spec- 
ification p. Every implementation of q is therefore an implementation of p, 
but not necessarily the other way round. In the extreme~ q may itself be 
a program expressed in some efficiently executable programming language; 
this then is the final deliverable outcome of a development process that  may 



have gone through several successive stages of more and more concrete de- 
sign. By transitivity of _,  this final program meets the original specification 
with which the design process started. Thus the approximation ordering is 
as important for software engineering as it is for the theory of programming 
languages. 

In a deterministic programming language the relation p E_ q holds if 
p always gives the same result as q, and q terminates successfully in 
initial states from which p terminates, and maybe more; this is because 
non-termination is, for any purpose whatsoever, the least useful behaviour 
a program can display. In a non-deterministic language, an additional con- 
dition for p E q is that every possible outcome of executing q in a given 
environment should also be a possible outcome of executing p in the same en- 
vironment; but maybe p is less deterministic, and might give some outcome 
that q will not. The program p is therefore less predictable, less control- 
lable, or in short, a mere approximation to q. In a programming language 
like the typed lambda-calculus, all programs are terminating deterministic 
functions. One such program approximates another only if they compute 
the same function. As a result, the approximation ordering is an equivalence 
relation. The algebraic properties of such languages have been formulated 
directly in standard category theory; in this paper we will concentrate on 
languages with a non-trivial approximation ordering. 

The E relation between programs is seen to have several different mean- 
ings, according to whether it is applied to a deterministic or a non-determin- 
istic language. This is a characteristic feature of the algebraic method; for 
example, addition of complex numbers is very different from addition of 
integers; nevertheless the same symbol is used for similar purposes in both 
cases, for the very reason that the two meanings share their most important 
algebraic properties. The purpose of the E relation is to compare the quality 
of programs and specifications; and for this reason it must be transitive, and 
might as well be reflexive. Given that it has these properties, we are free 
to give the symbol the most appropriate interpretation for each individual 
language that we wish to study. 

The bottom of an ordering relation (if it exists) is often denoted by _1_. 
It is defined (up to equivalence) by the single law 

± E q ,  for all q. 

Proof. Let ±~ be another bottom. Then ± E ±r because ± is a bottom; 
and _l_ r E_ ± because .l_ ~ is a bottom. Therefore ± = ±r [] 

The bottom program is for any purpose the most useless of all programs; 
for example, the program which never terminates under any circumstances 
whatsoever. In FORTRAN or machine code, the bottom is the tight loop 
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In LISP it is the function BOTTOM, defined by a non-terminating recursion 

CDEFFUN BOTTOM X (BOTTOM X)~. 

In Dijkstra's language the bo t tom is called a b o r t .  This may fail to termi- 
nate; or being non-deterministic it may do even worse: it may terminate 
with the wrong result, or even the right one (sometimes, just to mislead 
you). 

The meet of two elements p and q (if it exists) is denoted p n q. It  
is the best common approximation of both p and q. It is defined (up to 
equivalence) by the single law 

rEpf3q iff rEpandrr-q,  allp, q,r. 

Proof. Let 9 '  be another operator satisfying this law. By substi tuting p ~  q 
for r, 

pgqEp[Yq iff p['lqEpandpNqEq 
iff pl-lqEpVlq 

which is true by reflexivity of E. The proof that  p 9 '  q E p I3 q is 
similar. [] 

Other algebraic properties of [3 follow from the defining law. For example, 
it is associative, commutative,  and idempotent ,  and 

p n q E p .  

Proof. p n q E p ~ q implies p ~ q E p and p n q E q [] 

In a non-deterministic language, p ~ q is the program which may behave 
like p or like q, the choice not being determined either by the programmer 
or by the environment of the program. In Dijkstra's language it would be 
writ ten 

i f  true ~ p 

[] true ~ q 

ft. 

In this language, non-determinism is "demonic": if a program contains the 
non-deterministic possibility of going wrong, this is as bad as if it always 
goes wrong: 



_1_ I-] p = _1_, al lp.  

If this law were not confirmed by ample experience of bugs in computer 
programs, it should still be adopted as a moral law by the engineer who 
undertakes to deliver reliable products. 

Even a deterministic language has a meet. (p ~ q) is the program that  
terminates and gives the same result as p and q when started from any initial 
state in which p and q both terminate and both give the same result. (p n q) 
otherwise fails to terminate. More simply put,  the graph of p n q is the 
intersection of the graphs of p and q. 

Although this description uniquely specifies the meaning of (p n q), the 
operator rl is unlikely to be included explicitly in the notations of a deter- 
ministic programming language. Nevertheless it does exist, and can actually 
be programmed by 

meet  (p, q) -~ ( i f p  = q t h e n  p else l ) .  

A more efficient implementation of (p ~ q) is simply to select an arbitrary 
member of the pair. By definition of ~ this will be better than (p n q), and 
an implementation should always be allowed to implement a program better 
(for all purposes) than the one written by the programmer. That  is one of 
the motives for introducing the approximation ordering. 

A program p is called total if it is a maximal element of the E ordering: 

if p E_ q then q E P, for all q. 

A total program is one which is deterministic and always terminates. That  
is why it cannot be improved, either by extending the range of environments 
in which it terminates, or by reducing the range of its non-determinacy. Al- 
though we can reasonably point to a single worst program, unique up to 
equivalence, no reasonable programming language can have a single best 
program. If there were, it would be the best program for all purposes what- 
soever, and there would be no point in using any other program of the lan- 
guage! Such a program would be a miracle (according to Dijkstra). But so 
far from solving all the problems of the world, its existence in programming 
language can only make that language futile. 

The laws postulated so far (and those that  can be deduced from them) 
are true in every programming language that  admits the possibility of non- 
termination. It is not yet possible to distinguish varieties of language, not 
even to distinguish deterministic from non-deterministic languages. These 
and other important  distinctions will be drawn in the next section. 



3 Composition 

Without much loss of generality, we can confine attention to languages in 
which there exists some method of composing programs p and q into some 
larger program called (p; q). Execution of such a composite program usually 
(but not always) involves execution of both its components. In a procedural 
programming language like PASCAL or occam, we interpret this notation 
as sequential execution: q does not start until p has successfully terminated. 
In a functional language it denotes functional composition, such as might 
be defined in LISP 

L A M B D A  X(p(q X))).  

Here is an example of an advantage of the algebraic approach: it ignores 
the spectacular difference in the syntax of composition in procedural and 
functional languages and concentrates attention on their essential mathe- 
matical similarities. Chief among the general properties of composition is 
associativity 

p;(q;r) = (p;q);r. 

Another property is the existence of a unit denoted I. It is uniquely defined 
by the equations 

p; I = p = I; p, for all p. 

Proof. Let I' be another unit. Because I' is a unit, I = I'; I. Because I is a 
u n i t ,  I ' ;  I ~- I ' .  The result follows by transitivity of equality. [] 

In a procedural programming language, the unit is the trivial assignment 
x := x. In FORTRAN it is CONTINUE, in Dijkstra's language skip,  and 
in LISP the identity function 

( L A M B D A  X X).  

Another general property of composition is that it is monotonic, i.e., it 
respects the ordering of its operands: 

if p _ q then p; r ___ q; r and r; p _ r; q, all p, q, r. 

If the preorder is regarded as giving a two-categorical structure to the pro- 
gramming language, monotonicity of composition is just a restatement of 
the interchange law. More generally, every operator of a programming lan- 
guage must be monotonic with respect to E. Otherwise, there would be 
some context which would fail to be improved (or at least left the saane) 
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by replacing a worser component by a better. So any non-monotonic op- 
erator in a programming language would make the _ relation useless for 
the purpose for which it is intended, namely to state that  one program is 
better than another in all contexts of use. In algebra, that  is one of the most 
convincing reasons for adopting a particular law as an axiom. 

In a typed language, the composition of programs is undefined when the 
type of the result of the first component differs from that expected by the 
second component.  This complication is elegantly treated in category theory 
by associating source and target objects with each arrow. Nevertheless, in 
this paper we will just ignore the complication, and assume that  the source 
and target types of all the operands are the same. Where this is impossible, 
restrictions will be placed informally on the range of the variables. 

It is well-known that  the composition of two total functions is a total 
function. The same is true of total programs, which form a deterministic 
subset of a non-deterministic language. In fact all languages of interest will 
satisfy the law: 

if p and q are total, so is (p; q), all p, q. 

We have seen how the unit I of composition is uniquely defined. A zero of 
composition (if it exists) is denoted by z. It is uniquely defined by the laws 

p; z = z = z; q, for all p a~d q. 

Proof. Let z' also satisfy these laws. Then, because z is a zero, z'; z = z, 
and because z' is a zero z' = z'; z. The result follows by transitivity 
of equa~ty. [] 

In Dijkstra's programming language, the zero is the bot tom program a b o r t .  
To specify the execution of q after termination of a b o r t  cannot redeem the 
situation, because a b o r t  cannot be relied on to terminate. To specify execu- 
tion of p before abortion is equally ineffective, because the non-termination 
will make any result of executing p inaccessible and unusable. In other 
words, composition in Dijkstra's language is strict in the sense that  it gives 
bo t tom if either of its arguments is bottom. 

However, in a language which interacts with its environment,  the ac- 
count given in the last paragraph does not apply. The program p may 
engage in some useful communications (perhaps even forever) thus postpon- 
ing or avoiding the fate of abortion. So (p; 3_) can be strictly better  than 
_1_. The same is true in a language with jumps, since p can avoid the abor- 
tion by jumping over it. A similar situation obtains in a logic programming 
language like PROLOG, in which the ordering of the clauses of a program 
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is significant. If a query can be answered by the rules in the first part  of 
the program p, it does not mat ter  if a later part  aborts; but  abortion at the 
beginning is an irrecoverable error. 

In these languages, the bo t tom is a quasi-zero z,  in a sense defined up 
to equivalence by the laws 

z; p E z E q; z, all p and q. 

Proof. let z' also be a quasi-zero. Then because z is a quasi-zero, z E z';z. 
Because z' is a quasi-zero z'; z E z'. By transitivity of E, z E z'.  A 
similar proof shows that  z' E z. The two quasi-zeroes are therefore 
equivalent. [] 

In a lazy functional programming language, the call of a function will not 
evaluate an argument unless the value of the argument is actually needed 
during evaluation of the body of the function. Such a mechanism of function 
call is said to be non-strict or lazy. Thus the function 

D E F F U N  K3 = L A M B D A  X 3 

can be successfully called by 

( g 3  (_LY)) 

and will deliver the value 3, because no a t tempt  is made to evaluate its 
argument (_LY). However the call 

L ( K 3  Y) 

will never succeed, no mat ter  what the value of Y. This shows that  K3; 1 
is actually worse than J_; K3. 

As a result, the bo t tom program in a lazy language is neither a zero nor 
a quasi-zero. In fact it is a quasi-cozero, in a sense defined up to equivalence 
by the laws 

p; _L E _l_ E _L; q, for all p and q. 

We have now explored the way in which composition interacts with the 
bot tom program _L. The question now arises how composition interacts with 
the I7 operator. From the defining property of I7 we can derive the following 
weak distribution law 

r;(pf7q);s  E (r;p;s) gl(r;q;s). 
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Proof. (p [7 q) E p and (p I3 q) U q. Because composition is monotonic, 
r ; ( p n  q);s E r;p;s and r;(p E q);s E r;q;s.  The law follows from 
the defining property of I1. [] 

These laws hold in any programming language. However, in a truly 
non-deterministic language, the laws may be strengthened to an equation 

r; (p I-1 q); s = (r; p; ~) I7 (r; q; s). 

This strengthening is not valid in a functional or deterministic language. 
The treatment of zeroes, quasi-zeroes and quasi-cozeroes is a simple ex- 

ample of the power of algebraic laws in classifying the varieties of program- 
ming language. Three clear varieties have emerged 

(1) The strict non-interactive languages in which _L is a zero. 

(2) The strict interactive languages in which _L is a quasi-zero. 

(3) The non-strict languages in which _k is a quasi-cozero. 

An orthogonal classification is that between deterministic languages and 
non-deterministic languages, in which composition distributes through 17. 

4 P r o d u c t s  

I fp  and q are programs, we define their product (p, q) to be a program which 
makes a second copy of the current argument or machine state, and executes 
p on one of the two copies and q on the other one. The two results of p and 
q are delivered as a pair. This allows execution of p and q to proceed in 
parallel without interfering with each other. In a functional programming 
language with lists as a data structure, this can be defined: 

(p, q) -~ )~x.cons(px, qx ). 

In such a language, the duplication of the argument x is efficiently imple- 
mented by copying a machine address rather than the whole value of the 
argument. A procedural language has side-effects which update its initial 
machine state; so this implementation causes interference, and would not 
be valid. Instead, a completely fresh copy of the machine state is required; 
and this is what is provided by the fork feature of UNIX. The algebrMc laws 
abstract from the radical differences of implementation, syntax, and gen- 
eral cultural environment between functional and parallel procedural pro- 
gramming paradigms. Some startling mathematical similarities are thereby 
revealed. 
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A stack-based language like PASCAL provides a restricted version of 
(p, q), where p is an expression delivering a reasonably small data value, and 
q represents the side-effect (if any) of evaluating the expression (usually, 
q = r). In such a language, the current machine state is a stack, and the 
effect of (p, q) is to pop the value of p onto the stack, making it available 
as the initial value of a new local variable to be accessed and updated by 
the body of the following block. By convention, we have put the top of the 
stack on the left. 

If (x, y) is a pair of values, then we define the operation ~r to be one 
that selects the first of the pair (x), and # selects the second of the pair 
(y). In LISP, these are the built-in functions car and cdr respectively. In a 
stack-based procedural language, # has the effect of popping the stack, and 
is used for block exit. The operation ~r gives access to the most recently 
declared (innermost, local) variable. A combination of ~r and # give access 
to variables declared in outer blocks; for example (1) #; 7r gives the value 
of the next-to-local variable; (2) (#; ~r, I) makes a fresh copy of it as a new 
local variable; whereas (3) ((#; ~r), #) assigns it as a new value to the current 
most local variable. A high-level language uses identifiers to refer to these 
variables, and for practical programming this is a far better notation. How- 
ever, in exploring the varieties of programming language, a notation closer 
to machine code seems paradoxically to be more abstract [1]. 

Each of the selectors 7r and # would normally be expected to cancel the 
effect of a preceding operation of pairing, as described in the laws: 

(1) = p 

(2) ( p , q ) ; #  = q 

Furthermore, if (~r, #) is applied to a pair, it will laboriously construct a pair 
from the first and second components of its argument, and thereby leave its 
argument unchanged. In general, if r is a program that produces a pair as 
result 

(3) = 

These three laws axe equivalent to the single biconditional law 

( x ; ~ r = p a n d x ; # = q )  iff x = ( p , q ) .  

It is easy to calculate 

r ; (p ,q )  = ( (v ; (p ,q ) ;~r ) , ( r ; (p ,q ) ;# ) )  
= ( ( r ;p ) , ( r ;q ) )  

(from (3)) 
(from (3)) 
(from (1),(2)) 



14 

The  laws given above define the concept of a p roduc t  only up to isomor- 
phism. Two programs p and q axe said to be isomorphic if there exist an x 
and y such tha t  

p; x = y; p, 

where x and y are isomorphisms.  An element  x is said to be an isomorphism 
if there exists an ~ (known as the inverse of x) such tha t  

x ; ~ =  I = $ ; x .  

For example,  x itself is an isomorphism (I  ---- I).  Furthermore ,  if x and y are 
isomorphisms,  so is x; y(x; y; ~; $ = x; ~ = I = ~; y = ~; ~;x; y). It follows 
tha t  i somorphism between arrows is a reflexive relation (p; I = I ;p) ,  which 
is also transit ive (if p; x = y; q and q; z = w; r then p; x; z = y; q; z = y; w; r),  
and symmetr ic  (if p; x = y; q then ~;p; x; ~ = !); Y; q; x, and hence q; ~ = ~;p). 
In summary ,  i somorphism of programs is an equivalence relation. 

I f p  is isomorphic  to q (p; x = y; q), then  the program p could equally well 
be implemen ted  by the program q, merely preceding and following it by pro- 
grams which are isomorphisms (y; q; ~). Similarly q could be implemented  
by means of p (.fi;p; x). In either case, it would be impossible to dist inguish 
the implementa t ion  from the original. Tha t  is why a collection of algebraic 
laws which defines a concept up to isomorphism should be accepted as an 
adequately  strong definition in the theory of p rogramming  languages.  It  is 
certainly accepted as such in algebra or category theory. 

To prove tha t  products  are defined up to i somorphism by laws (1) (2) 
and (3), we suppose that  7r',#' and ( , ) '  obey similar laws (1 ') , (2 ')  and (3'). 
We prove first that  (~r,#)' is the inverse of (~r',#'): 

(~r,#)';i~r' ,#') : (((Tr,#)';Tr'),(iTr,#)';Tr')) b y ( 3 ' )  
= (~r,#) by (1 ') , (2 ')  

I.  

The proof  tha t  ( r ' ,  #');  (Tr, #) '  = I is similar. Now the required i somorphism 
is established by 

(Tr',#');Tr = ~r' by (1) 
(~r ' ,# ') ;# = # by (2) 

(p,q)';(~r',#') = (((p,q)';~r'),((p,q)';#')) b y ( 3 )  
= (p,q). by (1') ,(2 ') .  

The  above definition of a product  is s tandard  in category theory. Un- 
fortunately,  it is not  valid in a strict p rogramming  language,  for which an 
implementa t ion  may  insist on evaluating both  components  of a pair before 



15 

proceeding with execution of the next instruction of the program. If evalu- 
ation of either component fails to terminate, the product also fails. Thus, 
for example 

(p,±) = ± : (±,q). 

A non-strict language avoids this problem, because its implementation does 
not evaluate either component of a pair until it is known to be needed [3]. 
If the very next operation is a selection ( r  or #), this necessarily discards 
one of the components without evaluating it. So it does not matter if such 
evaluation would have failed. 

The solution to this problem is to weaken the definition of a product 
to that of a quasi-product, in which some of the equalities are replaced by 
inequalities 

(1) <p, q>; ~ E p 

(2) (p,q>;# E q 

(3) r E ( ( r ; ~ ) , ( r ; , ) > .  

On the usual assumption of monotonicity, these three laws are equivalent to 
the single law 

(z ; r  E p a n d  x;# E q) iff x E (p,q). 

It is easy to calculate 

r;IP, ql E ((r;p),(r;q)l. 

We also postulate that I, ~r and # are total, and that the pairing function 
( ( , ) )  maps total programs onto total programs. Under this hypothesis, 
we can show that the product is defined up to quasi-isomorphism, i.e., a~ 
isomorphism defined in terms of equivalence instead of equality. 

Proof: very similar to the proof for products. Since I, r ,  #, ~r', #', (~r, #)' and 
(~-', #') are all total, all inequations involving them are equivalences. 

( ~ , , ) ; ( ~ ' , . ' )  _= ( ( ( ~ , . ) ' ; ~ ' ) , ( ( ~ , . ) ' ; ~ ' ) )  
- ( ~ , g )  _= i .  

( ~ ' , ~ ' ) ; ~  = ~' and ( ~ ' , ~ ' ) ; ~  = ~'. 

For the last clause we derive two inequations with similar proofs 
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(p,q) ' ; (~r ' ,# ')  E (P,q). 
(p,q); (Tr,#)' E (p,q). 

Apply  "; @, #)*" to bo th  sides of the first inequat ion to get 

(p,q)' U (p,q); (rr,#) '  

Together  wi th  the second inequat ion,  this gives 

(p,q); (Tr,#)' =- (p,q)'. [] 

Unfortunately,  in a non-determinis t ic  p rogramming  language,  the third law 
defining a quasi-product  is not valid. Suppose r is a non-determinis t ic  pro- 
gram, giving as answer either (3,3) or (4,4). Then  r; ~r can give answer 3 
or 4, and so can r ;# .  Consequently,  ( ( r ;~r) , ( r ;#))  can give answers (3,3), 
(3,4), (4,3), or (4,4). This is certainly different from r, in fact more  non- 
determinis t ic  and therefore worse. In such a language,  the inequali ty in the 
third law mus t  be reversed 

((r; (r; ,))  E 

The  consequences of such a reversal will not be explored here. 
A similar analysis can be given for a coproduct .  H p  and q are programs,  

[p, q] is a p rogram whose execution involves execution of exactly one of p 
and q. The  choice is made  by test ing some recognised "tag" componen t  of 
its a rgument .  In PASCAL this can be implemented  by a ca se  s ta tement  

case  tag o f  0 : p; 1 : q e n d .  

Two  operat ions  are needed to put  tags onto  an argument :  /3 puts  on a 0 tag 
and 7 puts  on a 1 tag. As a result, we have two laws 

(1) t3; [P, q] = p 

(2) 7;[P,q] = q. 

These two laws are very similar to the first two laws defining the product ,  
except  tha t  the  order of the composi t ion is reversed. The  analogue of the 
third taw is 

(3) [(fl; r), (7; r)] = r. 

In a strict language,  this law is valid provided tha t  r is an operat ion of a 
type tha t  expects  a tagged operand.  (/~; r) selects the first a l ternat ive action 
of r, and (7; r) selects the second alternative.  Pu t t ing  these together  again 
as a coproduct  pair yields back the original r. 
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Unfortunately, this law is not valid in a non-strict programming lan- 
guage. In the case when evaluation of the tag field itself fails to terminate, 
the coproduct pair also fails to terminate. So if r is a non-strict function, 
which terminates even on a undefined argument, it is actually better than 
[(fl; r), (7; r)]. The third law must therefore be weakened to 

[(fl; r), (7; r)] E r. 

Putting the three weaker laws together gives the biconditional law 

(p___f l ;xandqCT;X)  iff [p,q]E_x. 

A solution to these weakened equations is called a quasi-coproduct. 

Discussion 

This paper has suggested that many of the structural features of a program- 
ming language may be defined adequately by means of algebraic laws. The 
remaining features (basic types and primitive operations) can be given a con- 
ventional denotational semantics. The denotational and algebraic semantics 
can then be combined to give a complete semantics for the whole language. 
The combination is achieved by a familiar categorical construction: the lan- 
guage is defined as the free object over the denotational semantics in the 
variety of algebras which obey the algebraic equations. The construction 
needs slight adaptation to deal with inequations instead of equations. 

In a language with strong typing, the operations of the language (both 
primitive and non-primitive) are defined only in contexts which satisfy the 
constraints of the type system. A type system can be conveniently repre- 
sented in the object structure of a category. The free construction which 
defines the semantics of the language now yields a heterogeneous algebra, 
with a sort corresponding to each homset. If the language allows the pro- 
grammer to define new types, the set of objects themselves have to be defined 
as a free (word) algebra over the primitive types of the language. 

The advantage of the two-level denotational and algebraic semantics of a 
programming language is the potential simplification that results from sep- 
arate treatments of the different features of the language. Another potential 
advantage is that the algebraic laws can be used directly in the optimisa- 
tion of programs by means of correctness-preserving transformations. But 
perhaps the main advantage is that it permits the denotational semantics 
of the primitive types and operations of the language to be varied, while 
the algebraic semantics of the more structured features of the language are 
held constant. Thus each implementation of the language defines a different 
operational semantics, which can be proved correct with respect to the same 
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denotational semantics. This proof is achieved by means of an abstraction 
function (or "retrieve" function of VDM), which plays the role of a natural 
transformation between functors in category theory. 

It is hoped that further exploration of these topics will appear in the 
literature [4, 5, 6]. 
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