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A b s t r a c t  
In this paper, we prove that the usual construction of terms and infinite trees 
over a signature is a particular case of a more general construction of  monads 
over the category of sets. In this way, we obtain a family of semantical domains 
having a tree-like structure and appearing as the completions of the corresponding 
finite structures. Though it is quite different in its technical developments our con- 
struction should be compared with the one of De Bakker and Zucker which is very 
similar in spirit and motivation. We feel that one outcome of the present approach 
is that, due to its connection with Lawvere's algebraic theories, it should provide 
an interesting framework to deal with equational varieties of  process algebras. 

1 Introduct ion  

A major concern in denotational semantics is to provide a meaning to recursively 
defined expressions ; then, we must  be able to express and to solve systems of 
equations in various domains. Such a requirement leads us to supply those do- 
mains with three fundamental  algebraic operations, namely bulling up t-uple of 
elements, extracting an element from such a t-uple and making substitution of a 
t-uple of elements for a t-uple of variables. Lawvere's algebraic theories ([Law63]) 
are categories tha t  embody those basic manipulations in a uniform manner.  An 
alternative presentation of algebraic theories is that  of monad (or following Manes 
[Man76] algebraic theories on monoid form). Monads found applications in au- 
tomata  theory (JAM75]), tree processing ([Xla75]) they also have been used to 
study recursion schemes ([BG87]) and more recently Petri  Nets ([MM88]) . 

In both presentation of algebraic theories term substitution plays a central role 
and allows for the s tatement  of equations (we shall make this s tatement  precise 
in the case of monads). In analogy to Elgot's iterative algebraic theories we may 
define the iterative monads as those monads for which all non degenerate equations 
(such as x=x)  admits a unique solution. 

In this paper, we prove that  the usual construction of terms and infinite trees 
over a signature E is a particular case of a more general construction of monads 
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over the category of sets. Moreover, the monad corresponding to the infinite trees 
is proved iterative ; and, as such, constitute a potential semantical domain. In 
this way, we obtain a family of iterative monads associated to an extended notion 
of signature called w-s lgna ture .  As typical example we present the monad of 
synchronization trees ([Mil80]) but other similar examples of algebraic structures 
may be considered. Roughly speaking such structures are tree-like and the infinite 
objects are obtained through a completion process from the finite ones. Though 
quite different in its technical developments our present construction should be 
compared with the one of De Bakker and Zucker in [dBZ82]. Actually, in that 
paper they gave a variety of process domains having such a branching structure and 
enabling one to deal with various concepts arising in the semantics of concurrency 
such as parallel composition, synchronization and communication. The novelty of 
the present approach, compared with De Bakker and Zucker's, is that ,  due to 
its connection with Lawvere's algebraic theories, it should moreover provide an 
interesting framework to deal with equational varieties of process algebras. 

Concerning monads we refer to the books Algebraic Theories ([Man76]) by E. 
Manes and Toposes, Triples and Theories ([SW85]) by M. Barr and C. Wells ; 
nevertheless we shall recall along this paper all definitions and results we need 
about monads. The reader is just expected familiar with the basic notions of 
category theory such as limit and colimit of diagrams, functor categories and 
adjunctions. 

This paper is organized as follows : section 2 gives a construction of terms 
and infinite trees for a signature, a signature being there some endofunctor of 
the category Set ,  providing a generalization of the usual construction where the 
signature corresponds to a ranked alphabet. In sections 3 and 4 respectively we 
supply the sets of terms and infinite trees with substitution operations by forming 
the corresponding monads ; moreover the monad of infinite trees is proved iterative. 
Section 5 is the conclusion. 

2 T e r m s  a n d  i n f i n i t e  t r e e s  f o r  a s i g n a t u r e  

We first recall some definitions from universal algebra. A (finitary) signature or 
ranked alphabet E is given by a set whose elements are operator symbols together 
with a mapping a : E --+ N which assigns to each operator f a natural number 
a(f) called its arity. We denote En the set of operators of arity n. If E' is another 
signature, a morphism ~ : E --* E' of signatures is any mapping from E to E' that 
preserves the arities i.e. f E E~ =~ ~( f )  e E'~. 

De f in i t i on  1 a E-algebra is a pair (D,6) where D is a non empty set (the carrier 
or domain of  the algebra) and 6 = {5 / ;  f E E} is a set of functions 61 : D ~(/) --* D 
associated to each operator f in E. And  a morphism ~ between two E-algebras 
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(D fl ) and (D',~') is any mapping between their respective domains such that : 

~ ( ~ l ( a , , . . . ,  a,))  = ~/(~o(al ) , . . . ,  ta(an)) 

A ranked a lphabet  E can be interpreted as the functor  ~ : S e t  --+ S e t  defined on 
objects and on arrows as 

EA = II/e~. A ~(/) and ~ o  = Ille~ io ~(/) 

a Z-algebra is then  any mapping  ZA -% A and a morphism between two Z-algebras 
(A,a) and (B,b) is any mapping  qo : A --* B such tha t  : tooa  = b o E t o .  E-algebras 
and their  morphisms const i tute  a category denoted E-Alg .  Since the  coproduct  of 
sets are their  disjoint union we get a more intuitive representat ion of EA as EA= { 
f [ <  el  > , . . . , <  an >] / f • En and al,...,a,~ • A} (where <,>,[,] are special sym- 
bols) and, in this way, E~o(f[< al > , . . . , <  am >]) = f [ <  ~o(al) > , . . . , <  ~ (a , )  >] .  

More generally, if F is an endofunctor  in a category C we let F-Alg ,  F-co-Alg 
and F-fp  denote  the categories whose objects are respectively the F-algebras (i.e. 
arrows FA a A), F-co-algebras (i.e. arrows A ~, FA) and F-fixed-points (i.e. 
isomorphisms FA a A) and whose arrows from (A,a) to (S,b) are those arrows 
~o : A --+ B such tha t  iooa = boF~ for algebras and fixed-points and F~oa = bo~ 
for co-algebras. 
Our purpose,  in this section, is to provide a generalization of the  construction 
of terms and infinite trees corresponding to a signature, a signature being now 
some endofunctor  of the category Set .  For this, to any endofunctor  F, of Se t  
we associate an endofunctor  3 r of the functor  category C = Func(Set, Set) .  3 r 
is the endofunctor  of C defined on objects (functors F) and on arrows (natural 
t ransformations r) by : 1 

3 r F = l c + E F  and ( ~r r ) x= lx+~ . rx  

We recall the category of sets admits  initial and terminal  elements being respec- 
tively the  empty  set 0 and any single.ton set, say {~}. Let 0 and 1 denote the 
constant  endofunctors  of Se t  whose respective values are 0 and {~}. They are 
the initial and terminal  objects of C, moreover C is, as the category Se t ,  complete 
and co-complete. Let A and V be the following chains on C : 

A = 0 ~-~ 70 t~o 7 5 0 . . .  ~r~ 0 ~"~ F~+10. . .  

V = 1 ,~o 71 ~¢o ~rZl. . .  ~r= 1 ~ 7 , + : 1 . . .  

(where ~0 and 40 are uniquely defined by universality of 0 and 1) 
and let (T,j) = colim(A) and (T~,Tr) = lira(V) be their  colimiting cone and 

l l f x  is an object in a category we let Ix s tands for the identi ty arrow in x ; in par t icular  1¢ is the identi ty functor 
from C to itself. 
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limiting cone respectively. Concerning limits and colimits in functor categories we 
recall from [Sch72] the following result : if P is complete (resp. co-complete) the 
functor category Func(C, P) is also complete (co-complete) and the constructioon 
is pointwise which means that  for every object c of C the evaluation functor Ec : 
Func(g,D) --* D defined by Ec(F) = F(c) and E~(r) = re preserves the limits 
(co-limits). It follows that  (TX, jx) = eolim(AX) and (T~X ,~x )  = l i m ( v X )  
where A X  and v X  stands for the chains gotten by evaluating A and V at X. 2 
We observe that  : 

a x  = 0 ~°:~ &~ ~x(%~) ~ 0 . . .  Yj?O ~(%x) ~57+~0... 

v x  = {a} ~0,x ~x{a} 5 %'x) ~pa}.. .  57{a} ~,#0,x)z?+l{a}... 
where ~rx is the endofunctor of Se t  defined on sets and mappings as : 

~rxY = X + EY ~rxp = l x  + Ep  

Now let us have a look to TX and T ~ X  in the particular case where E is the 
functor associated to a ranked alphabet. First, we notice that  in the chain 

each set is an actual subset of its follower and the mappings P~,x are the inclusion 
maps. The colimit TX is then their set-theoretic union i.e. the least set (regard- 
ing inclusion) containing X and such that  if f E E ,  and t l , . . . , t ,  E T X  then 
f [ t l , . . . ,  t,] is also an element of TX. We then meet the usual definition of the set 
of terms corresponding to a signature. Now, as T ~ X  is the limit of the chain 

v X = I  ,'% X + E I ~ X + E ( X + E 1 )  ¢~__2 . . .  

an element of T°°X is a sequence (un)neN such that  Un E 5r~l and for every integer 
n one has un = ¢ , ,x (u ,+ l ) .  Note that  the limiting cone Irx : T°°X --+ V X  satisfies 
the following : 

~x ,o ( t )  = ~t 

rfx, n+l(< :~ >) = < a: > 
rrx,n+l(f[tl,...,t,]) = f[Trx,,(tl),...,rrx,,(t,)] 

We then have the usual construction of infinite tree, where a tree is represented 
by the sequence of its nth-sections. 

t 

2There is a slight abuse of notation justified by the isomorphisms Func(w, Func(Set, Set)} -~ 
Func(Set,  Func(w, Set}) and Func(w °p, Func(Set, Set)) ~ Func(Set, Func{w °p, Set)) 
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We usually assume that  ~ owns at least one operator of arity 0 otherwise the set of 
closed terms (i.e. TO) should be empty ; under this hypothesis we may prove that  
the set of term TX is a dense (in a topological sense) subset of TooX. This result 
will generalize if we make some additional assumptions ; those considerations lead 
to the following definition that  summarize the hypothesis on ~ which are necessary 
so as to make our construction work. 

D e f i n i t i o n  2 A signature E is any endofunctor of Set  such that for any set X, 
E X  is a non-empty  set ; and, i f  X is a subset of Y with inclusion map i : X ~ Y ,  

E X  is a subset of ~ Y with inclusion map El.  

3 T h e  t e r m  m o n a d  o v e r  a n  w - s i g n a t u r e  

As we stressed in the introduction, in both presentations of algebraic theories 
term substitution plays a central role ; it is modelled by composition in Lawvere's 
algebraic theories and by a natural  transformation (called structure map : #) 
in a monad . Incidently, another  natural  transformation (called embedding of 
generators : y) allows substitutions to take place without explicit mention to 
variables. 

D e f i n i t i o n  3 a monad on a category C is a triple (T, 17,/t) where T is an endo- 

functor  on C and r I : I -:+ T and # : T 2 ~ T are natural transformations (I  is the 

identi ty endofunctor of C) satisfying the following commuting diagrams : 

T T T  tt T _- T T  T n T -- T T  ~ Tn T 

L. 
T T  ~ t  T T 

Those axioms, that  should be compared with the axioms of a monoid (the asso- 
ciative law and the two unit laws), provide the minimal conditions expected for 
a substitution operation namely being associative and well-behaved regarding the 
embedding of elements. 

In order to supply T and T °O with monad structures, we make the additional 
assumption that  the functor F, associated to ~,  is both w-co-continuous and w °p- 

continuous ; we shall say, in such a case, that  ~ is an w-s igna tu re .  We know (see 
[SP82]) that ,  under those hypothesis, we obtain an initial Y-algebra and a terminal 
Y-co-algebra whose respective carriers are T and Too. More precisely, ¢ : A --~ 7T  
defined by en  -=- Yjn o Y ~ 0  is a co-cone ; let ~ be the mediating arrow ¢ = ~ o j 
; thanks to w-co-continuity of Y ~ is an isomorphism and ( T , ~ - I )  is the initial 
Y-algebra. In the same way, We obtain ¢ : Y(Too) --+ Too making (Too, ¢-1) the 
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terminal 5r-co-algebra ; moreover, (T, ~o -1) and (Too, C) are, as well, the initial 
and terminal  elements of the category of 5r-fixed points. Now, for our particular 
case, we observe that  ~-1 : 5rT = I +  :ST ...... .~ T splits into ~a -1 = [7,a] where 
7 : I -:~ T and a : E T  ~ T.  In the same way ¢ = [7oo, ~roo] where 7oo : I -=* T °O 
and aoo : EToo -:* Too. Since all previous constructions were made componentwise, 
(TZ,[7x, Crx]) and (T°°X,[7~,a~]) are actually the respective initial 5rx-algebra 
and terminal  5rx-co-algebra. So 

(TX,[7x, ax]) is the initial 5rx algebra] 

Spelled out, for any 5rx-algebra (Y, [a,/3]) there exists a unique mapping ¢ :  Tx --* 
Y such tha t  

X + ETX [7x, a x]. TX 

lx+ Z¢ l 1¢ 
X + E Y  [a,/3] . y 

commutes.  

In other words, splitting this diagram into two parts, for a given set Y and a 
couple of mappings a : X -+ Y and/3  : EY -+ Y there exists a unique mapping 
¢ : Tx --+ Y such tha t  the  two following diagrams commute.  

X 7x "TX ETX ax "TX 

L 
Y E Y  ~ . Y  

So we have an adjunction Se t  <F,V> E-Alg  where U is the forgetful functor ; F 
sends X to the  E-algebra (TX, ~x) and is defined on arrows as follows : given a 
mapping ~a : X --* Y , F~o is the unique morphism of E-algebras from (TX, ax) 
to (TY, av) such that  UF~ o 7x = 7Y o ~o. Since T ~  is the underlying map- 
ping of a E-algebra morphism from (TX, ax) to (TY, ay) (by natural i ty of a) and 
that  T~o o 7x = 7Y o ~a (by natural i ty of 7) it follows that  T ~  = UF~ ; and 
then T = VF. Now, we know (see, for example [BW85]) tha t  to each adjunction 
(U, F, 7, e) (where F is left adjoint to U with unit 7 and counit c) corresponds the 
monad (UF, 7, UeF). So if we let # = UeF, the triple (T = UF, '7, #) so obtained 
is a monad ; we shall call it t h e  t e r m  m o n a d  o v e r  t h e  s i g n a t u r e  E. 
As particular case if (Y,y) is a E-algebra, there exists a unique T-algebra (Y, y*) 
extending it in the following sense 
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Y ~Y "TY ETY a y  ,TY 

1 
Y EY Y , Y 

We shall call y* the i n d u c t i v e  e x t e n s i o n  of y. 
We recall tha t  a T-algebra is a T-algebra such that  evaluation commutes with 
subst i tut ion ; more precisely 

D e f i n i t i o n  4 If T = ( T ,  7, #) is a monad on a category C a T-algebra is a pair 
(A,a) where A is an object of C and a :  TA ---* A ,  an arrow 5ts structure map) 
such that both following diagrams commute. 

A YA "TA TTA #A "TA 

l~A [a Ta[ [a 

A TA a " A  

As for E-algebras, morphisms of T-algebras (A,a) and (B,b) are any arrow ~ :  
A --~ B such that  ~ o a = b o T~o. T-algebras and their morphisms constitute a 
category denoted CT ; it is the Eilenberg-Moore category associated to T.  Now we 
prove the 

P r o p o s i t i o n  1 for any set Y, Izr = UeFY : T T Y  -=* T Y  is the inductive ex- 
tension of (ry : E T Y  -=~ T Y .  Moreover, if (Y,y) is a E-algebra then (Y, y*) is a 
T-algebra. 

Proof 
A set X and a E-algebra y=(Y,y) being given, let us denote g~ : FX --~ y the mor- 
phism of E-algebras corresponding, via the adjunction, to the mapping g : X --+ Y. 

~X 
X • TX~. 

Y ~ T Y  uey 

ii FX= 
! I (TX, ax) 

(V,yl ~*-9"- (Tr,~r) 
=y =FUy 

The component  of the counit e : FU -=* I of the adjunction in y satisfies : g~ - 
ey o Fg and thus Ug~ = Uey o Tg. Now if we take X = Y  and g = l r  we obtain 
the inductive extension of y as y* = Ug ~ = Uey and, in the particular case where 
y -- (TY, ay) = F Y ,  we have a~ = V e R Y  = ~y. 
Now applying the naturali ty of the co-unit to the E-morphism l~v : (TY, cry) --~ y 
leads to l~rOe(Ty, ar) = eyoFV(l~v) and then, by applying U, y*oVeF--~r = VeyoTy* 

i.e. y* o #TV = Y* o Ty*. [] 
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R e m a r k  : On one hand a T-algebra is a E-algebra, more precisely we have a 
natural  transformation r = ~ o Er/ : ~ .~ T and, corresponding to it a functor 
V ~ : Se t  T ~ E -Algde f ined  b y V ~ ( A , a )  = EA ~A, T A - - ~  A and U~(f) = f 
on T-algebras and arrows respectively. On the other hand we just  prove that  
if (A,a) is a E-algebra its inductive extension is a T-algebra ; actually we have 
a functor called the E i l e n b e r g  M o o r e  c o m p a r i s o n  f u n c t o r  ¢ : E-Alg  .... 
Se t  T defined by ¢(A, a) = (A,a*) and ¢ ( f )  = f .  Those two functors are inverse 
isomorphisms (as readily verified). Axioms for T-algebras impose evaluation to 
respect compositionality and that  is why a T-algebra is the same da ta  as a E- 
algebra. 
We can summarize our results in the following 

P r o p o s i t i o n  2 Let ~ be a signature, the forgetful functor U : E - A l g  --+ Se t  haz 
a left adjoint F. We define the term monad over the signature ~ as the monad 
(T, 7, #) which results from that adjunetion. If F X  = (TX,~rx) the arrows ~rx are 
the components of a natural transformation ~r : E T  -:+ T and the component of # 
at a set X is the unique arrow making both following diagrams commute. 

r~TX ~rTX 
T X  ~ T T X  E T T X  * T T X  

T X  N T X  ax-  '~ T X  

This provides an inductive definition of #. 

When E is the functor associated to a ranked alphabet ,  this inductive definition 

is equivalent to : 

t > )  = t 

px ( f [ t l , . . . , t , ] )  = f [ p x ( t , ) , . . . , # x ( t , ) ]  

Another example is the following. If A is a set of actions we define E X  as the set 
of all finite subsets of A × X, it extends into a functor (we define E on mappings 
by extension). The corresponding monad of term is (SA,~/,#) where the set of 

synchronization trees SA(X) is the least set verifying : 

• <x>eSA(x) 
• any finite subset of A x SA(X) is an element of SA(X) 

(in particular the empty set is a synchronization tree sometimes denoted nil) 

SA(X) is the set of finitely branching, non-deterministic and unordered finitary 
trees whose branches are labelled by elements in A and leaves by elements in X. 

For example : 
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{ < a , { < c , < x > > } > ; < b , { < d , O > ; < e , < z > > } > }  = C x ~ e  

Its mapping function is defined for ~ : X  -e y by SA(~)(< x >) = < ~(x) > and 
if 
T = {< ai,Ti > / i e I }  ¢ SA(X)  then SA(~)(T)  = {< a~,SA(~)(T~) > / i e I}  
The embedding of generators Yx : X --+ SA(X)  is given by : yx(x )  = <  z > 
and the s tructure m a p / t x :  SA(SA(X)) --+ SA(X)  b y / t x ( <  t >) = t and if 
T =  {< ai, T~ > / i E I} C SA(SA(X))  t h e n / t x ( T )  = {< ad,#x(Ti) > / i E I} 

Since the forgetful functor U : E-Alg  ; Se t  has a left adjoint an 0J-signature 
is a particular case of i n p u t  p r o c e s s  as defined by Manes ([Man76]) ; the fol- 
lowing proposition then follows from the similar and more general result on input 
processes. (see also [Ala75]) 

P r o p o s i t i o n  3 the term monad (T,~?, #) is the free monad generated by E ; that 
is to say, the natural transformation r = ~r o Ey : F. -:+ T is such that for every 
monad (T', r/',/t') and natural transformation ~ : E " ~ T'  there exists a unique 
monad morphism ~ such that ~ = ~ o v. 

4 T h e  m o n a d  of  infinite trees  

Concerning T °O we already have an embedding of generators (T/°°) it remains to 
TooTOO TOO. define the structure map : /too : -=~ For this, we define a morphism 

of w°P-chains ~x : vTOOX ~ ~TX as follows : 

oo ¢T= X'n {~} ¢T~x,o T~X + r.{~} . . . .  (vT X).~ T a X  + r,(vT~X). 

Cx,o Cx,. 
{a} .  x + z{a} . . . .  ( v x ) . .  x + r.(vX). 

• (x,o = l{n} is the identity mapping on {fl} 

• for every integer n : ~x,.+l = [rrx,.+l ; E~x,.]. 

proving that  ~x is a morphism of w°P-chains amounts to proving that  each elemen- 
tary  square commutes which is an easy verification. 
We then define # ~ :  TooTooX ~ TooX as the mediating morphism between the 
cone ~x o ~rT=X :TooToo ~ v X  and the limiting cone ~rx : TooX ~ v X .  ~x 
is clearly natural  in X, the natural i ty of/too then follows from the fact that  the 
components of 7r are limiting cones and consequently left-cancelable arrows of the 
category Func(w °p, Set) .  
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v T ~ f  

VT°° X 

TCOTooX 

TC°T°°f 1 
TOOTooy . . . . .  Tooy 

vT°° y 

~x 

x 
• T ~ X  

I~ V [ T°° f 

v X  

v l  

v Y  

And we prove : 

Propos i t ion  4 (T ~,  ~ ,  #~) is a monad. 

In order to establish this result, a first stage consists in verifying by diagram 
chasing the following lemma. 

Lemma 1 For every set X the following three diagrams (that we 8hall name re- 
spectively m o n a d l ( X ) ,  m o n a d 2 ( X )  and  m o n a d 3 ( X ) )  c o m m u t e .  

oo TO%;~ 
ETOOTooX .... a~°°x , TOOTooX T o o x ~ T ~  TOOTooX ,, XToo X 

l 
ET°°X , a~ . T°°X T°°X 

P r o o f  : 

Consider the diagram (in Func(w °p, Set)) 

T ~  X + ET°°T°° X 

IT=X + ~rT-X 

J 
[~x, Cx o ~ex] 

(11 
T~° X + E ~7 T ~ X 

~ Too X 

[ r] T~ X , O'T°°~ X ] . . . . .  TO.TOO X 

T ~ X  

(3) [~rx (2) 

vX 

• v T ~ X  
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Since Cx,- o ~rx,.+l = lrx,. it follows [~rx,.; Cx,. o E~x,.] = Cx,. o [~rx,.+l; E~x,.] = 
~x,. o CT~X,. i.e. (1) commutes. (2) commute by definition of # ~  and since 

Cx o E~x = ~x o ~ 

[lrx; Cx o E~x] o (1T~X + ETrT-X) = [~rx; %bx o E~x o ~rT~oX)] 
= Cx o zC x o 

= o o 

= ~rx o [1T~X; a ~  o E#~] 

i.e. (3) commutes. Since diagrams (1), (2) and (3) commute,  as well as the outer 
rectangle and because 7rx is a left-cancellable arrow in Fune(Wop, Set)  (as a lim- 
Ring cone) it follows that  diagram (4) commutes i.e. monadl(X) and monad2(X) 
commute.  Now, consider the following diagram : 

1T=X 
"°° X ., Too X 

monad3(X) / 
TOO - oo~ / 

TooTooX 

[ . r - x  (8) ,~x ~ X  (z) 

v T o o  X 

7X ~- v X  
Vlx 

We prove I x  o V ~  = V l x  by induction, (6) commutes by definition of ~oo ; 
(7) and the outer rectangle commute by naturali ty of ~r. As previously, it follows 
that  the upper triangle (i.e. monad3(Z)) commutes. 
[] 
Now,to deduce the associativity law from monadi we shall need some topological 
arguments expressing that  TX is (in a topological sense) a dense subset of T°~X. 
Firstly we need to define the embedding of TX into T ~ X  ; since (T, [y,#]) and 
T ~,  it/~, #~]) are the respective initial and terminal ~r-fixed points we know there 
xists" a uniq/l"e natural  transformation a : T --=-* T ~ such that  

X + E T X  • T X  

lx + Eax [ lax commutes. 
X + ETOOX [r/~,a~l. TooX 

In other words, splitting this diagram into two parts, both following diagrams 
(respectively named morphl(Z) and morph2(X)) commute.  

r/x aX 
X * T X  :ETX * T X  

T ° ° X  ~ T o o X  • TooX 
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L e m m a  2 The inductive extension v x  : T T ° ° X  ~ T ° ° X  of cr~ : E T ° ° X  - - - .  

T ° ° X  is given by Vx = # ~  o aTooX . 

Actually both diagrams below commute since (1) is m o r p h l ( T ° ° X ) ,  (2)is morph2(T  ~ 
(3) is m o n a d s ( X )  and (4) is m o n a d , ( X ) .  

~T=X O'TOO X 
TooX , . T T ° ° X  E T T ° ° X  ~ T T ° ° X  

XX _ ~ l )  t a T ~  X EaT--X I (2)o.~.X I ar~X 
X T T X ET°°T°°X . T°°T°°X 
1r~;¢\ (3), oo 

N T ~ X  E T ~ ' X  " T ~ ' X  

D e f i n i t i o n  5 A mapping f : T ° ° X  ~, T ° ° Y  is said i t e r a t i v e  (w.r.t.  T °°) i f  there 

exists a chain morph i sm F : v X  - - ~  v Y  such that  f is the mediat ing morphism 

between the cone F o ~rx : T ° ° X  ) v Y  and the l imit ing cone Try : T ° ° Y  ~ v Y .  

For example tt~ is iterative for any set X, T ° ° f  is iterative for any mapping f : 
X --+ Y ; note, moreover that  the composite of two iterative mappings is, as well, 
iterative. 
Then we can state the following lemma which says that  two iterative mappings 
that  agree on finite trees are equal (we call finite trees those elements of TooX 

which are image of some term through C~x) 

L e m m a  3 ( D e n s i t y  l e m m a )  i f  f ,  g : T ° ° X  - - ~  T ° ° Y  are two iterative mappings 

such that f o ~ x  = g o a x  then f = g. 

S k e t c h  o f  p r o o f  : we recall that  the elements of T c c X  are the sequences (u~)~eN 
such that  u~ E F)~I = ( v X ) n  and for every integer n, u .  = ¢.(u~+1) ; we supply 
T c ° X  with an ultrametric distance as follows : 

d(u,v) = in f{2-"  ; u~ # v~} 

We verify that  ( T ° ° X ,  d) is a complete metric space, that  the finite trees constitute 
a dense subset of TooX (for the metric topology) and that  an iterative mapping is 
continuous for that  topology. [] 

P r o o f  o f  t h e  p r o p o s i t i o n  : Consider the diagram 

T°°T°°T°°X ~ ,,~ 

TTOOTO~X . TOOTOOX 

T~tt~ (4)T#~ [ (l) ltt~ 
b, X 

TTooX . TooX 

T°°T°°X ~ tt~ 
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m o n a d l ( X )  t o l d u s t h a t  I t S :  (TOOT°°X,a~ox)  ) (TooX,~r~) is a morphism of E- 
algebras ; thanks to the Eilenberg-Moore comparison functor ¢ : E-Alg  ~ Se t  T 
we know that  It~ is, as well, a morphism of T-algebras between the corresponding 
inductive extensions i.e. (1) commutes. (2) and (3) commute  thanks to lemma 2 
and (4) commutes because a is a natural  transformation. Then it follows : 

(It~ 0 It~oox) o O~TCCT= X : (It~ o T°°It~) o aT~T~X 

Since It~ o #~°~ x and It~ o T°°It~ are iterative mappings thanks to the density 

lemma they are equal. Which completes the proof [] 

We recall that  a morphism of monads a : (T, r/, It) ==; (T', r/, It') is a natural 
transformation a : T -:* T' preserving the structure i.e. verifying 

I Y - T  T T  It " T  

T' T 'T '  # " T '  

where a a  = a T '  o T a  = T ' a  o a T  is the vertical composition of natural  transfor- 
ma t ions .  Now we can state the following 

P r o p o s i t i o n  5 a : T :.~ T °O is a monad  morphism.  

P r o o f  : 

~ x  Px 
X - TX T T X  -~ T X  

l a x  T a x  a x  

v x  
r/~- x . / o o  X a a x  (3) T T ° ° X  * T ° ° X  (4)/// 

, TOOT X / 

(1) is m o r p h a ( X ) ,  (2) follows from m o r p h 2 ( X )  thanks to the Eilenberg Moore 
comparison funetor, (3) is the definition of the vertical composition of natural  
transformations and (4) is lemma 2. [] 

To end this section, we prove that  the monad of infinite trees is iterative which 
means, in analogy with Elgot's terminology, that  all non degenerated equations 
have a unique solution. To make this precise, we first give some definitions. Let 
T ---- (T,~/,#) be a monad over Set ,  for a given valuation v : X --+ T Y  we let 
v* -= I t y o T v  : T X - - *  T Y .  v*(t) is the term t in which each occurrence of a 
variable x E X has been replaced by its value v(x)  E T Y  ; so we shall sometimes 
denote v*(t) as t[v]. If z • X and u • T Y  let v--(u/x)  denote the valuation 
v :  X ~ T Y  such that  v (x)=u  and v(y)=~/(y) for y # x. 
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D e f i n i t i o n  6 A monad T = (T, ~1, ~) i8 said to be a l g e b r a i c a l l y  c losed  whenever 
x is a variable in X, t a term in T X  and t •< x > there exists a term v E T ( Z \ { x } )  
such that t[v/x] = v. I f  moreover this solution is unique T is said to be i t e r a t i ve .  

P r o p o s i t i o n  6 For every w-signature E, the monad (T °°, Too,/~oo) of infinite trees 
over that signature is iterative. 

S k e t c h  o f  p r o o f  : with the hypothesis of the above definition, the mapping 
subs~,t : TooX -+ TooX defined by subsx,t(v) = t[v/x] is contractive and then 
admits, thanks to Banach's fixed point theorem, a unique fixpoint in TooX. [] 

5 C o n c l u s i o n  

The restriction to w-signature may probably be weakened if, in our construction, 
we admit  chains of a sufficiently large ordinal. But this hypothesis was essential for 
the density lemma ; will we still be able to define substitution for infinite objects 
in that  case ? 

To conclude we note that  if E is an w-signature, we can deal with equational 
varieties of T-algebras defined as follows. Let (D,5) be a T-algebra (where T is the 
term monad corresponding to ~) and v : V --~ D be a mapping (called a valuation). 
Let v~ = 5 o Tv  : T V  * D , it assigns each term in T V  to its value in the valued 
interpretation (D,5;v). Now let a E-equation be a pair (el, e2) of elements in T V ,  
we say that  an interpretation (D, 5) satisfies (el, e2) if, for any valuation v: V --* 
D, one has v~(el) ---- v~(e2). Defining an equational presentation as a pair (E,E) 
where E is an w-signature and E a set of E-equations, we say that  a E-algebra is a 
(E,E)-algebra when it satisfies every equation in E ; the class of all (E,E)-algebras 
is called a variety of algebras. Let (E,E)-Alg denote the full subcategory of E-Alg 
corresponding to the (E,E)-algebras. Thanks to a categorical version of Birkhoff's 
theorem due to Hatcher [Hat70] and Herrtich and Ringel [HR72] used here in the 
particular case where the base category is Se t  we deduce that  the forgetful functor 
from (E,E)-Alg to Se t  admits a left adjoint and the category of (E,E)-algebras is 
isomorphic as a category of sets with structure to the category of Try,E-algebras 
where Tr.,E is the monad induced by this adjunction. And moreover we are able to 
characterize the full subcategory of T°°-algebras verifying a set E of E-equations as 
an equational variety (of Se t  T°°) by intersecting (a pull-back construction) the two 
subcategories (E, E ) - A l g  and Se t  T~ of E-algebras. For example we can describe 
a variety of process algebras by mean of equations over finite synchronization trees 
and consider the free algebras corresponding to that  set of axioms. We feel that  
an interesting outcome of the construction described in the present paper is to 
set up a link between the models (e.g. process algebras) and the construction of 
domains those models are based upon. 
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