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Abstract. 

We introduce a calculus for concurrent and communicating processes, which is a direct and simple 

extension of the A-calculus. The communication mechanism we use is that of Milner's calculus 

CCS: to communicate consists in synchronously sending and receiving a value through a shared 

port. Then the calculus is parameterized on a given set of port names, which ave used in the two 

primitives for sending and receiving a value - as in the ),-calculus, a value can be any term. We 

use two parallel constructs: the first is interleaving, which does not allow communication between 

agents. The second, called cooperation, is a synchronizing construct which forces two agents to 

communicate on every port name. We show that the A-calculus is a simple sub-calculus of ours: 

A-abstraction is a particular case of reception (on a port named A), and application is a particular 
case of cooperation. 

1. Introduction. 

The A-calculus of Church formalizes in a very concise way the idea of functions being applied to 

arguments. Despite its simplicity~ this calculus provides an astonishingly rich model for sequential 

evaluation, see [2]. A challenging problem that has emerged for some time is to devise a similar 

framework for concurrent and communicating processes, relying upon some "minimal" concepts 

for concurrency and communication. A natural claim is that such a formal model for processes 

should contain the A-calculus as a simple sub-calculus - this would provide us with the full power 

of combinators. This note presents an attempt in this direction. 

Regarding communication, our main source of inspiration is Milner's CCS [5]. Communi- 

cation in CCS is a value passing act which two processes perform simultaneously: one of the 

two partners sends a value through a labelled port, while the other receives this value on a port 
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labelled by the same name, say a.  Correspondingly there are two communication primitives in 

CCS, an output  construct and an input construct. The output  construct is ~e.p, representing a 

process sending e on the port  a,  and then behaving as p. In this construct, e is an expression 

belonging to some outer language. The complementary input construct is ~ . p ,  representing a 

process receiving some value at the port  a; here z is a bound variable, and receiving the value v 

yields a new process p [ z  ~ v] ,  that  is p where v is substi tuted for x. Communication occurs when 

two concurrent processes perform matching send and receive actions. Therefore the in te r~ t ion  

law may be stated,  using II for parallel composition, as: 

where v is the result of evaluating e. In CCS such a transition is labelled by the communication 

action r. 

Let us discuss briefly how one could use CCS's ideas to find a generalization of the )~-calculus. 

Milner remarked (of. [5] p.128) that  one may compare a function's argument places with input 

ports of a process. Indeed the terms ~z.p of A and ax .p  of CCS behave quite similarly: both 

of them wait for a value to be substi tuted for ~ in p. This suggests that  one could regard these 

two constructs as the same one - ~ is thus a port  name, the only one for the ~-calculus (el. [5] 

p.49/. Another obvious idea is that  application of a function to its argament should be a special 

kind of communication (see again [5] p.128), or more precisely that  ~-reduction should be the 

typical instance of an/nteract ion law. Then application appears as a parallel composition, where 

the argument is explicitly sent to the function. Regarding the sending primitive, we shall keep to 

the philosophy of the ~-calculus, where any term is a possible value. Then the sending construct 

is ~p.q, where p is any agent. In fact we are only interested in the case where q is an idle (or 

terminated) process 11., which is like nil in CCS. Then ~p will be an abbreviation for ~p. ~. 

To work out the previous ideas, let us now introduce a first a t tempt  - the calculus we actually 

propose will be a little bit more sophisticated. In order to build agents a~ .p  and ~p we need a 

denumerable set Xof  variables z,  y, z . . . ,  and a non-empty set N of por t  names. We shall use a ,  

~ . . .  to range over por t  names. Then the syntax of the tentative calculus is given by the following 

gra~nmar: 

p : := ~ t z l ~ z . p I ~ p l ( p t l p )  

where ~ is any port  name. We shall use p, q, r . . .  to range over terms. As usual, the variable 

z is bound if it is in the scope of an ax,  and some care is needed in defining substitution. For 

simplicity, we shall adopt  Barendregt 's  variable convention ([2]) :  in any mathematical  context 

where they occur, the terms p l , . . . ,  1D~ are supposed to exhibit bound variables different from the 

free variables. 

In this calculus, communication is given by an obvious adaptat ion of the interaction law of 

CCS, namely: 

The term ~ represents an idle process, and is a unit  for parallel composition. Therefore the term 

we get after a communication, that  is (p[x ~-~ q] II t]), behaves like p[~  ~-~ q]. Then the interaction 

law is similar to/~-reduction, and, assuming that  N contains a distinguished name ~, we can try 

to represent A as the subset of terms given by the grammar: 

p "'= • I  x,p I (p II 
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We could denote (p [1 ~q) by (pq) (application), so that the previous rule is the ~-rule, up to the 
simplification (r [] ~) = r. However this simple calculus fails to capture the ),-calculus. Let us see 

this point in more detail. 
CCS also formalizes the natural idea that parallel composition is commutative and associative, 

so that processes need not be contiguous to communicate - unlike ),-terms where communication 
is sequential application. In other words, the following should hold in our tentative calculus: 

(""  It ~x.p tl"'" II aq t 1"" ) -*  (""  tl p t z ~ q ]  H---H ~ li---) 

Let us assume for a while that  we have two rules stating that parallel composition is commutative 
and associative: 

((pllq) l l r ) ~ s  ~ (p11(q l l r ) )~  ~ 

Cpllq)--~s ~- (qllp)--~s 
These two rules introduce conflicts, arising from communication (technically speaking, we should 
say that associativity introduces overlapping redexes). As in CCS, there is a possibility that inputs 

at the same port may have different sources, and outputs at the same port different destinations. 
Then two communications are conflicting if they share the same destination, or the same source, 

the typical example being ((ax.p H &q) ]1 &r), and solving the conflict introduces non-determinism. 
To our view~ the non-determinism arising from conflicting communications is a rather pleasant 

feature. But there is a negative consequence to the associativity (and commutativity) of parallel 
composition, namely that  we lose the correspondence with ),-calculus application. For instance 
the term ((),zg.x)~t)v cannot be accurately represented by p = ((),z.),y.x [[ ~t)][  ~v) since we 

have p*-~- ((v [[ 1L) [I 11.). One can recover from this failure by using the relabelling and restriction 
constructs of OCS, as shown by Thomsen in [7]. However, in Thomsen's OHOOS the ),-calculus 

is only caught up to observational equivalence; in particular the ~-reduction is performed in two 
steps in his calculus, and thus is not an instance of the communication law. 

We insist on obtaining the ),-calculus as a sub-calculus; more precisely, our goal is to find a 
direct generalization of the ),-calculus, that is a calculus where the operational semantics, once 
restricted to an appropriate subset of terms~ gives an exact image of the ~-reduction on A - recall: 

the ~-reduction should be an instance of the interaction law. We do not want for instance to 
restrict the evaluation rules, by disallowing associativity of parallel composition for a particular 
kind of terms. Hence we must abandon the parallel composition of CCS - we do not expect to 
get CCS as a sub-calculus. One should observe that this parallel composition involves both the 
notion of concurrency and the notion of communication. Then our proposal is to split the into 
two constructors. The first is the usual interleaving construct (p ] q), which consists in juxtaposing 
p and q, without any communication wire between them. This operator represents concurrency. 
The second construct, denoted (p ® q) and called cooperation, consists in plugging together p 

and q - up to termination of one of them. This operator provides for communication, which 
can only occur within a (p ® q). On the other hand, a compound process (p I q) can propose 
communications to its environment, and the interleaving operator is commutative and associative 
(and satisfies (Pl ~-) = P)- Therefore the interaction law becomes: 

I . . . )®( . . . l 'n l . . . )  
Like the operator considered by Milner in [5] (p.21), the operator ® is no~ associative. This 
allows us to represent ),-calculus application (pq) by a combination of cooperation and output, 
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namely: 
(pq) = (p ® ~q) 

so that a particular case of the "~-rule above is: 

(Ax.pe ~q)~ (p[=~q] e ~) 

To ensure the correctness of this representation, the semantics of cooperation must be such that 

(p® 11) behaves like p. In other words, ® is not a static operator: (p®q) cannot communicate with 

another process if p and q are not terminated, but  it will be free to do so once p or q terminates. 

To capture the usual operational semantics of the A-calculus, we must also introduce structural 
ruIes, which formalize the fact that reduction is compatible with the constructors. For instance 

there will be two rules allowing internal computations within a guarded process: 

p.__+ pt t- ~p ~ &pl 

p--~ p' ~- ax.p--~ ax,p' (~ rule) 

These do not hold in CCS, where the transitions describe the behaviour of a reactive system, 

rather than an evaluation mechanism. Processes in our calculus could be qualified as interactive 
systems rather than reactive - in fact this is a matter of evaluation strategy. 

One should observe that we still have conflicting communications, so that we can represent 

a non-determlnistic choice, using the standard combinator K = Ax.Ay.x, which chooses its first 

argument and deletes the second one: 

(p • q) = (K e (Ap I Xq)) 

It is easy to see that we have: 

(p (9 q) ~ (p ® (IL I 11)) -- p and (p • q) (q ® (~ I a)) - q 

where - is the syntactic equality, defined in the next section. An obvious consequence is that the 

Church-Rosser property no longer holds for reduction in our calculus - which therefore cannot 

be "included" in any way in the A-calculus. Moreover it would be inconsistent to regard the 

associated conversion as establishing a notion of equality(S). We shall adopt an intensional notion 

of equality, namely that of observationaI equivalence of Milner [5], which relies on the commu- 

nication capabilities of a process. This has already been used by Abramsky in [1] to give a new 

semantics for A-terms. 

To conclude the informal presentation of our calculus, let us say a few words about the 

binders. In the ,~-calculus, these are sequences ~xl . . . . .  ~xk corresponding to application to a 

stream of arguments. Since in our calculus we may have interleaved arguments, it seems natural to 

correspondingly generalize the binders~ allowing not only sequences of ~x's, but also interleavings. 

Then we will have terms of the form (O~lX 1 [ * ' '  ] O~kXk).p, meaning that p waits for k unordered 

values. This allows us for instance to represent non-deterministic choice as a simple variant of the 

combinator K, namely @ =def (Ax [ Ay).x. We will also see later how to represent some "parallel 

functions", not definable in the A-calculus. 

($) as a matter of fact, conversion is not regarded as the semantical equality for the A-calculus, 

cf. [2] proposal 2.2.14. 
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2. The ~-calculus. 

Given a denumerable set X of variables and a non-empty set N of port names, we first define the 

binders, which are the terms built according to the following grammar, where c~ is any port name, 

and x stands for any variable: 

P ::= ~ I o~x I (p" p) I (p I p) 

Intuit ively ~x represents a reception on the port a, (p. pl) represents sequencing of such receptions 
while (p I P~) represents their interleaving. The term ~ is an empty binder, therefore we shall 

consider binders up to the congruence "-- generated by the equations: 

(P'~) = p = (¢.p) 

(Pls)  = P =  (~IP) 
The congruence --" defines the syntactic equality over binders. Any binder p will bind the variables 

belonging to the set var(p) defined as follows: 

(i) wr(~) = 0 

(ii) wr(=~) = {=} 

(iii) wr(p.  ¢ )  = wr(p) U w,(p') 

(iv) w~(p I p') = w,(p) u w @ ' )  
The syntax of the "/-calculus is given by the following grammar, where o~ is any port name of N, 
p is any binder, and x stands for any variable: 

P ::= ~ i x l a p I ( p ) ' p t ( p ® p ) t ( p l p )  

We denote by r the set of terms generated by this grammar, and we shall use p, q, r . . .  to range 

over terms - which will be called agents or processes. For simplicity we shall denote (ax).p by 

ax.p, and we shall omit some parentheses, using for instance (PlP') 'P instead of ((p I P'))'P" A 
variable x is bound if it is in the scope of a binder. Then in substituting q for y in p, yielding 

p [y ~ q], we might have to rename some bound variables of p. Although this is a standard matter 

(see [2], appendix C), it is worth to carefully define substitution. Here we adapt the definitions 

of [6]. The set free(p) of free variables of the term p is given by 

(i) free(~) = 

(ii) free(x) = {x} 

(iii) free(ap) = free(p) 

(iv) free((p).p) = free(p) - wr(p) 

(v) , ee (p  e q) = - e e ( p )  U free(q) = . ee (p  I q) 
A term p is closed if free(p) = 0. A substitution is any mapping a: X --+ r .  We use a, a~.. .  

to range over the set S of substitutions. The identity substitution is denoted ~. The updating 
operation on substitutions is defined as follows: let xEX,  pEF and aE S; then the new substitution 
a t = (x ~-~ p/a) is given by: 

p i f y = x  
a ' ( y ) =  o(y) otherwise 

For a binder p and a renaming, that is a substitution ~: X --+ X, the result p [~] of applying ~ to p 

is defined in an obvious way, that is by structural induction starting from (ax) [~] = a~(x). To 
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define substitution on terms of F, we assume given for each pair If, W of finite subsets of X an 

injective mapping newv, w" V --~ X -  W; this assumption makes sense since X is infinite. Then the 

result p [a] of applying the substitution a to the term p is defined by structural  induction, the 

only non obvious case being p = (p).q with var(p) ~ 0, In this case, let: 

V = var(p) = { x l ,  . . . .  Z•} 

newv, w (zi) = Yi for 1 < i < n 

: [~1 I-.+ Yl I ' ' "  tZr,, I-e. yn.ll,] 
,~' = r z l  ~ v l / . . . / : ~ .  ~ y , ~ / . ]  

Then we define p[o'] to be (p [~ ] ) .q [o ' l ] .  We shall denote p[z~->qll.] by p[x~.-+q] (similarly 
p[x~--+y] denotes p[z~--~yl~]), and define the composition p * o" by (p * cr)(z) = cr(z)[p]. As 
usual, we regard terms differing only on the name of bound variables as syntactically identical. 

Moreover we also regard ~. as a terminated, or idle agent, which should be cancelled from parallel 

combinations. Then our syntactical equa/i~y is %he congruence = generated by the following 

equations: 

(P (9 ~-) = P = (~. 0 p) 

(pl  " )  = p = (~- I p) 

<~>.p = p 

<p).p = <,,'>.p ~ , ,  _-- p, 

<p).p = <p[z~--~ y]).p[z~-~ g] i f  z 6 var(p) and y ~ free(p) U var(p) 

One could prove that  = is substitutive,  that  is p =- q =~ p[a] - q[a] for all substitution a (el. 
[6] ). We shall say that  an agent p is terminated, or idle, in notation p #, if p = 11. 

To define the semantics, that  is the laws of reduction, we shall use Milner's technique of la- 

belled transitions. This is the best way to formalize the idea that  processes need not be contiguous 

to communicate. Let us introduce some technical definitions. The semantics is given by means of 

labelled transitions p a _ ~ / w h e r e  the action a may be ap, which means sending p at port  a,  or 

ap, which means receiving p at port  c% or the communication action ~-. This could be formalized 

by saying that  the set of actions is A = (N × F) U ( r  x N) U {~-} (if we regard ap and &p as 
notations for (a,p)  and (p, a) respectively). We shall say that  a and b are complementary actions, 

in notation a ,-. b, if a = ap and b = fi~,, or symmetrically a = ~p and b = a , .  To define the 

semantics of <P)'P we also need to specify the reception actions allowed by the binder p. To this 

end we introduce a transit ion relation p a / between binders, where a has the form ax,p. This 

transition relation is the least one satisfying the following rules: 
(Xz,p 

per ~- ax ,e 

p ~  p' ~- (p. p") ~ (p'.  p") 

p ,__~ p , ~ p , ,  ~_ ( p . p t ) ~ p , ,  

P a_~ p, ]_ (p ] p,,) ~ (p, ~ p,,) 

P ~  P' ~ (p,, ~ p) a_~ (p ,  l p,) 
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The transition relation --~ on agents is the least subset of r × A × r satisfying the rules given 

below (where, as usual, we denote (p,a, ld) e --~ by p a__%pn). The first two rules introduce the 
communication actions: 

output RI :  ~- &p &P.~ l 

inputR2: p a~'~*,,p r [- (p>.p aq~-(pt).p[z~--~q] 

One may observe that, due to R2, the sort of a process - that is the set of port names through 

which it may communicate - can evolve dynamically: if p a  p~ the sort of pl is not necessarily a 
subset of the sort of p. There is another rule concerning input, when the binder is empty: 

inputR3:  p--  & p a~ p, }_ ( p ) . p a  p' 

The interaction law is given by (the q-rule): 

co~munlcationR4(q): p ~ p ' ,  q ± q ' ~ b  ~ (p®q)~(p'®~') 

The following rules state that the transition relation r.~ is compatible with all the constructors, 

and that a is compatible with interleaving for any a ~ A: 

output RS: pr_~p, }_ a p t  ap, 

~put R6: p ~-~p' ~ (p).p~ (pl.p' 

cool~eration (left) R7: p ~  p, ~_ (p ® q) r_~ (p, ® q) 

cooperation (right) R8: q r_~. q, ~_ (p ® q) r__~ (p ® q,) 

~terleaving(le~)Rg" p a p ,  ~ (p lq)~(p ,  lq ) 

inter/ea~ing(right) R1O: q±q' ~ (p l q) ± (p l q,) 
Our last two rules formalize the fact that  cooperation only holds up to termination of one partner: 

cooperation (right unit) Rl l :  p a~ p , ,  q'f I- (p @ q) a p' 

cooperation (]e~ unit)R12: q b_~ q, , P t ~- (p ® q) b q, 

One can readily see from these rules that if p ~ 11 ~ q then (p ® q) can only perform r actions, 

while communication between p and q is forbidden within the construct (p [ q). We shall mostly 

denote pr.~ pr by p---~ pl, and by definition this is the q-reduction between terms of r .  

Our main purpose is to show that the q-calculus contains the h-calculus, up to syntactical 
equality. Then we first have to check that syntactical equality is consistent with the operational 
semantics. Formally speaking, this amounts to show that ~_ is a bisimulation. Our notion of 
bisimulation is a slight extension of Park and Milner's one, in two respects: first we must regard 
the actions - made out of agents - up to bisimulation, second we must take into account the 

potential termination of agents. Moreover we wish to directly define bisimulation for non-closed 
terms; then two terms p and q are similar if all their instances p[a] and q[a] have similar 
behavlours. We shall use two notions of simulation: the first one, called strong, is relative to the 
transition relation ---*-. We will see the second (weak) one latter. Let R _ r × r be a relation on 
terms; we define its extension R _ A × A on actions as follows: 

a R b ~'def a = b or 3a E tV 3p, q. p R q & a = &p & b = ~q 
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A relation R _C r × F is 

(i) a strong simulation if it satisfies 

Sl:  p R q & p [ a ]  a_~pt ~ 3b. a R b 3 q ' . p ~ R q  ~ &q[a]  b q~ 

S2: p R q & p t  =~ q? 

(ii) a strong bisimula6on if it  is a symmetric strong simulation. 

The first property defining a simulation is a refinement of the usual one: (instances of) strongly 

similar agents must perform similar actions. The second property states that  strong simulation 

preserves the termination property. This property, that  is p ~ 11, should not be confused with the 

property of being a normal form, that  is -'/-irreducibility (p is ~/-irreducible if { q Ip--+ q ) = 0): to 

our view a term such as ax . x  is not terminated since it can perform some actions - namely ap. 

One should note tha t  every strong simulation is substitutive: 

FACT. If  R is a strong slmulation then p R q =~ p [a] R q [a] for aH substitution a. 

This holds because (p [a ] )  [p] = p [p • a] (of. [6]). 

PROPOSITION. The congruence = is a strong simulation on P. 

The proof is straightforward: one proceeds by induction on the proof of p [a] = q [a] (using the 

fact that  = is substitutive), and then by induction on the proof of the transition p [a] a_~ pl to 

show that  3q I =- pl q[a] a_.% q~. In the ease of R4, one must show that:  

_ Olqt _it P otq p l & q - - q l  =~ 3 p " . p t = p " & p  ~p 

One must also prove that  - satisfies: 

po ~-~ p~ & po --" pl ~ 3p~. p~ - p~ & pl a_~ p~ 

The details are omitted 

This result allows us to define the transition relation --~ on r/_-__. We shall abusively write 

transitions between simplified terms (obtained by cancelling 11. from parallel combinations), as for 

instance in a special case of the "/-rule: (ax.p 6) ~q)--+ p Ix ~-* q]. 

Now we can show that  the "y-calculus contains the S-calculus - which we assume to be well- 

known! The syntax of A is given by the following grammar: 

M ::= x [ } ~ x . M I ( M M  ) 

The rules for/%reduction, denoted M---~-N, are: 

R ' I  (/3): ()~x.M)N---~M[x~--~N] 

Rt2: M--.+ M I i- :kx.M--,'- ) ,x .M l 

R'3: M---+ M '  t- (MN)--+ ( M ' N )  

R'4: g - * -  Y '  F (MN)--+ ( M N ' )  

Assuming that  ~ E N, we define the translation 0 from A to I' as follows: 

0(~) = 

O(Ax.M) = (Ax).O(M) 

O(MN) --- (O(M) 6) ~O(N)). 
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We assume that  substi tution is defined for A-terms as it was defined for q-terms, so that  the 

translation preserves substitution, that  is: 

VM, N 6 A 8(M[x~-~ N]) = 8(M)[x~-~8(N)] 

PROPOSITION. For a//A-terms M and N: 

(i) i ~ g ~ 3 p -  O(N). O ( M ) ~  p 

(iO O(M) ~ p ~ 3N e A. M ~ N ~ O(N) =- p 

PROOF: let M, N 6 A such that  M--*- N. We proceed by induction on the proof of this transition 

to show that  3p - 0(N) 0(M)--~ p. If this transition is an instance of the E-rule ,  then we have 

M = (Az.P)Q, N = P[x~-~Q] and O(M) = ((Ax).O(P) @ ~O(Q)). Using R1 and I%2 we have 

D(Q) ~ ~ with a = X0(q) and <A~).0(P) ! (~).0(P) [~ ~ 0(e)] with b = Ae(q). Therefore using 
the q-rule (1%4) we have @(M) --~ ((g>.@(P) [z ~-~ @(Q)] (9 il) - 8(N). All the other cases are trivial. 

Conversely let us assume that  8(M) ~ p. We proceed by induction on the structure of M to 

show that  3N E A M---,- N & 8(N) ==- p. We cannot have M E X, since a variable cannot perform 

any action. If M = Ax.P then 0(M) = (Ax).0(P), and the transit ion O(M) ~ p must be proved 

using 1%6 (since the action is r) .  We easily conclude in this case using the induction hypothesis. If 

M = (PQ) then 8(M) = (O(P) (9 ~8(Q)). The transition 8(M)--~ p cannot be proved using 1%11 

or 1%12 (since 8(P) ~ 11). If it is proved using 1%7 or 1%8 (and then 1%5) the result follows from the 

induction hypothesis. If it is proved using 1%4, we have 0 ( P ) a /  and , ~ 0 ( Q ) b  q, with a --. b; 

hence a ~ r ~ b, and the second transition can only be proved by means of 1%1. This implies 

that  b = ~e(Q) (and q~ = 11.), and therefore a = Ae(Q). It is easy to prove that  for all P E h if 

8(P) A, p, then P = Ax.P t & p'= (~}.0(P p) [x~-* a]. Consequently we have M = ((Ax.P')Q), 
and 0(N) = 0(P')E~ ~ 0CQ)] - ((~>.0(P')[~ ~ 0(Q)] (9 ~) 

This result allows us to regard the A-terms as a special kind of q-terms. To simplify the notations, 

we shall use (pq) as an abbreviation for (p ® Aq) - recall also that  Ax.p is a notation for (Ax>.p. 

We shall keep the usual notation for the s tandard combinators, of. [2], chapter 6. For instance 

K is the (q-)term Ax.Ay.x, or more simply Axy.x. 
We already saw that  the "),-calculus is strictly more powerful than the A-calculus: the term 

(Ax] Ay>.x (non-deterministic choice) does not have any image in A. Let us see another example, 

showing that  we find in r "parallel functions" (we do not intend to precisely define them) which 

are not definable in A. It is known that  K, which could be denoted also T, and F = Axy.y may 

be regarded as the truth values. One can define in the A-calculus a combinator representing the 

Ieft sequential disjunction, namely V = Axy.(xT)y. This combinator is left-sequential since one 

cannot reduce (VM)T into T without evaluating M.  From Berry's sequentiality theorem (el. [2] ), 

one can show that  there is no A-term representing a parallel disjunction O, such that  (OM)T and 

(OT)M can be both reduced to T without evaluating M. On the other hand, this combinator is 
definable in the q-calculus: this is just  a parallel variant of V, namely 

Then it is easy to see that :  

o =a~f <A= I Ay>. (xT)y 

vpEr (Op)T *--~ T and (O T)p *-~ T 
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since the combinator O can choose what argument eventually needs to be evaluated first: 

(Op)q *-~- (pT)q and (Op)q *-~- (qT)p 

Obviously we also have: 

(OF)F *-~F 

Let us see another exa~ple~ showing that we can retrieve m the ~-calcu|us some of CCS's ideas 

about concurrent processes. One of MiLner% intentions in designing CCS was to formalize the ide~ 

that a process performs possibly infinite sequences of co~un ica t ions  with its environment, One 

may wonder whether it is possible to describe in the "~-calculus a system made out of processes 

continuously exchanging messages. The answer is positive, thanks to the existence of endlessly 

reducible terms. In the l-calculus, the typical example of such terms is 12 -- AA, where A = Ix .xx  

is the usual duplicator, for we have 12--* 12. Using this feature we can define a process which 

repeatedly accepts a message on a port c~ and then sends on port/3 a response elaborated using 

a "method" q. Let 

= ~Y'ax'@q I (Y O Xy)) and ~ = (6 O 1~) 

These terms could be written more simply 6 = Ay.ax.(~q I YY) and w = (66). Then we have: 

% 

We should say that evaluating w repeatedly creates the communication channels a and/3. More 

generally, recursion can be handled as in the A-calculus, that is by means of fixed point combina- 

tors, like lhtring's one O = (FF), where F = Ax.ly.y((xx)y), which is such that OM*-~ M(OM). 
Now let us return to the semantics of our calculus. We shall adopt Milner's observational 

equivalence [5] as our notion of equality. The observational equivalence is defined with respect 

to a transition relation where one abstracts from internal communications (i.e. r actions). This 

transition relation ==~ is the least subset of F x A x 1" containing --~ and satisfying the following 

ru~es: 

o2: p=%p,,. ¢ , :r .¢  p= p, 
os: p= p' 

It should be clear that p =~  p' iff a = r & p' = p or 

A relation R C r × F is 

(i) a weak, or observational simulation if it satisfies 

Wl:  p R q & p [ a ]  ~ p '  ~ Sb. a R b 3 q ' . p ' R q '  &q[a] ~ q '  

W2: p R q & p ~  =~ Sq ~ . q ~ q ' & : q ~ t  

(ii) a weak, or observa6onal bJsimulation if it is a symmetric weak simulation. 

Note that the we have: 

p R q & p [ a ] ~  =~ ~q' .ql 'a]  = ~ q ' & q ' ?  
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since p [a] = ~  p [ a ] ,  hence there exist q" such that  q [a] = ~  q" and p [ a ] R  q", therefore there ex- 

ists q~ such that  q ~  and q" = ~  q~, hence q[a] = ~  qt. Consequently any observational simulation 

is substitutive: 

FACT. I f  R is an observational simulation ~hen p R q =~ p [a] R q [a] for all substitution a. 

The following characterization of observational simulations is useful: 

LEMMA. A relation R C r x r is an observational simulation ff and only if 

(i) R is substitutive: p R q  =~ VaE $ p[a ]  Rq[a]  

(ii) p R q  & p a-~p ~ =~ 3b. a R b  3q'. p' Rq '  & q b=~ q ' 

(iii) v R q ~ p t =~ 3q'. q =L~ q, s~ q' t 

PROOF: it is clear that  any observational simulation satisfies these properties. Let us assume that  

R satisfies (i)-(iii). We have to prove 

p R q  & p[a] ~ p' =~ 3b. a R b  3qt. p' Rq'  & q[a] ~ q' 

Since _R is substitutive, it is enough to prove this for a = ~ (note that  p[~] -= p). We proceed by 

induction on the proof of p = ~ / ¢ :  if this transition is pa_~ p l  then we conclude using (ii). The 

point is trivial if p = ~  pr is an instance of O1, since pl = p, a = r and q = ~  q (by O1). The two 

other cases easily follow from the induction hypothesis F_I 

The observational equivalence that  we regard as our semantic equality is the coarsest weak bisim- 

ulation. Such a coarsest bisimulation exists, and is an equivalence, since we have: 

DEFINITION and FACT. Let us define: 

P ~-, q ¢~def 3R C r × r weak bisimulation such that p R q  

Then ~ is a weak bisimulation. Moreover ~-, is an equivalence. 

(the proof is omitted - the only point to check is that  the composition of two weak simulations is 
a weak simulation). 

A consequence of the previous lemma is that  any strong simulation is also a weak one. Then 

for instance we have = _ ~ .  This temma also allows us to prove some algebraic properties of the 
operators with respect to ~ ,  as for example: 

(PC q) -- (q ®P) 
(p® a) .p. (~t ®p) 

(p l(q It)) ~ ((pl q) It) 
(Pl q) ~ (q I P) 
(pl~t)  ~ p ~  (~t lp)  

Note that  the cooperation operator is not associative (up to ~) :  for instance 

((az.x ® Xv) ® Xq) ¢ (~x.= ® (Xp ® ,~q)) 

since the first term - which is (I p)q, where I = Ax.x is the usual identity combinator - can be 
reduced to (pq) (up to ---) while the second one, which could be written I ® (Xp ® ~q), cannot 
perform any computation. 
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3. Conclusion 

To conclude this note, let us briefly discuss the relationships between the proposed -/-calculus and 

other established calculi. 

An obvious question to investigate regards the relationship between CCS and the if-calculus. 

We did not claim that CCS should appear as a subcalculus of our calculus. As a matter of fact, 

we suspect that most CCS primitives are not definable as if-combinators. We conjecture that the 

observational equivalence ~ is a congruence on r(~). A consequence would be that we cannot 

define in the if-calculus the CC$ sum (p + q), whose semantics is given by: 

pap'  v 
b ql ~ qt F (p+q) 

More precisely~ if ~ is a congruence then there is n o  iflterm r such that (rp)q ~. (p + q) for all 

p and q, since "~ is not a congruence with respect to CCS sum - for instance we have (! 11) ~ 

but I + (I ~) ~ ! + £. To our view, non-definability of CCS sum could be a good point rather 

than a drawback, since there axe some serious difficulties with +; the sum is a natural primitive 

for describing transition systems, but it is hard to devise a denotational interpretation of this 

construct. We saw that a non-deterministic combinator can be defined in the if-calculus; this 

choice operator $ is quite different from +, since it is an internal choice: (p @ q) may evolve to 

one of p or q by internal communications. We also have, due to the structural rules: 

p ~ p '  =~ (p@q)--~(p '@q) and q ~ q '  =~ ( p ~ q ) ~ ( p @ q ' )  

Note that in general (p ~ 11) ~ p - take for example p = I. 

A structural translation from CC$ to the if-calculus seems to be doomed to failure. One 

could however imagine to relate these two calculi in another way: CCS appears to be well-suited 

to describe concurrent and communicating "machines" - indeed Milner showed in [4] that his 

static operators (i.e. parallel composition, relabeUing and restriction) have a natural  interpretation 

as constructors of nets of agents. Then, with respect to the if-calculus, CCS terms could play a 

r61e analogous to that of Turing machines with respect to the A-calculus. From this point of 

view, one does not expect to translate directly the primitives of one calculus into the other: the 

correspondence is made on the ground of definability of abstract mathematical objects - like 

computable functions. For lack of an abstract notion of process, we leave this question for further 

investigation. 

Regarding the relationship between the if and ~ calculi, let us examine briefly some )~-theories 

(el. [2] ) from the point of view of observational equivalence. First we should note that observa- 

tional equivalence - which is consistent on A: I ~ fl - is not extensional This means that the 

equation ~? (on A-terms) 

~ x . M x  = M x not free in M 

is not valid for ~ - for instance ~x. f lx  ~ fl, since the first term has a possible communica- 

tion with its environment, while the second has no communication capability. For what regards 

(:~) the main difficulty is to prove p ~ q ::~ r [x ~-* p] ~. r [x ~-~ q]. The same problem already 

arises in the )~-calculus, but  here we cannot use the semantical method of Abramsky [1], since 

we do not have any model theory for the "/-calculus. Then we will have to extend the syntactical 

method of L~vy [3]. 
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/~-convertibility =8 of A-terms, one could prove that  E-convertible A-terms are observationally 

equivalent, that  is 

VM, g E ,t M =~s N =~ O(M) ~ O(N) 

This implies a restricted kind of y-conversion: if M is really a function, tha t  is if there exists N 

such that  M*---~ Az.N, then we have l x . M x  ~., M (for x not free in M).  The converse of the 

previous implication is not true: observational equivalence is strictly weaker than/~-conversion. 

To see this, let us say that  a q- term p is locked if it  has no communication capability, and can 

never terminate,  that  is if p = ~  p~ =~ a = r & p' ~ ~. It is easy to see that  any two locked 

terms are equivalent - note that  if p is locked and p = ~  p~ then pt is locked as well. Then for 

instance we have OO ~ fl, where O is the Turing's fixed point combinator, while e O  and f~ 

are not convertible. One should note that  the two terms 12 and ®O are unsoIvable (of. [2] for 

this notion). But an unsolvable A-term is not necessarily locked, and observational equivalence 

does not equate all the unsolvables - for instance Ax.fl is unsolvable, but  not locked, and we 

saw that  Ax.12 ~ fl. Then the observational equivalence of A-terms is quite different from the 

usual semantics of the l-calculus,  which is based on the identification of unsolvable terms (of. [2], 

proposal 2.2.14). However, L~vy showed in [3] that  one can build a sound semantical theory of 

the A-calculus without resorting to this identification - and it may be the case that  this semantics 

is even "better" than the usual one, since L~wy's syntactical model provides some kind of ~initial" 

interpretation. Moreover, L~vy's interpretation seems to be very close to the one introduced by 

Abramsky [1], using the idea of observational equivalence. One may expect that  Abramsky's 

applicative bisimulation coincides with observational equivalence on A-terms, as we defined it in 

this paper. A first step towards such a result would be to show that  the "outermost evaluation" 

- that  is evaluation performed without using the rules R5-R6 above - is correct with respect to 

observational equivalence. This task, involving the adaptat ion of L~vy's syntactical technique, is 
left for further work. 
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