
P R O O F S O F D E C L A R A T I V E P R O P E R T I E S O F L O G I C P R O G R A M S

Pierre DERANSART
INRIA

Domaine de Voluceau
B.P. 105 - Rocquencourt

78153 LE CHESNAY C&tex
Tel. : (33-1) 39 63 55 36

uucp: deransar@minos.iaria.fr

Abstract

In this paper we shall consider proofs of declarative properties of Logic Programs, i.e. properties

associated with the logical semantics of pure Logic Programs, in particular what is called the partial

correctness of a logic program with respect to a specification. A specification consists of a logical formula

associated with each predicate and establishing a relation between its arguments. A definite clause

program is partially correct iff every possible answer substitution satisfies the specification.

This paper generalizes known results in logic programming in two ways : first it considers any kind

of specification, second its results can be applied to extensions of logic programming such as functions or

constraints.

In this paper we present two proof methods adapted from the Attribute Grammar field to the field of

Logic Programming. Both are proven sound and complete. The first one consists of defining a

specification stronger than the original one, which furthermore is inductive (fix-point induction).

The second method is a refinement of the first one : with every predicate, we associate a finite set of

formulas (we call this an annotation), together with implications between formulas. The proofs become

more modular and tractable, but the user has to verify the consistency of his proof, which is a decidable

property. This method is particularly suitable for proving the validity of specifications which are not

inductive.

208

I n t r o d u c t i o n

The problem of proving the correctness of a definite Horn clause program (clauses with exactly one

positive literal or logic programs), with respect to a given specification, saying what the answer

substitutions (if any) should be, although essential, has been rarely considered [Cla 79, Hog 84, Dev 87,

DrM87, SS 86]. Most published works present some variant of the inductive assertion method (fix-point

induction) which is illustrated with examples. No adaptation of the presentation to the field of logic

programming is always made, no other original method is presented and no proof of soundness and

completeness of the method are always given.

In this paper we shall consider the partial correctness of a logic program with respect to a

specification. A specification consists of a logical formula associated with each predicate and establishing

a relation between its arguments. A definite clause program is partially correct iff every possible answer

substitution satisfies the specification.

Partial correctness does not depend on any interpretation strategy ; it does not refer to any

operational semantics of logic programs but only to their constructive (proof-trees) or logical semantics

[DF 88]. Snecifications are oro~erties of the proof-tree roots. They are used to detect properties of goals

before any execution or testing of a logic program.

The proof methods presented in this paper are part of a general methodology we are developing for

logic programming and have turned out to be of practical use for software development in PROLOG

style.

Their purpose is not to be fully automatizable as in [KS 86, Fri 88] but to give the user some better

ability to deal with and understand logic programs.

Partial correctness does not say anything about the existence of answer substitutions (completeness)

or effective form of the goals during or after computations ("run-time properties" in [DrM 87] STP in [DF

88]), or whether any solution can be reached using some computation rule (termination, [FGK 85])

• ..etc... All together these problems are part of the total correctness of a definite clause program. They

have been considered in other works [also in DM 89] but for their solution many problems use partial

correctness properties (or valid specifications), and, as such, the partial correctness proof methods are the

basic elements of any general validation system for logic programming.

Sometimes it is argued that logic programs are axioms, hence they do not need to be verified.

However, this is not the case. In particular programmers frequently write general axioms which are used

in a restricted manner. This is mainly due to the high level of expression pen'nitted by the language.

Consider for example the program "concatenate" using difference-lists given by the unique clause :

concatenate (L1- L2, L2-L3, L1-L3) ~-.

In its logical semantics [AvE 82, Llo 84] (we use in place the denotation, i.e the set of all atomic

logical consequences [Cla 79, Fer 85]) there are not only difference-lists : for example

209

concatenate([]-[1], [1]-[1, 2], []-[1, 2]) is a logical consequence also. But it is sufficient (for partial

correctness purposes only) from the programmers point of view to know that concatenate is correct w.r.t.

the fact that if the two first arguments are difference-lists representing lists 11 and 12, then (if the goal

succeeds) the third argument is a difference-list representing the concatenation of 11 and 12.

Proof of partial correctness are thus required to certify the validity of the written axioms in the

specific model the user has in mind. In practice, however, one does not expect to write axioms for any

kind of model but more frequently axioms of a specific model.

The purpose of this paper is to rephrase the proof methods developed in [CD 88] for Attribute

Grammars and Logic Programming without unnecessary references to Attribute Grammars.Two proof

methods are presented. Both are proven, sound and complete (provided the specification language is large

enough [Coo 78]). The first one consists of defining a specification stronger than the original one, which

furthermore is inductive (fix-point induction).

Our second method is a refinement of the first one : with every predicate we associate a finite set of

formulas (we call this an annotation), together with implications between formulas. The proofs become

more modular and tractable, but its consistency has to be proven, this is a decidable property. This

method is particularly suitable for proving the validity of specifications which are not inductive.

The proof methods presented here are a direct adaptation of the proof methods described in [Der 83,

Cou 84, CD 88] for attribute grammars to the case of logic programming. In [CD 88] the adaptation is

sketched using the results of [DM 85] : a definite clause program can be thought of as an attribute

grammar. In this paper the methods are defined directly in the logic programming framework without

unnecessary references to the attribute grammar field, and the formulation of the second method is more

general than in [CD 88] such that many applications concerning the proof of other properties like "run

time" or safe use of the negation can thus be considered.

The paper is organized as follows :

Section 1 recalls basic definitions of logical languages used to describe the s~ecifications, section 2

defines the notion of validity of a specification for a definite clause program. Section 3 and 4 present and

study the two proof methods.

It is important to remark that even if the semantics of logic programs is usually defined on non

sorted algebras of terms, the specifications may be expressed in any logical language in which terms are

interpreted. For that reason we use many sorted languages to describe the specifications of the programs.

Obviously presentation using homogeneous algebras could be also made.

210

1 - B a s i c d e f i n i t i o n s a n d n o t a t i o n s

(1.1) Sort. sianatures, terms

Context free grammars and logical languages will be defined in the algebraic style of [CD 88].

Some definitions are also useful to describe logic programs.

Let S be a finite set of sorts. A S-sorted signature F is a finite set of function symbols with two

mappings : the arity ot (some word in S* representing the sorts of the arguments in the same order), the

sort t~ of the function symbol. The length of or(f) is called the r ~ k of f and denoted p(f). If 0t(f) = e (the

empty word) then f is a constant symbol. The pair < ct(0, t~(0 > is the profilf of f. A constant of sort s

has profile < ~, s >.

A heterozeneous F-algebra is an object A :

A = < {As}se S, {fA}fe F >

where {As} is a family of non empty sets indexed by S (the carriers) and each fA a mapping :

Asl x ... x Asn ---> A s if f has profile < sl...sn, s >.

Let V be a S-sorted set of variables (each v in V has arity e, sort a(v) in S). The free F-algebra T

generated by V, also denoted T(F, V) is identified as usual as the set of the well-formed terms,

"well typed" with respect to sorts and arifies. Terms will also be identified with trees in a well known

manner. T(F) denotes the set of all terms without variables, i.e. the _around terms, T(F)s denotes the set

of the ground terms of sort s.

A term t in T(F)s is considered as denoting a value t A in A s for a F-algebra A. For any F-algebra A

and a S-sorted set of variables, an assignment of values in A s to variables Vs, for all s in S, is an S-

indexed family of functions.

v = { v s : V s - ") A s } s ~ S

It is well-known that this assignment can be extended into a unique homornol~hism

v ' = { v ' s : T (F , v) s ~ A s } s~ S

In T assignments are called substitutions. For any assignment v in T and term t in T(F, V), vt is

called an instance of t.

(1.2) Grammars

Proof-trees of a logic program can be thought of as abstract syntax trees with associated atoms.

These abstract syntax trees can be represented by abstract context free grarrmaars. An abstract context free

grammar is the pair < N, P > where N is a finite set (the non-terminal alphabet) and P a N-sorted

signature (for more details see [DM 85]).

211

(1.3) Many sorted logical lanmlages

The specification will be given in some logical language together with an interpretation that we

define as follows. Let S be a finite set of sorts containing the sort bool of the boolean values true, false.

Let V be a sorted set of variables, F a S-signature and R a finite set of many sorted relation symbols (i.e.

a set of symbols, each of them having an arity and, implicitely, the sort bool).

A lo~ical lan~,ua~e L over V, F, R is the set of formulas written with V, F, R and logical
T

connectives like V, 3, ~ , ^ , v, not We denote by free (tp) the possibly empty set of the free

variables of the formula ~ of L (free (tp) c V), by AND A (resp OR A) the conjunction (resp. the

disjunction) of formulas (AND O = true. OR O = false), and by ~ [tl/V 1 tn/Vn] the result of the

substitution of t i for each free occurrence of v i (some renaming of variables may be necessary). We do

not restrict a priori the logical language to be first order.

Let C(L) denote a class of L-slructures, i.e. objects of the form :

D = < {Ds}s~ S , {fD}fe F, {rD}r~ R >

< {Ds}s e S , {fD}f e F > is a heterogeneous F-algebra and for each r in R, r D is a where

total mapping

Dsl x ... x Dsn ~ {B'~¢, f~l$~ } = bool if ct(r) = sl ... sn.

The notion of validity is defined in the usual way. For every assignment v, every D in C(L), every

¢p in L, one assumes that (D, v) I= ¢p either holds or does not hold. We say tp is valid in D, and write

D I= % iff (D, v) I= ¢p for every assignment v.

2 " Definite Clauses Programs. specifications

(2.1) Definition : Definite Clause Program (DCP).

A DCP is a triple P = <PRED, FUNC, CLAUS> where PRED is a finite set of predicate symbols,

FUNC a finite set of function symbols disjoint of PRED, CLAUS a finite set of clauses defined as usual

[Cla 79, Llo 87] with PRED and TERM = T(FUNC, V). Complete syntax can be seen in examples (2.2)

and (2.3). A clause is called a fact if it is restricted to an atomic formula. An atomic formula is built as

usual with PRED and TERM.

(2.2) Example PRED

FUNC

CLAUS

= {plus} p(plus) = 3

= {zero, s} p(zero) = 0, p(s) = 1

= {cl : plus (zero, X, X) ~ ,

c2 : plus (s(X), Y, s(Z)) <--- plus (X, Y, Z) }

variables begin with uppercase letters.

212

(2.3) Example "List" terms are represented in Edinburgh syntax

PRED = {perm, extract} p(perm) = 2, p(extract) = 3

FUNC = { [],[_t_] } p([]) = 0, p([_t_]) = 2

CLAUS = {cl : penn ([], []) e--,

c2 : perm (JAIL], [BIM]) e-- perm(N, M), extract([AIL], B, N) ,
c3 : extract ([ALL], A, L) ,

c4 : extract (JAIL], B, [AIM]) e- extract (L, B, M)}

(2.4) Definition : denotation of a DCP P : DEN(P)

The denotation of a DCP is the set of all its atomic logical consequences :
DEN(P) = { a I P I- a}

We do not give any more details on the notions of models of P (structures in which the clauses are

valid formulas) and of logical consequences (all atoms of DEN(P) are valid in the models of P), since we

won't make use in this paper of the logical semantics of a logic program, but rather of its constructive

semantics that we shall now define. Other details can be found in [Cla 79, Ave 82, Llo 87, Fer 85].

(2.5) Definition : proof-tree [Cla 79, DM 85]

A proof-tree is an ordered labeled tree whose labels are atomic formulae (possibly including

variables). The set of the proof-trees of a given DCP P = < PRED, FUNC, CLAUS > is defined as

follows :

1 - If A e- is an instance of a fact of CLAUS (instances built with TERM), then the tree consisting of
one venice with label A is a proof-tree.

2 - I f T 1 T q f o r s o m e q > 0 a r e p r o o f - t r e e s w i t h r o o t s l a b e l e d B 1, ,B a n d i f A e - - B 1 , ,Bq is • .. q
an instance of a clause of CLAUS, then the tree consisting of the root labeled with A and the
subtrees T 1 Tq is a proof-tree.

By a partial proof-tree we mean any finite tree constructed by "pasting together" instances of

clauses. Thus a proof-tree is a partial proof-tree all of whose leaves are instances of facts. We denote by

PTR(P) the set of all root labels of proof-trees of P, in short the proof-tree roots of P. Note that every

instance of a proof-tree is a proof-tree.

(2.6) Proposition [Cla 79, Fer 85, DF 86a] - Constructive semantics
Given a DCP P : DEN(P) = PTR(P).

Thus, instead of the togical semantics of a logic program, one can deal with its constructive

semantics. As pointed out in [DM 85, DM 88], proof-trees can be thought as syntax trees (terms of a

clauses-algebra) "decorated" by atoms as specified in the proof-tree definition. Thus inductive proof

methods as defined in [CD 88] may be applied to logic programs. This will be done in the next section.

All the definitions are adapted from [CD 88] to the logic programming case.

213

(2.7) Definition : Specification S on (L, D) of a logic program P.

A specification of a logic program P is a family of formulas S = { SP }p ~ PRED of a logical

language L over V, F, R such that V contains the variables used in P and F contains FUNC, together

with a L-structure D. For every p of PRED, we denote by varg(p) = { p l pp(p) } the set of variable

names denoting any possible term in place of the 1 st or p (p)~ argument of p. Thus we impose

free(SP) ~ varg(p). Variables in a specification also begins with an uppercase letter.

(2.8) Definition : valid soecifieation S for the DCP P.

A specification S on (L, D) is valid for the DCP P (or P is correct w.r.t S) iff

Vp(t 1 tn) ~ DEN(P), D]= SP[t l /Pl tn/Pn], n = p(p).

In the following the notation will be abbreviated into SP It 1 t n] if no confusion may arise.

This means that every atom of the denotation satisfies the specification, hence every atom in any

proof-tree. It also means that every answer substitution (if any) satisfies the specification. It corresponds

to a notion of partial correcmess referring to the declarative (i.e. constructive or logical) semantics since

nothing is specified about the existence of proof-trees (the denotation can be empty), the way to obtain

them or the kind of resulting answer substitution for a given goal.

(2.9) Example : specification for (2.2) :

L 1 = V 1 contains varg(plus) = {plusl, plus2, plus3}
F1 = { zero, s, + }
RI={=}

D 1 = N the natural integers with usual meaning, zero is interpreted as 0, s as the
increment by 1, + as the addition. (i.e. N is the Ll-structure D1)

S 1 = { S l plus }, S l plus : plus3 =plus l + plus2

The validity of S 1 (which is proved in the next section) means that the program "plus" in (2.2)

specifies the addition on N, or that every n-uple of values corresponding to the interpreted arguments of

the elements of the denotation satisfy the specification plus3 = plus 1+ plus2.

L 2 = V 2 a s i n L 1 , F 2 = { z e r o , s}

R 2 = { ground } p(ground) = 1.

D 2 contains the term algebra T(F 2, V2), and ground(t) is true iff t is a ground term.

S 2 = { S2P his }, S2 phis : ground(plus3) ~ [ground(plusl) ^ ground(plus2)]
S 2 is a valid specification (it can be observed on every proof-tree and will be proven in the next

section).

214

(2.10) Examp|e : specification for (2.3). This example uses a many sorted L 3 structure.
1. 3 = V 3 contains varg(perm) and varg(extract).

F 3 = { [], [_1_], n i l , . , append } [] and nil are constants,
the other operators have rank 2.

R3 = { is-a-list, permut } p(is-a-list) = 1, p(permut) = 2.

D 3 contains two domains : list the usual domain of the lists of unspecified arguments,
the domain of the unspecified arguments.

the profiles are :
for functions [] e < e, ~ >, is interpreted as ni l .

[1_] e < any list, list > , is interpreted as . (cons of LISP)

nil e < e, list > (as usual)

. e < ~ ~ , ~ > (as usually : cons of LISP)

append e < list list, list > (lists concatenation).

for relations p e r m u t e <list list, boo! > it is the relation defining the
pairs of permuted lists.

S 3 = { SP erm : permut (perml, perm2) ,

S extract : 3 L1, L2 (extractl = append (L1, extract2.L2)

^ extract3 = append (L1, L2) }

3 - I n d u c t i v e o r o o f m e t h o d

(3.1) Definition : Inductive s~.cification S of a DCP P.

A specification S on (L, D) of a DCP P is inductive iff for every c in CLAUS,

c: r0(t01 t0n0) ~ r l (t l l t ln 1) rm(tml tmn m) ,

D I= (AND S rk [tkl tknk] ~ S r0 [t01 t0n 0])
l < _ k < m

i.e. a specification is inductive iff in every clause, if the specification holds for the atoms of the

body, it holds for the head.

(3.2) Proposition :

If S of P is inductive then S is valid for P .

Proof : by an easy induction on the size of the proof-trees, if PTRn(P) denotes the set of all roots of the

proof-gee of size < n, S holds in PTRn+I(P) (by definition (2.5) and (3.1) and the notion of validity),

thus in DEN(P) = u PTRn(P). QED.
n->0

(3.3) Definition : strongest (weakest) st~ecification of P

Let S and S ' be two specifications of P on (L, D). One says that S is weaker than S ' (or

S' stronger than S), and denotes it by D I= (S ' ~ S) fff Vp e PRED, D I= (S'P ~ SP).

215

Given a program P, we consider an L-structure D such that D contains an interpretation of FUNC.

Then we consider L' the language of all relations on D. Obviously L ~ L'. Note that L' may not be first

order. We denote Sp the following specification on (L', D) defined as :

Vp, t 1 t n (D I= SpP [tl tn]) iff p (t 1 tn) e DEN(P).

We denote St!~.fi the specification such that SPlrue : true for all p in PRED (i.e no specification).

(3.4) Proposition : Given a DCP P, Sp and Strue are respectively the strongest and the weakest valid

specification for P and Sp is inductive i.e. all valid specifications S satisfy :

D t= (Sp ~ S ~ Strue), and Sp is inductive.

Proof : it is easy to observe that Sp on (L', D) is inductive, hence valid and that every valid specification

S on (L, D) - thus on (L', D) - satisfies D I= Sp ~ S. Obviously D I= S ~ Stru.....ee.

(3.5) Theorem (soundness and completeness of the inductive proof method)

A specification S on (L, D) is valid for P iff it is weaker than some inductive specification S' on

(L', D) :
i.e. 1) B S' inductive

2) D I= S'=~ S.

Proof: Soundness is trivial since if S' is inductive, it is valid by proposition (3.2) and if
D 1= S' ~ S and S ' tree, then S is also true.

Completeness is stated in proposition (3.4) with S' = Sp. Note that one does not have the

completeness if one restricts the specification language like first order logic (Proof of this claim will be

given in an extended version of this paper).

(3.6) Example (2.2): the specification S 1 (2.9) is inductive.

FoUowing the definition (3.1) it is sufficient to prove :

thus:

N 1= S l [z e r o , X , X] and

H I= S 1 [X, Y, Z] => Sl[s(X), Y, s(Y)]

N I= O + X = X and

H t= (X + Y = Z => X + I + Y = Z + I)

which are valid formulas on H.

216

(3.7) Example (2.2): the specification S 2 (2.9) is inductive.

In the same way it is easy to show that the following formulas are valid on 132 :

ground(0) A ground(X) => ground(X)

[ground(Z) =>(ground(X) ^ ground(Y))] => [ground(s(Z)) =>(ground(s(X)) ^ ground(Y)]

(3.8) Exampl~ (2.3): the specification S 3 (2.10) is inductive.

It is easy to show that the following formulas are valid on I33 : (some replacements are already

made in the formulas and universal quantifications on the variables are implicit)

in cl : permut (nil, nil)

in c2 : permut (N, M) A 3 L1, L2 (A.L = append(L1, B.L2) A N = append (L1, L2))

permut (A.L, B.M)

in c3 : 3 L1, L2 (A.L = append(L1, A~L2) A L = append (L1, L2))
(L1 and L2 are lists) take L1 = nil and L2 = L.

in c4 : 3 L1, L2 L = append(L1, B.L2) ,x M = append (L1, L2))

3 L'I, L'2 (A.L = append(L'l, B.L'2) A A.M = append (L'I, L'2))

(3.9)Example:

take L'I = A.L1 and L'2 = L2,

We achieve this illustration by a proof of the claim in the introduction concerning the program

concatenate :

S concatenate = repr(concatenate3) = append(repr(concatenate1), repr(concatenate2))

defined on (L3, 133) enriched with two operators: "-" of profile <list list, diflist> and "repr" of

profile <diflist, list>, defining the list represented by a difference list.

The claim is obvious as

repr(L1-L3) = append(repr(L1- L2), repr(L2 -L3))

(3.10) Remark that as noticed in [CD88] this proof method can be viewed as a fix point induction on

logic programs. It seems very easy to use, at least on simple programs, which are sometimes very hard to

understand. The ability of the programmer to use this method may improve his ability to understand and

thus handle axioms of logic programs.

217

4 - P r o o f m e t h o d w i t h a n n o t a t i o n s

The practical usability of the proof method of theorem (3.5) suffers from its theoretical simplicity :

the inductive specifications S ' to be found to prove the validity of some given specification S will need

complex formulas S~P since we associate only one for each p in PRED. It is also shown in [CD 88] that

S' may be exponential in the size of the DCP (to show this result we can use the DCP's transformation

into attribute grammars as in [DM 85]). The proof method with annotations is introduced in order to

reduce the complexity of the proofs : the manipulated formulas are shorter, but the user has to provide the

organization of the proof i.e. how the annotations are deducible from the others. These indications are

local to the clauses and described by the so called logical dependency scheme. It remains to certify the

consistency of the proof, i.e. that a conclusion is never used to prove itself. Fortunately this last property

is decidable and can be verified automatically, using the Knuth algorithm [Knu 68] or its improvements

[DJL 86].

(4.1) Definition : annotations of a DCP

Given a DCP P, an annotation is a mapping A assigning to every p in PRED a finite set of formulas

or assertions A(p) built as in definition (2.7). It will be assumed that assertions are defined on (L, D).

The set A(p) is partitioned into two subsets IA(p) (the set of the inherited assertions of p) and SA(p)

(the set of the synthesized assertions of p).

The specification S A associated with A is the family of formulas :

{ SPA : AND IA(p) ~ AND SA(p) }p ~ PRED

(4.2) Definition : validity of an annotation A for a DCP P.

An annotation A is valid for a DCP P iff for all p in PRED in every proof-tree T of root

p(t 1 trip) : if D I= A_~rD IA(p) [t I trip] (np= p(p)) then every label

q(u 1 Unq) (nq = p(q)) in the proof-tree T satisfies : D I= AND A(q) [u 1 Unq].

In other words, an annotation is valid for P if in every proof-tree whose root satisfies the inherited

assertions, all the assertions are valid at every node in the proof-tree, hence the synthesized assertions of

the root.

(4.3) Proposition : if an annotation A for the DCP P is valid for P, then SA is valid for P.

Proof : It follows from the definition of S A , the definitions of validity of an annotation (4.2) and of a
specification (2.8).

Note that SA can be valid but not inductive (see example (4.14)).

We shall give sufficient conditions insuring the validity of an annotation and reformulate the proof

method with annotations. This formulation is slightly different from that given in [CD 88]. The

218

introduction of the proof-tree grammar is a way of providing a syntaxic formulation of the organization of

the proof.

(4.4) Def'mition : Proof-tree grammar (PG)

Given a DCP P = < PRED, FUNC, CLAUS >, we denote Gp and call it the nroof-tree e°rammar of

P, the abstract context free grammar < PRED, RULE > such that RULE is in bijection with CLAUS and r

of RULE has profile < r l r 2 ... r m , r 0 > iff the corresponding clause in CLAUS is

c : r0(...) <--- rl(...),~ rm(. . .) .

Clearly a (syntax) tree in Gp can be associated to every proof-tree of P. But not every tree in Gp is

associated a proof-tree of P.

(4.5) Definition : Logical dependency scheme for A (LDSA).

Given a DCP P and an annotation A for P, a logical dependency scheme for A is

LDS A = < Gp, A, D > where Gp = < PRED, RULE > is the proof-tree grammar of P and D a family

of binary relations defined as follows.

We denote for every rule r in RULE of profile < r l r 2 ,.. r m, r 0 >
Wh_~(r) (resp. Wcon~(r)) the sets of the hypothetic (resp. conclusive) assertions which are :

Whyp(r) = {CPklk=O,~Pe IA(ro)ork>O,~pe SA(rk)}

Wconc(r) = { ¢Pk I k = 0, cp ~ SA(r0) or k > 0, cp e IA(rk) }

where 9k is cp in which the free variables free (cp) = {Pl Pn} have been renamed into

free (gk) = {Pkl Pkn}-

The renaming of the free variables is necessary to take into account the different instances of the

same predicate (if r i = rj = pr in a clause for some different i and j) and thus different instances of the

same formula associated with pr, but this will not be explicit anymore by using practically the method.

D = {D(r)} r e RULE, D(r) ~ W h ~ (r) x Wconc(r).

From now on we will use the same name for the relations D(r) and their graph. For a complete

formal treatment of the distinction see for example [CD 88]. We denote by h_~ (9) the set of all formulas

such that (~, 9) E D(r) and by assoc (cp) = p(t 1 t n) the atom to which the formula is associated by

A in the clause c correspon&ng to r.

(4.6) Example : annotation for example (2.2) and specification S 2 (2.9).

2~(plus) = IA(plus) u SA(plus)

IA(plus) = {~p : ground (Plus3)}

SA(plus) = {~ : ground (Plusl), ~ : ground (Plus2)}
SAPlUs = S2plus

219

Gplns : PRED = {plus}

RULE = {r I e < e, plus>, r 2 e < plus, plus >}

D D(rl) = {90 ~ 50 }
D(r2) = {cP0 -') 91, ~1 "-') ~0, 51 --~ 50} (see the scheme below)

Whyp(rl) = {¢P0}, Wconc(rl) = {~o, 50}

Who(r2) = {~P0, ~I , ~d , Wc0nc(r2) = {cPl, ~o, 50}

Note that in r 2 for example :

q~0 = ground (Plus03)

91 = ground (Plusl3)...

In order to simplify the presentation of D we will use schemes as in [CD 88] representing the rules
in RULE and the LDS of A. Elements of W¢0n¢, will be underlined. Inherited (synthesized) assertions

are written on the left (fight) hand side of the predicate name. Indices are implicit : 0 for the root, I... to n

followingthe left to right order for the sons.

r l : ~ ~

r 2

®

plus

TT
plus (~ ~

(4.7) Definition : Purely-synthesized LDS, well-formed LDS.

A LDS for A is pur~ly-synthesized iff IA = ~, i.e. there are no inherited assertions.

A LDS for A for P is well-formed iff in every tree t of Gp the relation of the induced dependencies

D(t) is a partial order (i.e. there is no cycle in its graph).

To understand the idea of weU-formedness of the LDS it is sufficient to understand that the relations
D(r) describe dependencies between instances of formulas inside the rules r. Every tree t of Gp is built

with instances of rules r in RULE, in which the local dependency relation D(r) defines dependencies

between instances of the formulas attached to the instances of the non-terminals in the rule r. Thus the

dependencies in the whole tree t define a new dependency relation D(t) between instances of formulas in

the tree. A complete treatment of this question can be found in [CD 88]. We recall here only some

important results [see Knu 68, DJL 88 for a survey on this question] :

220

(4.8) Proposition - The well-formedness property of an LDS in decidable.
- The weU-formedness test is inlxinsically exponential.
- Some non trivial subclasses of LDS can be decided in polynomial time.
- A purely-synthesized LDS is (trivially) well-formed.

(4.9) Definition : Soundness of a LDS for A.

A LDS for A < Gp, A, D > is $o~n~l iff for every r in RULE and every

cp in Wco n~(C) with assoc (~p) = q(u 1 Unq) the following holds :

D I= AND{ ~g[tl trip] I ~g e hyp (cp) and assoc (y) = p(t 1 tnp) } ~ cp[u 1 Unq]

(Note that the variable qi (Pi) in a formula cp (~t) is replaced by the corresponding term ui (ti)).

(4.10)
holds in T :

in rl : ground(X)
ground(0)

in r2: ground(sX)

ground(Y)

ground(Z)

Examole : The LDS given in example (4.6) is sound. In fact it is easy to verify that the following

ground(X)

ground(X)

ground(Y)

ground(sZ)

(4.11) Theorem : A is valid for P if it exists a sound and well-formed LDS A for A for P.

Sketch of the oroof by induction on the relation D(t) induced in every proof-tree, following the scheme

given in [Der 83] or the proof given in [CD 88, theorem (4.4.1)]. The only difference comes from the

lack of attribute definitions replaced by terms. Notice that the free variables appearing in the formulas

(4.9) are the free variables of the corresponding clause c. They are also quantified universally. Hence the

results, as a proof-tree is built with clause instances. In fact, the implications will hold also in every

instance of a clause in the proof-tree as the variables appearing in a proof-tree can be viewed universally

quantified (every instance of a proof-tree is a proof-tree). QED.

(4.12) Theorem (soundness and completeness of the annotation method for proving the validity of
specifications) : We use the notations of (3.3) and (3.5).

A specification S on (L, D) is valid iff it is weaker than the specification SA of an annotation A on

(L', D) with a sound and well-formed LDS (L' as in 3.3).

1) there exists a sound and well-formed LDSA.

2) D t = SA ~ S .

Proof (soundness) follows from theorem (4.11).
(completeness) follows from the fact that Sp on (L', D) is a purely synthesized (thus
well-formed) sound annotation.

We complete this presentation by giving some examples.

i . e . :

221

(4.13) Example (4.10) continued.

The LDS is sound and well-formed, thus SA plus = S2 plus is a valid specification.

(4.14)

e l :

c2 :

c3 :

Example We borrow from [KH 81] an example given here in a logic programming style : it
computes multiples of 4.

fourmultiple (K) ~ p(0, H, H, K).

p(F, F, H, H) ~--

p(F, sG, H, sK) <-- p(sF, G, sH, K)

SfourmulfiP le : 3 N, N > 0 ^ Fourmultiplel =4 ,N

L, D = D 1 as in (2.9) enriched with , , > 0 etc...

The following annotation A is considered in [KH 81] :
IA (fourmultiple) = 0, SA (fourmultiple) = { Sfourrnultip le} = {8}

IA(p) = {13} Sa(p) = {~x, 7]

ct : 3N, N_> 0 ^ P2 = P I + 2 , N

~ : P 3 = P 2 + 2 , P1

y : P 4 = 2 , P 2 + P 1

The assertions can be easily understood if we observe that such a program describes the
construction of a "path" of length 4,N and that pl, p2, p3 and p4 are lengths at different steps of the path

as shown in the following figure :

P1

N

P1 P2 (=P1 + 2*N) P3 (= P 2 + 2*P1) P4(= 2 * P 2 + P 1) T'

222

The LDS for A is the foUowing :

c l ~ fourmultiple

c3

c2

Q p

C) P

@ - Q

The LDS is sound and well-formed. For example it is easy to verify that the following fact holds in

D 1 :
m_._~ :

(cq A 71 ~ S0 f°urmultiple) that is :

etc...

3 N , N > 0 6 H = 0 + 2*N A K = 2*H+ 0

3 N, N-> 0 ^ K = 4 * N

(131) that is : H = H + 2 ,0

m___02 :

(130~70) tha t i s : H = F + 2 , F ~ H = 2 , F + F

(a0) that is : 3 N, N > 0 ^ F = F + 2 ,N (with N = 0)

Note that as S A is inductive, this kind of proof modularization can be viewed as a way to simplify

the presentation of the proof of S A.

Now we consider on the same program a non inductive valid specification ~ defined on L2, D 2

(2.9) :
~fourmultiple : ground (Fourmultiplel)

~P : [ground(Pl) ^ ground(P3)] ~ [ground(P2) ^ ground(P4)]

c l

The specification clearly is val id but not inductive since the following does not hold with D 2

(term-algebra) in c l
D 2 I:~ ~Pl ~ ~f°urmultiple0

i.e.
D 2 I# [(ground(0) A ground(H)) ~ (ground(H) A ground(K))] ~ ground(K)

But it is easy to show that the following LDS is sound and well-formed :

fourmultiple

c3

c2

223

IA (fourmultiple) = 0 , SA (fourmultiple) = { ~fourmultiple}

I a (p) = {a,7} , Sa (p)= {p, 8}
a : ground(P1)

13 : ground(P2)

"/: ground(P3)

8 : ground(P4)

Dotted lines help to observe that the LDS is well-formed (without circularities). The proofs are

trivial.

Note that the corresponding inductive specification is (o~ ~ 13) ̂ (~ /~ 5). It is shown in [CD 88]

how the inductive specification can be inferred from LDS A.

224

Notice that this kind of proof of correctness corresponds to some kind of mode verification. It can

be automatized for a class of programs identified in [DM 84] and experimentally studied in [Dra 87] (the

class of simple logic programs). As shown in [DM 84] this leads to an algorithm of automatic (ground)

modes computation for simple logic programs which can compute (ground) modes which are not

inductive.

Conclusion

In this paper we have presented two methods for proving partial correctness of logic programs.

Both are modular and independent of any computation rule.

These methods have two main advantages :

1) They are very general (complete) and simple (especially if a short inductive assertion is proven).

As such they can be taught together with a PROLOG dialect and may help the user to detect useful

properties of the written axioms. In the case of large programs the second method may help to simplify

the presentation of a proof using shorter assertions and clear logical dependency schemes between

assertions.

2) Valid specifications are the basic elements used in proofs of all other desirable logic program

properties as completeness, "run-time" properties, termination such as shown in [DF 88] or safe use of

the negation [Llo 87]. For example any proof of termination with regards to some kind of used goals and

some strategy will suppose that, following the given strategy, some sub-proof-tree has been successfully

constructed and thus that some previously chosen atoms in the body of a clause satisfy their

specifications. Thus correctness proofs appear to be a way of making modular proofs of other properties

also. In fact the validity of a specification can be established independently of any other property.

Work is at present in progress to adapt such methods to other properties of logic programs. These

methods are currently being used to make proofs in the whole formal specification of standard PROLOG

[DR 88].

Aknowledgments

We are indebted to B. COURCELLE with whom most of the basic ideas have been developed
and to G. FERRAND and J.P. DELAHAYE who helped to clarify this text.

225

References

[AvE 82]

[CD 88]

[Cla 79]

[Coo 78]

[Cou 84]

[Der 83]

[Dev 87]

[DF 87]

[DF 88]

[DF 88]

[DJL 88]

[DM 84]

[DM 85]

[DM 89]

[DR 88]

[Dra 87]

[DrM 87]

[Fer 85]

K.R. Apt, M.H. Van Emden : Contributions to the theory of Logic Programming. JACM
V29, N ° 3, July 1982 pp 841-862.

B. Courcelle, P. Deransart : Proof of partial Correctness for,Attribute Grammars with
application to Recursive Procedure and Logic Programming. Information and Computation
78, 1, July 1988 (First publication INRIA RR 322 - July 1984).

K.L. Clark : Predicate Logic as a Computational Formalism. Res. Mort. 79/59 TOC. Imperial
College, December 1979.

S.A. Cook : Soundness and Completeness of an Axiom System for Programs Verification.
SIAM Journal. Comput. V7, n ° 1, February 1978.

B. CourceUe : Attribute Grammars : Def'mitions, Analysis of Dependencies, Proof Methods.
In Methods and Tools for Compiler Construction, CEC-INRIA Course (B. Lorho ed.).
Cambridge University Press 1984.

P. Deransart : Logical Attribute Grammars. Information Processing 83, pp 463-469, R.E.A.
Mason ed. North Holland, 1983.

Y. Deville : A Methodology for Logic Program Construction.PhD Thesis, Institut
d'Informatique, FacultEs Universitaires de Namur (Belgique), February 1987.

P. Deransart, G. Fen'and : Programmation en Logique avee NEgation : PrEsentation FormeUe.
Publication du laboratoire d'Informatique, University of OrlEans, RR 87-3 (June 1987).

P. Deransart, G. Ferrand : Logic Programming, Methodology and Teaching. K. Fuchi, L.
Kott editors, French Japan Symposium, North Holland, pp 133-147, August 1988.

P. Deransart, G. Ferrand : On the Semantics of Logic Programming with Negation. RR 88-
1, LIFO, University of OrlEans, January 1988.

P. Deransart, M. Jourdan, B. Lorho : Attribute Grammars : Definitions, Systems and
Bibliography, LNCS 323, Springer Verlag, August 1988.

P. Deransart, J. Maluszynski : Modelling Data Dependencies in Logic Programs by Attribute
Schemata. INRIA, RR 323, July 1984.

P. Deransart, J. Maluszynski : Relating Logic Programs and Attribute Grammars. J. of Logic
Programming 1985, 2 pp 119-155. INRIA, RR 393, April 1985.

P. Deransart, J. Maluszynski : A Grammatical View of Logic Programming. PLILP'88,
OrlEans, France, May 16-18, 1988, LNCS 348, Springer Verlag, 1989.

P. Deransart, G. Richard : The Formal Specification of PROLOG standard. Draft 3,
December 1987. (Draft 1 published as BSI note PS 198, April 1987, actually ISO-WG17
document, August 1988).

W. Drabent, J. Maluszynski : Do Logic Programs Resemble Programs in Conventional
Languages. SLP87, San Francisco, August 31 -September 4 1987.

W. Drabent, J. Maluszynski : Inductive Assertion Method for Logic Programs. CFLP 87,
Pisa, Italy, March 23-27 1987 (also : Proving Run-Time Properties of Logic Programs.
University of LinkEping. IDA R-86-23 Logprog, July 1986).

G. Ferrand : Error Diagnosis in Logic Programming, an Adaptation of E. Y. Shapiro's
Methods. INRIA, RR 375, March 1985. J. of Logic Programming Vol. 4, 1987, pp 177-198
(French version : University of OrlEans, RR n ° 1, August 1984).

226

[FGK 85]

[Fri 88]

[Hog 84]

[KH 81]

[Knu 68]

[KS 86]

[Llo 87]

[SS 86]

N. Francez, O. Grumberg, S. Katz, A. Pnuelli : Proving Termination of Prolog Programs. In
"Logics of Programs, 1985", R. Parikh Ed., LNCS 193, pp 89-105, 1985.

L. Fribourg : Equivalence-Preserving Transformations of Inductive Properties of Prolog
Programs. ICLP'88, Seattle, August 1988.

C.J. Hogger : Introduction to Logic Programming. APIC Studies in Data Processing n ° 21,
Academic Press, 1984.

T. Katayama, Y. Hoshino : Verification of Attribute Grammars. 8 th ACM POPL Conference.
Williamsburg, VA pp 177-186, January 1981.

D.E. Knuth : Semantics of Context Free Languages. Mathematical Systems Theory 2, 2, pp
127-145, June 1968.

T. Kanamori, H. Seki : Verification of Prolog Programs using an Extension of Execution. In
(Shapiro E., ed.), 3rd ICLP, LNCS 225, pp 475-489, Springer Verlag, 1986.

J. W. Lloyd : Foundations of Logic Programming. Springer Vertag, Berlin, 1987.

L. Sterling, E. Y. Shapiro : The Art of Prolog. M1T Press, 1986.

