
Order-Sorted Completion: The Many-Sorted Way
(Extended Abstract)

Harald Ganzinger*
Fachbereich Informatik, Universit/it Dortmund

D-4600 Dortmund 50, W. Germany
e-mail: hg@infor rnatik.uni-dor tmund .de

Order-sorted specifications can be transformed into equivalent many-sorted ones by using injections
to implement subsort relations. In this paper we improve a result of Goguen/Jouannand/Meseguer about
the relation between order-sorted and many-sorted rewriting. We then apply recent techniques in comple-
tion of many-sorted conditional equations to systems obtained from translating order-sorted conditional
equations. Emphasis will be on ways to overcome some of the problems with non-sort-decreasing rules.

1 In t roduct ion

1.1 O p e r a t i o n a l S e m a n t i c s fo r O r d e r - S o r t e d S p e c i f i c a t i o n s

Many-sorted equational logic is a major candidate to serve as a basis for algebraic specifications and logic
programming. Order-sorted equational logic originated with [Gog78] and was further elaborated - - in
different variations - - in [Gogo86], [GM87], [SNGM87], [KKM88], and [Poi88], among others. In [GJM85],
an operational semantics for order-sorted specifications based on a translation scheme into many-sorted
specifications is introduced. The main idea of this translation is to add auxiliary injection operators i~¢~, to
implement subsort containments s C s'. This provides the ability to use standard manly-sorted concepts of
rewriting, completion, and theorem proving in implementations of specification langnlages based on order-
sorted logic.

In [GKK87], a completion procedure specifically tailored to unconditional order-sorted equations and
based on order-sorted rewriting is proposed as an alternative. The main motivation for this approach is
that order-sorted rewriting can be more efficient than naive many-sorted rewriting with the translated rules
[KKM88].

The purpose of this paper is not to enter a discussion about efficiency of rewrite relations - - we believe
that both approaches are of interest in their own right - - but to improve both previous approaches. There
are two directions of improvement which this paper wants to contribute to.

The first problem left open by the approaches of [GJM85] and [GKK87] is the handling of non-sort-
decreasing rules. This problem had been overlooked in [GJM85] as most of the results in this paper which
relate order-sorted to many-sorted rewriting are only valid for sort-decreasing rules. Hence, standard Knuth-
Bendix completion when applied to the many-sorted translation of order-sorted equations fails whenever a
non-sort-decreasing rule is encountered. In this case, the operationally awkward injectivity axiom for the
injections has to be taken into consideration - - a problem which standard Knuth-Bendix corapletion is not
prepared to handle. For a related reason, the order-sorted completion procedure of [GKK87] fails when a
non-sort-decreasing rule is generated. Order-sorted re'placement of equals by equa~ is not a complete proof
method for order-sorted deduction in this case [SNGM87].

The second problem is to complete order-sorted specifications with conditional equations. Fortunately,
the state-of-the-art in completion of many-sorted conditional equations which has originated with [Kap84]
has been substantially advanced during the last year, mainly by the work of tl.usinowitch and Kounalis
[KR88], [ttus87], and by this author [Gan87], [Gan88], [BG88]. (Other related relevant work is described
in [ZR84], [Zlt.85] and [Kale87].) In particular our own approach, based on the method of proof orderings

*This work is partially supported by the ESPRIT-project PI~OSPECTRA, tel#390.

245

[Bac87], [BDH86], appears to be well-engineered towards practical use due to its power in simplifying and
eliminating equations during completion. This advance in technology is the main reason of why this paper
again picks up the translation idea of [GJM85] to develop order-sorted completion the many-sorted way.

As one can immediately se% both problem areas are closely related. To handle non-sort-decreasing rules
requires to consider the effect on the equational theory of conditional equations such as the injectivity axiom.

1.2 S u m m a r y of Main R e s u l t s

With regard to the relation between order-sorted rewriting and many-sorted rewriting we improve results
by Goguen, Jouannaud and Meseguer. In particular we show that one step of order-sorted rewriting with
a set of rules R is one step of many-sorted rewriting with the lowest parses),(R) of R modulo the axioms
L P of the lowest parse. This result also holds in the case of non-sort-decreasing rules. It could be made
the basis of employing the concepts of completion modulo equations for order-sorted specifications - - an
idea which will, however, not be investigated any further in this paper. A second result is that to any sort-
decreasing canonical system of order-sorted conditional rewrite rules there exists an equivalent, canonical
many-sorted system (consisting of L P and the lowest parses ,X(RB) of the sort specializations R8 of the
given order-sorted rules R). This result is not completely obvious as the critical pairs lemma is not true
for conditional rewrite rules in general [DOS88]. (A related result in [GJM85] which, by the way, is also
only true for non-sort-decreasing rules, employs the composed relation -'*~(ns) o ---+Lp n] in the many-sorted
world.) Hence, many-sorted unfailing completion [IIt~87], [Bac87] will generate the reduced version of this
system. The proofs are contained in the full version [Gan88b] of this paper and omitted from this extended
abstract.

We show that in many practical cases non-sort-decreasing rules can be replaced by sort-decreasing ones
without changing the initial algebra. These replacements are rules with extra variables in the condition and
in the right side. Fortunately they belong to the class of what we call quasi-reductive rules. Quasi-reductive
rules are a generalization of reductive conditional rewrite rules and the associated rewrite process is similarly
efficient.

We outline an unfailing completion procedure for conditional equations that can handle both nonre-
ductive equations such as injectivity axioms and quasi-reductive equations as they are introduced during
replacing non-sort-decreasing rules. It is an extension of the one which has been presented and proved correct
in detail in [Gun87] and [Gan88]. The correctness of the extensions (unfailing completion, quasi-reductive
equations) is shown in [BG88] and [BG89]. We demonstrate by means of examples tha t these techniques
perform successfully on practical examples of order-sorted specifications.

2 B a s i c N o t i o n s a n d N o t a t i o n s

We will only introduce the syntactic aspects of order-sorted logic and refer to [GM87] and [SNGM87] for the
two main variants of semantics for order-sorted specifications. In this paper, notions and notations mainly
follow [SNGM87] and [GKK87].

Every variable x comes with a sort s ~ which is a sort symbol. For every sort symbol there exist infinitely
many variables having this sort.

A subsort declaration is an expresion of form s < s ~, where s and s' are sort symbols. A funct ion or
operator declaration has the form f : s l . . . sn --+ so, where n is the arity of f and sl are sort symbols. An
order-sorted signature~ usually denoted E °8, is a set of sort symbols, subsort and function declarations. A
many-sorted signature, usually denoted E~ is a particular case of art order-sorted signature with an empty
set of subsort declarations. In a many-sorted signature we do not allow more than one declaration for any
function symbol. By S and ~2 we denote the set of sorts and operators, respectively, of a many-sorted
signature E.

The subsort order s <Eo, s ~ is the least quasi-order on the sort symbols of y os generated by the subsort
declarations. Throughout this paper we restrict attention to signatures for which <l:o, is a partial order.
If the signature is clear from the context, we will omit the subscript E °s in <~:o,. __.zo, extends to tuples
of sort symbols of the same length by (s~, . . . ,_sn) <~o, (s l , . . . ,sn), i f fs i <~o~ si, for 1 < i < n. We write
s <b s t, if s < s r and if there does not exist any stt such that s < s ~t < s t.

Given a set of variables X, a E°S-term o f sort s in 7-~o,(X)s is either a variable x such that s x _< s,
or has the form f (t l , . . . ,tn), where f : S l . . . sn ~ so is a function declaration in Eos such that s0 <_ s and

246

ti E Tr.o,(X),, is a term of sort si, for 1 < i < n.
Many-sorted terms are defined like order-sorted ones. The main difference is tha t the sort of a many-

sorted term t is uniquely determined and will be denoted s t in this paper. Given a many-sorted signature E,
by T~(X)8 we denote the set of many-sorted terms of sort s over the variables in X. For both order-sorted
and many-sorted terms t we use the notation t : s to indicate that t is a term of sort s.

A ~°8-equation is a pair of Z°~-terms u and v of the same sort written as u~-v. A conditional equation
over Eos is a formula of form C ~ u ' - v , where u'--v is a E°S-equation and C is a finite conjunction of
~°~-equations ul "-vl A . . . h un "--vn, n >_ O. I f E is a set of (conditional) E°S-equations~ by E = we denote
the set

E = = { C ~ u - v l C ~ u ~ v ~ E or C ::v v-+-u C E } .

An order-sorted (equational} specification consists of an order-sorted signature ~os and a set E of con-
ditional E°S-equations.

If O is a syntactic ~°S-object, i.e. a term or (conditional) equation, by var(O) we denote the set of
variables occurring in O.

A ~OS_substitution is a function a from ~°~-terms to Z°S-terms such ~hat

1. if u is a term of sort s, then a(u) is a term of sort s,

2. o ' (f(t l tn)) = f (o ' (g l) , . . . , Or(in)),

3. dora(a) := {x I a(x) # x}, the domain of a is finite.

We will also use the notation ucr for a(u).
An order-sorted signature ~os is called pre-regular, if for any ~°*-function symbol f and every string

s l . . . sn of Z°'-sorts the set {~] (f : 7~1 . . . ~ n -4 ~) ~ ~os, 81 . . " Sn ~:~o, ~'1 • . .~ 'n} is either empty or has a
minimum element wrt. the subsort order of Eo , Eo, is called regu/ar~ if for any string sl . . . s~ of E°S-sorts
such that there exists a function declaration (f : :~I.. -~n --* ~) E ~o8 with s l . . . sn <Eo, ;~I.- - ~ , then there
exists a least (_s~ ~n,s) such tha t (f :_s~...s_~ --* _s) e ~]o~ and sl . . . sn _<~o, s~ ..._sn. Regularity of a
signature implies pre-regularity.

Pre-regularity is required for the existence of initial algebras in the semantics of [SNGM87]. For the
semantics of [GM87], regularity is a sufficient condition for the existence of initial algebras. Although
the notion of order-sorted deduction which is used in this paper corresponds to the semantics of [GM87],
pre-regulary will already be a sufficient condition for the syntactic properites on which our approach of
order-sorted completion is based.

An order-sorted signature is called coherent, if each equivalence class of sorts under the equivalence
closure of __~o, has a maximal element.

From now on we will assume order-sorted signatures to be pre-regular and coherent.

3 T r a n s l a t i o n o f Order-Sorted Specifications

3.1 M a n y - S o r t e d R e p r e s e n t a t i o n s o f O r d e r - S o r t e d T e r m s

Def in i t i on 3.1 Let ~os be an order-sorted signature. Its t r a n s l a t i o n into a corresponding many-sorted
signature ~, is defined as follows:

1. The sorts in S are the sorts in S°s.

2. I f f : s l . . . s , ~ --* so is an operator declaration in S ° ' , then f*l ~o : s x . . . s n --* so E f L

3. I f s <b s' in ~os, then i , c ,, E 12.

The translation disambiguates overloaded function symbols and introduces injections i~¢s, to represent
the containment of s in s t. Injections along chains of subsort relations can be represented by terms in
elementary injections. As there may be more than one way of going from an s to an s ' we have to order
these paths if we want a unique representation. For tha t purpose we assume the partial subsort order to
be extended to an arbitrary but fixed total order <~ on S. The same notation is used for the lexicographic
extension of <t to sequences of sorts. (This is different to the extension of <~.o, to tuples which we have
used to define the regularity properties. The latter was defined component-wise.)

Now we define composite injections to proceed along minimal paths in the subsort graph.

247

Defini t ion 3.2 Let s <_ d . Let fur thermore s n s n - 1 . . , so, n >_ O, be a sequence o f sorts min imal wrt. <t
such that so = s, sn = s t, and si <b si+l, for 0 < i < n. Then the minimal compos i te in ject ion

is~_aCs, . , o i~ ,~_2Cs, ,_ 1 o . . . o isoCsa

f rom s to d will be denoted as Iscs , . (I f s = d , I , c s, is the identity for which there is no explicit operator
symbol in ~ . Hence, terms Iscs ,(t) and t are not distinguished in this ease.)

We can now go on and define mappings between order-sorted terms and their many-sorted representations
terms over ~. Any many-sorted term t in Z represents one unique order-sorted term w(t) which is obtained

by deleting injections and by collapsing the disambignated operator symbols into the original overloaded
symbol.

Def ini t ion 3.3 The mapping w(_) : T ~ (X) -+ T~o,(X) is inductively defined as follows:

1. I f z : s is a variable, then w (x : s) = x : s .

2* 02(/,1 o (t l , . . . , t ,)) = f(~(tl) ,--- ,W(t~)), for non-injections f,1 so • ~2.

3. w(iscs,(t)) = w(t), for injections iscs, • •.

In the reverse direction, A(_) will compute the lowest parse of an order-sorted term.

Def in i t ion 3.4 The lowest parse A(_): T~o, (X) ---, T s (X) is inductively aefi.~a . s foUow~:

1. A(z : s) = z : s, for variables x : s • X .

• = . . . , t n) , where f : S l . . . sn -+ so is the operator declaration in Zos for 2. A(f(t l , . . , t ,)) Y,1 0(tl, '
• ~ < 1 < i < n, and where which sos1. • s~ is min imal wrt. <, such that A(ti) • T~.(X),~ and s i si,

t~ = L,c.,(~(tO), i < i < n .

As we are putting the codomain so of f at the beginning of the sort sequence sos1 • .. sn when looking
for a minimal declaration for f , A(t) will always have a lowest possible sort.

P ropos i t ion 3.5 1. w(A(t)) = t

2. s A(~(0) _< s ~

3.2 C o m p u t a t i o n o f M i n i m a l P a r s e s b y R e w r i t i n g

In the preceeding section we have defined a function A(.) which produces a many-sorted representation of
an order-sorted term. The representation always is a term of a lowest possible sort and, hence, unique
for pre-regular signatures. On the other hand, there are usually many different many-sorted terms that
represent the same order-sorted term via w(_). In this section we describe a canonic~ set of rewrite rules
over 2 which, for any given many-sorted term, computes the lowest parse of the order-sorted term w(t) it
represents.

The set of rules consists of rules for computing the minimal path (wrt. <t) between any two sorts s < d
and of rules which represent the inheritance axioms for overloaded function symbols on subsort hierarchies.

Ax ioms (CI) for composite in ject ions

i.,c..(1.c.,(x)) = Lc:(~:),

for s < s ' < s", if I ,c¢ , # i,,c,,, o I ,c ¢.

Axioms (INH) for inheritance

I,~ 0 (I~c ,~(x l) , . . . , I~ , c , , (x~))= I ¢ o c , o (L i . . & - . 4 (I ~ c d (Z l) , . . . , I ~ , c , , (z ~))) ,

t I t i _+ s~ are operator declarations, SoS 1 . sn <, sos1 .. s~, s~ < so, if f : s l . . . s,, --* so and f : s~. . . s n . . . _
and if & are maximal 1 sorts such that ~i <_ si and ~i <_ s~.

1To select maximal sorts si is not reany required. However, (INH)-axioms for ma~dmal -si subsume (INH)-axioms for non-
maximal ones.

248

We will now prove that the equation system L P = C I U I N H , oriented from left to right, forms a
canonical system of rewrite rules. First we will define a precedence on E-operators such that the induced
recursive path ordering proves the termination of the system.

Def in i t i on 3.6 B y >I we denote the following partial order on ~t:

1. is les ~ > is~cs~, i f f J 2 < s2 or {f s~ = s2 and s~ < 31,
for inject ions istcs2 and isles ~ .

2. fst...~.--*8o > i~c~'~
far any order-sorted operator f and any injection iscs,.

l
3. f~ o > f ~ . . . ~ ; , i f] S'oS'l . . . s , <~ sos1.., s,, ,

t for any two declarations f : s t . . . s n -+ S~o and f : 31 . . . s~ -+ so o f the same order-sorted operator
symbol f .

By >I we denote the recursive path ordering on T ~ (X) induced by >I.

P r o p o s i t i o n 3.7 Orienting the equations in L P from left to right into rules L --* R, we have L >~ R, for
any o f these rules.

The confluence of the system will be proved using the following proposition:

P r o p o s i t i o n 3.8 I f
J (x) = i~ ._~c~ , o i c o . . . o i ~ 0 c ~ (x)

is some composite injection from so to sn, n > 1, then J (x) -~ *cI Is0cs.(x)-

As a consequence we have J l (x) ~c l J2(x), for any two composite injections J1 and 3"2 from s to s'.

L e m m a 3.9 For any two E- terms t : s and t t : s' such that s <_ so, and s' < so, we have w(t) = w(t'), i f f
/~c~0(t) ----LP /~'c~0(t') such that the =--Lp-proof only involves intermediate terms smaller than hc~0(t) or
/~,cs0(t') with respect to >1.

P r o p o s i t i o n 3.10 The set o f rules L P is locally confluent, hence confluent by 3. 7.

From 3.7 and 3.10 it follows that L P is canonicM. We will now prove that the LP-normalforms of terms
t represent the lowest parse of the corresponding order-sorted terms w(t). More precisely,

L e m m a 3.11 Let t E T ~ (X) s and s x(~(t)) =: s' < s" < s.

I. 5,c~,,(~(~(t))) is/rredueible ~nder ~LP.

2. t >~ 5 ,~-(~(~(t))) .

In particular, f rom 1, 3.9, 3.7, and 3.10 we have that t ~Lp= /s,cs(A(w(t))) .

Altogether we have shown that two terms t l , t2 E T ~ (X) are representations of the same order-sorted
terms, iff they are equivalent under L P . Moreover, the equivalence can be decided by rewriting the appro-
priately injected terms to their -*Lp-normalforms.

3 .3 O r d e r - S o r t e d D e d u c t i o n a n d R e w r i t i n g

The notion of order-sorted deduction here is the one for the variant of order-sorted logic in [GM87]. Order-
sorted deduction is described by the following set of inference rules, cf. e.g. [GKK87]:

Def in i t ion 3.12 (O r d e r - S o r t e d D e d u c t i o n) Let E be a set o f order-sorted equations over E °~.

Ref lex iv i ty
E [-x t - t ,

for any t e T~o,(X) .

249

S y m m e t r y

Trans i t iv i ty

Congruence

for ~,#' : X ~ Tr, o , (Y) , t • Tr.o,(X)

Subs t i t u t i v i ty

E kx t - f
E Fx t ' - t

E ~-x t'-t'~ E k x tt~-t"
E ~-x t - t "

E er 0(=)-¢(=) , w • x
E ~r ~(t)-~'(t)

E Fy e(t~)-O(~), i < i < n
E ~-y O(t)-O(~')

for ~ = t l& t' 1 A . . . A tn~t~ ~ t - f E E and 8 : var(~) ~ T~o,(Y) a substitution.

Clearly, E ~'x t&t ' , iff t --E x t', where ~ x = U~N _=X, with = x = ~ and t - x t', iff t = -x 1 t ' or if there
exist uj, u~ such that uj - x _ 1 u} and t - ' t ' can be derived from ui&u~ using one of the above inference rules.

We will now extend our notion of lowest parses A(_) to unconditional equations. Let tl ~t2 be an order-
sorted equation, and assume that si = s ~(t~).

,~(t~ "-t2) = 5~o(,~(t~)) - Z,~o(~,(t~)),

where s is some minimal supersort of both tl and $2, i.e. ~1,t2 E T~o*(X) s. (Due to the coherence of ~os
such a a s exists. There may be more than one choice for s. This, however is irrelevant in our context.) In
particular, if s2 <_ sl , the left side of A(t~ "--t2) wilt not have an injection as top symbol.

Let now
E # = C I U I N H U I N U A (E) ,

where
A(E) = {...A(ti "-t~)... ~ A(t~f) 1.. . t~--t~.. . =:~ t ' - t ' • E }

are the minimal parses of the equations in E and where

I N = {i , c s , (x) - i , o , (y) ~ x - y I i ,o , • a }

is the set of injectivity axioms for the injections in E.
The following is the proof-theoretic equivalent of the satisfaction theorem in [GJM85]:

T h e o r e m 3.13 F o r t l , t 2 • T2(X)~ , t l - x t2, i f fw (t l) = x w(t2). ~E#

This theorem proves the equivalence of order-sorted deduction in E with standard many-sorted equational
logic in E #.

We now go on and compare order-sorted rewriting to many-sorted rewriting.

Defini t ion 3.14 An order - so r t ed condi t ional rewr i te rule zs an order-sorted conditional equation
C :ez l'--r satisfying (va t (C) U vat (r)) C vat(1) and denoted C =~ l-:~r.

Defini t ion 3.15 A term t • T ~ (X) rewr i tes to t' with a rewrite rule p = C ~ l-=~r in R at occurrence
o, which is denoted t -+RX t' = t[o ~ a(r)] whenever

1. a is a substitution a : vat (p) --* T~o~(X) such that t /o = In,

2. there is a sort s such that, for x a variable o f sort s, t[o ¢-- x] is a well-formed term and In, ra •
~ o , (X) , ,

3. for any u - v • C there exists a term w such that ua ---~ Rx* w and va --* Rx* w, with ~ Rx* the reflexive
and transitive closure of--*Rx.

250

I.f X = var(t), we will also write ~ R and ~*R for ~ R x and ~*Rx, rest~etively. The smallest fixpoint of
this reeursion defines -*Rx.

Many-sorted rewriting is defined like order-sorted rewriting in signatures with an empty set of subsort
relations. In this case, the second condition of the previous definition becomes trivial.

T h e o r e m 3.16 u -~;~(R)/LP v iff w(u) ~1~ w(v).

This theorem proves that order-sorted rewriting is equivMent to rewriting the many-sorted representa~
tions of terms modulo the axioms of the lowest parse LP, using the lowest parses of the order-sorted rlltes
as rewrite rules. If "-~R is canonical, A(R) /LP is canonical, too. However~ rewriting modulo L P does not
seem to be very efficient. Fortunately, forming the closure Rs of R by all specializations of the rules, will
make A(Rs) U L P canonical, provided R is sort-decreasing and canonical.

To.formally introduce the notion of specialization it is useful to define the notion of a sort ~ssignment.
A sort assignment is a map a : ~ --+ S, where ~ is the set of names of variables in X. Hence, a sorted set
of variables is a pair (~ , a), denoted Xa. Sort assignments inherit the subsort ordering such that a _< a ~,
iff a(x) g at(x), for any x E ~ . A specialization is a substitution p : Xc~ -+ Xa,, where a' <_ a, sending
x : a(x) to x : a'(x). To specialize a order-sorted term or formula ¢ means to apply a speciaJJzation to ¢.
If ~ is a set of order-sorted terms of formulas, by e s we denote the set of aJl specializations of terms or
formulas in ~.

Def ini t ion 3.17 An order-sorted rule C ~ s ~ t is called sor t -decreaslng, iff for any specialization p,
sp-:+tp has a lowest parse such that s ~(sp) > s ~(tp). A many-sorted rule C ~ s-:+t is called sor t -decreasing,
iff the left side s does not carry an injection as its top symbol. A set of rules is sort-decreasing, if each of
its members is sort-decreasing.

An immediate consequence of 3.16 is the following corollary.

Corollary 3.18 u "-*~,(Rs)/LP v iffw(u) ~ w(v).

Confluence and termination of R carry over to R# = A(Rs) U L P as we shall see in the next theorem.
Let us first make a few remarks about reduction orderings. If we axe given a reduction ordering > on
Tz~,(X), it can be extended to a reduction ordering >m~ oll T~(X) which is compatible with -~LP, simply
by defining t >,as t', iffw(t) :> w(t'). In addition, the transitive closure ~ of (>ms U >I), where >I is the
recursive path ordering that we have introduced to order the LP axioms, also is a reduction ordering on
Tz(X) which is compatible with LP. This ordering can be used to order A(Rs) tA LP.

T h e o r e m 3.19 Let R be a set of order-sorted rules.

1. R is sort-decreasing, iff R# is sort-decreasing.

2. Let R be sort.decreasing. R is canonical iff Tl# is canonical with a reduction ordering that is compatible
with --LP"

3. I.f R# is canonical and sort-decreasing, then, ~.P~=-E#~ i.e..for any two terms u, v E T~(X)s we have

_ x iff u ~R~ v.

In the case of unconditional rewrite rules R, R# is unconditional, too. Unfailing many-sorted completion
[H1~87], [Bac87] will generate any reduced variant of R~.

3.4 Elimination of N o n - S o r t - D e c r e a s i n g R u l e s

Theorem 3.19 requires order-sorted rules to be sort-decreasing for the construction of an equivMent canonica~
system of ma~y-sorted rules. Likewise, order-sorted completion as proposed in [GKK87] requires rules to
be sort-decreasing and faJls, if non-sort-decreasing rules are generated. We shall see in section 5.1 that
translating into many-sorted specifications and applying conditional equation completion (to den1 with the
injectivity axiom of injections) is successful in simple cases of non sort-decreasing rules. In many interesting
cases, like in the subsequent example, the completion procedure which we will describe in section 4 below
will not terminate.

251

E x a m p l e 3.20

sort r~Nat < naG, nat < i n t , nzNat < nz In t , nz In t < in t
op

0 : nat
s : nat -> nzNat
+ : int*int -> int, nat*naG -> nat, nat*nzNat -> nag

nzNat*nat -> naG, nzNat*nzNat -> nzNat
- • nag -> int, nzNat -> nzInt, int -> int, nzInt -> nzInt
• : int*int -> int, nat*nat -> nat
square : int*int -> nat

var i:int, j:int, n:nat
axioms

-(0) = 0
-(-i) = i
i+O = i

O+i = i
k+s(m) = s(k+m)
(-s(k)) + s(m) = (-k) + m
i + (-j) = -((-i)+j)
i*O = 0
O*i = 0
i*s(n) = i*n + i
i*(-j) = -(i * j)
(-i)*j = -(i * j)
square(i) -- i*i

The last a~dom, when oriented from left to right, is clearly not sort-decreasing. A specification with the
same initial algebra would be the one in which this equation is replaced by

i • i-+-n ~ square(i)'-n,

with n a variable of sort nat. This equation, when oriented from left to right, is sort-decreasing. However,
it has the extra variable n in its condition and fight side. The lowest parse of this equation would be

i * i-in~ci~t(n) :¢" square(i)'-n.

Equations of this kind are usually not admitted as rewrite rules. In fact~ we plan to associate a specific
operational semantics with it. It should be specifying the replacement of a square(i) by any n which can be
obtained from normalizing i , i and type checking the result by matching inatCi~t(n) with the normalform.
If the normalform is unique, this process of finding the substitution for i and n at rewrite-time is completely
backtrack-free. Unfortunately, this idea of deterministic oriented goal solving is not a complete goal solving
method in general. Fortunately, an adequately designed completion procedure can make it become complete.

Our idea of how one can replace non-sort-decreasing equations by sort-decreasing ones should be ob-
vious, not requiring any further formalization. However, we should be saying something about when this
replacement preserves the initial algebra of a specification. We assume to be given a set E of order-sorted
equations, as well as its many-sorted equivalent E #.

Def ini t ion 3.21 Let C be a set of unconditional equations, let t 6 Tz(X)s be a term of sort s, vat(C) C X ,
and s' < s. We say that t is o f t ype s' in con tex t C, if for any ground substitution a of the variables in
X such that Ca C =~# there ezists aterm u, 6 T~.(X),, such that ta =~# ; , ,o(U~).

In our above example we have ~ * ~ of type nat in the empty context as for any ground substitution i * i is
equal to i~c~((i ,~No~c~.~ o s)~*~(0)).

Propos i t ion 3.22 Let C ~ Islcs(l)----"/s~cs(r) be a conditional equation and let Is~cs(r) be of type st in
context C. Then, replacing C ~ Iszc~(1) "--£~o(r) by

c A 5,o(r)-" I~o(~) ~ l "--~,

with x a new variable of sort s t, preserves =-t#, and hence the initial algebra of the specification.

252

One half of the proof of this proposition is that paramodulation of C ~ Is~cs(l)-I~cs(r) on the condition
of the injectivity axioms for the injections will generate the replacement C A Is~cs(r)--Is~c~(x) ~ t'--x. We
shall see tha t during completion supe~osit ions of this kind will be performed anyway. Yet, completion very
often will not terminate because of other snperpositions on the originally given equation. We bdieve that
sufficiently powerful ground completion procedures, once they have been developed for conditional equations,
can solve this problem in cases where the previous proposition applies. In other words, ground completion
of the original specification can be expected to terminate in this case.

4 Completion of Many-Sorted Conditional Equations

In this section, we will assume to be given a fixed many-sorted signature ~. Equations~ terms, substitutions,
etc. will be taken over this signature, unless specified otherwise. Furthermore, we assume a reduction
ordering > to be given on T~(X). > ~ wilt denote the transitive closure of > U st, with st the strict subterm
ordering. > ~ is noetherian and stable under substitutions.

4.1 A n n o t a t e d E q u a t i o n s a n d R e d u c t i v e R e w r i t i n g

We do not put any restrictions on the syntactic form of conditional equations. In particular, conditions and
right sides may have extra variables. To compensate for this permissiveness, the application of equations
at rewrite-time will be restricted. Completion will guarantee tha t this restricted application is complete.
Formally, application restrictions can be modelled by considering a given set E of equations as a generator
for rewrite rules. 2 In particular, the set E r of reductive instances of the equations in E is of interest:

E r = {Ca ~ s(r-:*ta] C ~ s - t E E=,sa > t~,sa > ua, sa > va, for any u-~v E C}

In the general case, --*E* can be quite inefficient and require (restricted) paramodulation to solve condi-
tions of equations in E . Furthermore, the computed solutions have to be tested for reductivity. To increase
efficiency of rewriting, it can be useful to further restrict application of equations at rewrite-time.

Vee will annotate equations to specify in which way their use at rewrite-time should be restricted.* For
the purposes of this paper, an equation can be annotated as operational or nonoperationaL The intuitive
meaning is tha t a nonoperational equation should not contribute at all to the equational theory. Injectivity
axioms, for example, should be irrelevant at rewrite-time.

In operational equations C =v s - t , condition equations u - v E C will be annotated as either oriented or
unoriented. We will use the notation u --- v to indicate the annotation "oriented". For a oriented condition
oriented goal solving is wanted. Altogether:

De f in i t i on 4.1 Let E be a set of annotated equations. E is viewed to generate the set E ~ of rewrite rules
Ca ~ s a n t a such that

1. C ~ s - t E E = is annotated as operational and Ca ~ sa-~ta E E T, i.e. the instance is reductive,

2. i f u -~ v E C, then van' is ~E~-irreducibIe for any --+E~-irreducibte substitution a'.

Clearly, -~E~C~I~C-+E, where the subset inclusions are proper, hence ~E-#----E in general. E is called
complete, iff ~ E , = = E and if -+Eo is canonical. A completion procedure at tempts to complete E in this
sense.

In many practical cases, a final system E obtained by completion will have additional properties which
make ~ E o to be efficiently computable. For example, i f

i * i ~ ina~Cin~(n) =~ square(i)'--n.

with the condition annotated as oriented, is dement of a complete E, square(i) needs only be rewritten for
those instances of i for which the -*E~-normalform of i * i is of form inatcint(n). Moreover, if i • i is smaller
in the reduction order than square(i), the replacement n will also always be smaller than square(i), making
any application of the equation reductive. No reductivity tests axe required at rewrite-time. Equations which
have this property will be called quasi-reduetive below. Note that let-expressions with patterns in functional
programming languages such as MItLANDA are another example of equations with oriented conditions, cf.
definition of quicksort below.

~In [BG88] we develop a more general concept of application restrictions based on a notion of relevant substitutions.

253

4.2 Q u a s i - R e d u c t i v e E q u a t i o n s

To simplify the formal t reatment in this section, we can assume tha t operational equations have oriented
conditions only. (If an equation has an unoriented condition u __t v, we can replace the latter by the two
oriented conditions u = x and v =- x, where x is a new variable.)

In the classical case of unoriented conditions, the class of reductive equations [Kap84], [JW86], Mlows
for efficient rewriting [Kap87]. In particular, conditions of equations are easily proved or disproved, and no
goal solving is required. Moreover, there are no reductivity tests required at rewrite-time, as any instance
of a reductive equation is reductive.

In the case of oriented goal solving there exists a similarly efficient class of equations. Oriented goal
solving ua --**Eva reduces to normalizing ua and, then, matching va with the normal form, if any of the
variables of u is already bound by the matching of the redex, or by the solution of some other condition
equation. To formalize this idea, we will have to look at how variables are bound within an equation. We
call a conditional equation ul-+-Vl A . . . A u~--vn =t. s~.t (with oriented conditions) deterministic, if, after
appropriately changing the orientation of the consequent and choosing the order of the condition equations,
the following holds true:

~ar(uO C vat(s) U U (var(uj) u ~:ar(~)),
l<j<~

and
n

~ar(t) C vat(s) U U (,,ar(uj) u ~,ar(vj)).
j= l

To arrive at a concept for avoiding reductivity proofs at rewrite-time, let us now assume the existence of
some enrichment E I D E of the signature such that the given reduction ordering on T ~ (X) can be extended
to a reduction ordering on Tz,(X).

Def in i t i on 4.2 A determinis t ic equation ut "-Vl A . . . h un'=vn ~ s'--t, n > O, is called quas i - r educ t ive ,
i f there exists a sequence hi(~) o f terms in Tz,(X), ~ e X , such that s > hi(u1), hi(v~) > h~+l(u~+]),
1 < i < n, and hn(vn) >_ t. A n uncondit ional equation s - t is quasi-reductive, i f s > t.

The equation
i • i - i ~ a t c i ~ (n) ~ s q u a r e (i) - n

becomes quasi-reductive under a recursive path ordering, if square > • in precedence. Choosing, hl(~) = ~,
the inequalities square(i) > i * i and inatCint(n) >_ n are obvious. Also quasi-reductive is

split(~, O - q~ , t2) ~ sort(~o~s(x, l)):---a~e~d(sort(l~), eons(~, sort(h))),
with hl(~) = f(~, x), where f is a new auxiliary function symbol. The termination proofs can be given
by an appropriately chosen polynomial interpretation. It has to be verified that f (sor t (cons (x , l)), x) >
f(split(~, t), ~) and/((l~, l:), ~) > append(sort(t0, cons(~, sort(l~))).

Quasi-reductivity is a proper generalization of reductivity:

P r o p o s i t i o n 4.3 I f the equation Ul "--Un+l A . . . A Un~U2n =2;" s ~ t iS reductive, then the equation

?tl-~Xl A Un+l "--X 1 A . . . A Un'--xn A U2n'--X,n :2;. S'-ut~

is quasi-reductive, i f the xi are new, pairwise distinct variables.

L e m m a 4.4 Let E be finite and Ul -V l A . . . A Un "--vn ~ s& t E E a quasi.reductive equation.

1. I f a is a substi tution such that u ia ~ *E via, 1 < i <_ n, then, sa > ta.

2. I f N t -*E= N " is decidable for all terms N I such that N >st N ~, then the applicability o f the equation
u ~ - v l A . . . A un "--vn =¢" s-- t in N is decidable.

C o r o l l a r y 4.5 Let E be a set o f annotated equations in which any operational equation is quasi-reductive.
Then, ~ E , is decidable.

For confluent --*s-, the applicability of a quasi-reductive equation can be decided by matching the left side
and~ then, for 1 < i < n~ matching the vi against the normal forms of the substituted ui to obtain another
part of the substitution. As quasi-reductive equations are deterministic, each variable in ui is bound at the
time when the i- th condition is to be checked. Computing the substitution a is completely backtrack-free
in this case. Moreover, no termination proofs are required at rewrite-time.

254

4.3 C o m p l e t i o n I n f e r e n c e s a n d S t r a t e g i e s

In this abstract we will only briefly describe the basic inference rules and fairness requirements in completion
of annotated, application-restricted equations. For details we refer to the full version [Gan88b] and to
[Gun87], [Gan88] and [BG88].

Standard completion CC in the conditional case according to the concepts in [Gan87] and further refined
in [BG88] consists of three inference rules for adding consequences, one rule for simplification and one rule
for elimination of conditional equations. Conseqences axe added by

• paramodulating an equation on the consequent of an equation (i.e. computation of contextual critical
pairs)

• pararnodulating an equation on some condition of an equation

• resolving some condition of an equation with x "--x.

Paramodutation is restricted in that terms are never replaced by bigger terms in the reduction ordering.
Also, superposition is limited to the nonvariable part of a literal.

Equations C =~ s-~t are simplified by rewriting with quasi-reductive equations, using the (skolemized)
condition equations C as additional rewrite rules.

An equation C ~ s-+-t can be eliminated, if the current set E of equations admits a proof of C }- s - t
which is simpler wrt. the proof ordering than the proof in which C =~ s~t is applied under the identity
substitution to the hypotheses C. In practice, the different proofs of C ~'E s - t have to be enumerated to
a certain depth and their complexities compared against the complexity of the proof which has lead to the
creation of C ~ s'-'t~ cf. [Gan88].

The fairness requirements in CC-inference rule application depend on the annotations of the equations.
The general case is described in [BG88] and [Gan88b]. As a particularly interesting subcase we mention the
following result:

T h e o r e m 4.6 A CC-derivation Eo, Et , . . . is fair, i.e. the final system E~ = U9 nk>j Ek is complete, if
the following holds true:

1. Eoo does not contain any unconditional equation annotated as nonoperational.

2. Any operational equation in E~ is quasi.reductive.

3. Uk Ek contains all instances of each nonoperationaI equation ~ E E~ which can be obtained by parumod-
ulating operational equations of Eoo on one selected condition of 7.

~. uk Ek contains all instances of each nonoperational equation ~7 E E~ which can be obtained by resolving
the same selected condition of ~l by x~-x.

5. U~ Ek contains all critical pairs between operational equations in Ee¢.

6, UkEk contains all instances of each operational equation y E Eoo which can be obtained by paramodu-
fating operational equations of E~ on the right sides of the oriented condition equations of ~.

5 Order-Sorted Completion: The Many-Sorted Way

In this section we illustrate by means of exa~aples that our techniques of completion for conditional equations
can be successfully applied to order-sorted specifications. In the examples, equations will be operational,
unless labelled by a "- ' . Moreover, we rearrange conditions of nonoperational equations such that the first
condition is always the one which is selected for superposition. Operational equations will all be reductive
or quasi~reductive with the given orientation of literals and ordering of conditions.

255

5.1 S m o l k a ' s E x a m p l e

Our first example is due to Smolka and shows the incompleteness of order-sorted replacement of equals by
equals, cf. [SNGM87] or [KKM88], in the case of non sort-decreasing rules.

E x a m p l e 5.1

sort sl < s2
op a:sl, b:sl, d:s2, f:sl -> sl
axioms

a = d

b=d

In this example, f(a)-f(b) can be derived by order-sorted deduction, however it cannot be proven by
replacement of equals by equals. The many-sorted equivalent E # consists of the folllowing equations:

E x ample 5.2

I i(a) = d
2 i (b) = d
3- i (x) = i (y) --> x -- y

where i : ~i --+ 82 is the injection i n c h . Axiom 3 is the injectivity property of {. Orienting 1 and 2 from
left to right creates the following final system of equations:

E x ample 5.3

1 i (a) = d
3- i (x) = i (y) => x = y
4- i(x) = d => x = a
5 b=a

Equation 4 is generated from superposing equation i on the condition of the nonoperational injectivity axiom

3 (cf. fairness constraint 3). We have here decided to classify 4 as nonoperafional although it becomes a
quasi-reductive equation when orienting its literals from right to left. After this, 4 generates equation 5
from superposition with equation 2. If b > a in precedence, equation 5 is reductive, allowing to el/minate
equation 2 by reduction. Any other superposition on the condition of 3 or 4 does only generate equations
which can later be eliminated by the inference rules of simplification and elimination.

5.2 S q u a r e s o f I n t e g e r s

We return to the specification of integers as given in example 3.20. The result of translating into many-sorted
and completing this system is the following:

E x ample 5.4

1
2
2a
2b
2c
3
3a
3b
4
4a
5
$a
6
7
7a
7b
7c
8
8a
9

-(0) = int(O)
- (- (i:int)) = i
- (- (Xl:nzIn~)) = XI
- (- (Xl:nat)) = int(Xl:nat)
- (- (X1:nzNat)) = nzInt(Xl:nzNat)
(i:in~)+inZ(0) = i
(X2:nat)+O = X2
(X:nzNa~)÷0 = nat(X:nzNat)
int(0)+ (i:int) = i
0÷ (Xl:nat) = XI
(k:naZ)+nat(s(m:nat)) = nat(s((k:nat)+ (m:nat)))
(X2:nzNat)+nat(s(m:nat)) = nat(s((X2:nzNat)+ (m:nat)))
int(-s(k:nat))+int(nzlnt(s(m:nat))) = - (k:naZ)+int(m:nat)
(i:in¢)+ (- (j:int)) = - (- (i:int)+ (j:int))
(i:int)+int(- (Xl:nzInt)) = - (- (i:int)+int(Xl:nzInt))
(i:int)+int(- (Xl:nzNat)) = - (- (i:inZ)+int(nzInt(Xl:nzNat)))
(i:int)+ (- (Xl:nat)) = - (- (i:inZ)÷int(Xl:nat))
(i:int)*int(0) = int(0)
(X2:nat)*0 = 0
int(0)* (i:int) = int(0)

256

9a O* (Xl:na~) = 0
i0 (i:int)*int(nzlnt(s(m:nat))) = (i:int)*int(m:nat)+ (i:int)
lOa (X2:nat)*nat(s(m:nat)) = (X2:nat)* (m:nat)+ (X2:nat)
ii (i:int)* (- (j:int)) = -(i:int)* (j:int)
11a (i:int)*int(- (X1:nzInt)) = -(i:int)*int(Xi:nzInt)
llb (i:int)* (- (X1:nat)) = -(i:int)*int(Xl:nat)
llc (i:int)*int(- (X1:nzNat)) = -(i:int)*int(nzlnt(Xl:nzNat))
12 (- (i:int))* (j:int) = -(i:int)* (j:int)
12a int(- (Xi:nzInt))* (j:int) = -int(Xl:nzInt)* (j:int)
12b (- (Xi:nat))* (j:int) = -int(Xl:nat)* (j:int)
i2e int(- (X1:nzNat))* (j:int) = -int(nzInt(Xl:nzNat))* (j:inZ)

13 (i:int)* (i:int) ~ int(k:naZ) => square(i:int) = k

13a (i:int)* (i:int)

II
I2
I3
I5
I6
I7
I8
I9
IiO
Ill
I12
I13
li4
Ii5

il-
l2-
i3-
i4-
i5-
i6-

int(nzlnt(X:nzNat)) => square(i:int) = nat(X:nzNat)

-int(Xl:nat) = - (Xl:nat)
-int(Xl:nzlnt) = in~(- (Xl:nzlnt))
-nat(Xl:nzNat) = int(- (Xl:nzNat))
-nzInt(X1:nzNat) = - (X1:nzNat)
int(X2:nat)+int(Xl:nat) = int((X2:nat)+ (Xl:nat))
nat(X2:nzNat)+ (Xi:nat) = (X2:nzNat)+ (Xl:nat)
int(X2:nat)*int(Xl:nat) = int((X2:nat)* (Xl:nat))
int(nat(X:nzNat)) = int(nzInt(X:nzNat))
int(X2:nat)+int(nzIn¢(X:nzNat)) = int((X2:nat)+nat(X:nzNat))
int(nzInt(X:nzNat))+int(Xl:nat) = int((X:nzNat)+ (Xl:nat))
int(nzInt(X:nzNat))+int(nzInt(Y:nzNat)) = int((X:nzNat)+nat(Y:nzNat))
int(X2:nat)*int(nzInt(X:nzNat)) = int((X2:nat)*nat(X:nzNat))
int(nzInt(X:nzNat))*int(Xl:nat) = int(nat(X:nzNat)* (Xl:nat))
int(nzInt(X:nzNat))*int(nzInt(Y:nzNat)) = int(nat(X:nzNat)*nat(Y:nzNat))

nat(X:nzNat) = nat(Y:nzNat) => X = Y
int(X:nat) = in~(Y:nat) => X = Y
nzlnt(X:nzNat) = nzInt(Y:nzNat) => X = Y
int(X:nzln¢) = int(Y:nzInt) => X = Y
int(nzInt(X:nzNat)) = int(Y:nat) => nat(X:nzNat) = Y
int(nzlnt(Xl:nzNat)) = int(nzlnt(X:nzNat))

and int(nzInt(X:nzNat)) = (il:int)* (i1:int) => X = Xl

The initial set of many-sorted equations E # consists of the equations 1-13, I1- I9 , and i l - i4 , s The remaining
equations are generated during completion. The (INH)-equa t ions have a number in I1-18 or I10-I15,
equation I9 is the only (CI)-axiom. The (nonoperationai) injectivity axioms are the equations i l - i4 . It is
sufficient to start completion with just the (INH)-equa t ions I 1 - I 8 between any two neighboring operators
(wrt. <t), as the remaining ones are generated as criticM pairs.

The final system also contains the lowest parses of many specializations (indicated by letters a, b, c , . . .)
of the initial order-sorted rules. This is in accordance with theorem 3.19. In a reduced final system like
the one above, however, not all specializations need to be present. Equation 13a has been generated from
superposing I9 on the right side of the condition of 13, cf. 4.6. In this example, completion has just verified
the completeness of the initial system. No new order-sorted equation has been generated. The new equations
on the many-sorted level serve to synchronize the application of order-sorted rules with the computation of
lowest parses.

A c k u o w l e d g e m e n t s . The author is grateful to H. Bertling for many discussions on the subject of this
paper.

6 R e f e r e n c e s

[Bac87] Bachmair, L.: Proof methods for equational theories. PhD-Thesis, U. of Illinois, Urbana Cham-
paign, 1987.

[BDH86] Bachmalr, L., Dershowitz, N. and Hsiaag, J.: Proof orderings for equational proofs. Proc. LICS
86, 346-357.

3Injections i~cs* axe ambiguously denoted by their codomain, s', e.g. int denotes both i~,zlr, t o , t and i ,~to,t . The order-
sorted rather than the many-sorted function symbols are used. z : s denotes a variable x of sort s.

[BG88]

[BG89]

[BCSSS]

[DOS88]

[Gan87]

[Gan88]

[Gan88b]

[GJM85]

[GKK87]

[GM87]

[Gog78]

[Gogo86]

[HR87]

[3w86]

[K~p84]

[Kap87]

[KaRST]

[KKM88]

[KR88]

[Poi88]

257

Bertling, H. and Ganzinger, H.: Completion-time optimization of rewrite-time goal solving. Report
M.1.3-R-12.0, PROSPECTRA-Project, FB Informatik, U. Dortmund, I988.

Bertling, H. and Ganzinger, H.: Completion of application-restricted conditional equations. Re-
port, FB Informatik, U. Dortmund, 1989, to appear.

Bertling, H., Ganzinger, H. and Sch~ers, I~.: CEC: A system for conditional equational completion.
User Manual Version 1.4, PROSPECTRA-Report M.1.3-R-7.0, U. Dortmund, 1988.

Dershowitz, N., Okada, M. and Sivakumar, G.: Confluence of conditional rewrite systems. Proc.
1st InC1 Workshop on Conditional Term Rewriting, Orsay, 1987, Springer LNCS 308, 1988, 31-44.

Ganzinger, It.: A Completion procedure for conditional equations. Report 234, U. Dortmund,
1987, also in: Proc. 1st Int'l Workshop on Conditional Term Rewriting, Orsay, 1987, Springer
LNCS 308, 1988, 62-83 (revised version to appear in J. Symb. Computation).

Ganzinger, H.: Completion with History-Dependent Complexities for Generated Equations. In
Sannella, Tarlecki (eds.): Recent Trends in Data Type Specifications. Springer LNCS 332, 1988,
73-91.

Ganzinger, H.: Order-sorted completion: the many-sorted way (full version). Report 274, FB
Informatik, Univ. Dortmund, 1988.

Goguen, J.A., Jouannaud, J.-P. and Meseguer, J.: Operational semantics for order-sorted algebra.
Proc. 12th ICALP, 1985, 221-231.

Gnaedig, I., Kirchner, C. and Kirchner, H.: Equational completion in order-sorted algebra. Proc.
CAAP '88, Springer LNCS 299, 1988, 165-184.

Goguen, J.A. and Meseguer, J.: Order-sorted algebra I: partial and overloaded operators, errors
and inheritance. Comp. Sci. Lab, SKI International, 1987.

Goguen, J.A.: Order-sorted algebra. Semantics and theory of computation. Report No. 14, UCLA
Computer Science Department, 1978.

Gogolla, M.: Partiell geordnete Sortenmengen und deren Anwendung zur Fehlerbehandlung in
abstrakten Datentypen. PhD Thesis, FB Informatik, U. Braunschweig, West Germany, 1986.

J. Hsiang, M. Rusinowitch: On word problems in equational theories, Int. Coll. on Automata
Languages and Programming, Springer LNCS, 1987.

Jouannaud, J.P. and Waldmann, B.: Reductive conditional term rewriting systems. Proc. 3rd
TC2 Working Conference on the Formal Description of Prog. Concepts, Ebberup, Denmark, Aug.
1986, North-Hollaud.

Kaplan, St.: Fair conditional term rewrite systems: unification, termination and confluence. Report
194, U. de Paris-Sud, Centre d'Orsay, Nov. 1984.

Kaplan, St.: A compiler for conditional term rewriting. Proc. RTA 1987, LNCS 256, 1987, 25-41.

Kaplan, St. and Remy J.-L.: Completion algorithms for conditional rewriting systems. MCC
Workshop on Resolution of Equations in Algebraic Structures, Austin, May 1987.

Kirchner, C, Kirchner, H., and Meseguer, J.: Operational semantics of OBJ3. Proc. ICALP 88,
Springer LNCS, 1988.

Kounalis, E. and Rusinowitch, M.: On word problems in Horn theories. Proc. 1st Int'l Workshop
on Conditional Term Rewriting, Orsay, 1987, Springer LNCS 308, 1988, 144-160.

Poign4, A.: Partial algebras, subsorting, and dependent types. In Sannella, Tarlecki (eds.): Recent
Trends in Data Type Specifications. Springer LNCS 332, 1988, 208-234.

258

[Rus87] Rusinowitch, M.: Theorem-proving with resolution and superposition: an extension of Knuth and
Bendix procedure as a complete set of inference rules. Report 87-R-128, CRIN, Nancy, 1987.

[SNGM87] Smolka, G., Nutt, W., Goguen, J.A. and Meseguer, J.: Order-sorted equational computation. SEKI
Report SR-87-14, U. Kaiserslautern, 1987.

[WB83] Winkler~ F. and Buchberger, B.: A criterion for eliminating unnecessary reductions in the Knuth-
Bendix algorithm. Coll. on Algebra~ Comblnatorics and Logic in Comp. Sci., GySr, 1983.

[ZR85] Zhaag, H. and Remy, J.L.: Contextual rewriting. Conf. on Rewriting Techniques and Applications,
Dijon 1985, Springer LNCS 202, 46-62.

