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Order-sorted specifications can be transformed into equivalent many-sorted ones by using injections 
to implement subsort relations. In this paper we improve a result of Goguen/Jouannand/Meseguer about 
the relation between order-sorted and many-sorted rewriting. We then apply recent techniques in comple- 
tion of many-sorted conditional equations to systems obtained from translating order-sorted conditional 
equations. Emphasis will be on ways to overcome some of the problems with non-sort-decreasing rules. 

1 In t roduct ion  

1.1 O p e r a t i o n a l  S e m a n t i c s  fo r  O r d e r - S o r t e d  S p e c i f i c a t i o n s  

Many-sorted equational logic is a major candidate to serve as a basis for algebraic specifications and logic 
programming. Order-sorted equational logic originated with [Gog78] and was further elaborated - -  in 
different variations - -  in [Gogo86], [GM87], [SNGM87], [KKM88], and [Poi88], among others. In [GJM85], 
an operational semantics for order-sorted specifications based on a translation scheme into many-sorted 
specifications is introduced. The main idea of this translation is to add auxiliary injection operators i~¢~, to 
implement subsort containments s C s'. This provides the ability to use standard manly-sorted concepts of 
rewriting, completion, and theorem proving in implementations of specification langnlages based on order- 
sorted logic. 

In [GKK87], a completion procedure specifically tailored to unconditional order-sorted equations and 
based on order-sorted rewriting is proposed as an alternative. The main motivation for this approach is 
that  order-sorted rewriting can be more efficient than naive many-sorted rewriting with the translated rules 
[KKM88]. 

The purpose of this paper is not to enter a discussion about efficiency of rewrite relations - -  we believe 
that  both approaches are of interest in their own right - -  but to improve both previous approaches. There 
are two directions of improvement which this paper wants to contribute to. 

The first problem left open by the approaches of [GJM85] and [GKK87] is the handling of non-sort- 
decreasing rules. This problem had been overlooked in [GJM85] as most of the results in this paper which 
relate order-sorted to many-sorted rewriting are only valid for sort-decreasing rules. Hence, standard Knuth- 
Bendix completion when applied to the many-sorted translation of order-sorted equations fails whenever a 
non-sort-decreasing rule is encountered. In this case, the operationally awkward injectivity axiom for the 
injections has to be taken into consideration - -  a problem which standard Knuth-Bendix corapletion is not 
prepared to handle. For a related reason, the order-sorted completion procedure of [GKK87] fails when a 
non-sort-decreasing rule is generated. Order-sorted re'placement of equals by equa~ is not a complete proof 
method for order-sorted deduction in this case [SNGM87]. 

The second problem is to complete order-sorted specifications with conditional equations. Fortunately, 
the state-of-the-art in completion of many-sorted conditional equations which has originated with [Kap84] 
has been substantially advanced during the last year, mainly by the work of tl.usinowitch and Kounalis 
[KR88], [ttus87], and by this author [Gan87], [Gan88], [BG88]. (Other related relevant work is described 
in [ZR84], [Zlt.85] and [Kale87].) In particular our own approach, based on the method of proof orderings 
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[Bac87], [BDH86], appears to be well-engineered towards practical use due to its power in simplifying and 
eliminating equations during completion. This advance in technology is the main reason of why this paper 
again picks up the translation idea of [GJM85] to develop order-sorted completion the many-sorted way. 

As one can immediately se% both  problem areas are closely related. To handle non-sort-decreasing rules 
requires to consider the effect on the equational theory of conditional equations such as the injectivity axiom. 

1.2 S u m m a r y  of  Main  R e s u l t s  

With regard to the relation between order-sorted rewriting and many-sorted rewriting we improve results 
by Goguen, Jouannaud and Meseguer. In particular we show that  one step of order-sorted rewriting with 
a set of rules R is one step of many-sorted rewriting with the lowest parses ),(R) of R modulo the axioms 
L P  of the lowest parse. This result also holds in the case of non-sort-decreasing rules. It could be made 
the basis of employing the concepts of completion modulo equations for order-sorted specifications - -  an 
idea which will, however, not be investigated any further in this paper. A second result is that  to any sort- 
decreasing canonical system of order-sorted conditional rewrite rules there exists an equivalent, canonical 
many-sorted system (consisting of L P  and the lowest parses ,X(RB) of the sort specializations R8 of the 
given order-sorted rules R). This result is not completely obvious as the critical pairs lemma is not true 
for conditional rewrite rules in general [DOS88]. (A related result in [GJM85] which, by the way, is also 
only true for non-sort-decreasing rules, employs the composed relation -'*~(ns) o ---+Lp n] in the many-sorted 
world.) Hence, many-sorted unfailing completion [IIt~87], [Bac87] will generate the reduced version of this 
system. The proofs are contained in the full version [Gan88b] of this paper and omitted from this extended 
abstract. 

We show that  in many practical cases non-sort-decreasing rules can be replaced by sort-decreasing ones 
without changing the initial algebra. These replacements are rules with extra variables in the condition and 
in the right side. Fortunately they belong to the class of what we call quasi-reductive rules. Quasi-reductive 
rules are a generalization of reductive conditional rewrite rules and the associated rewrite process is similarly 
efficient. 

We outline an unfailing completion procedure for conditional equations that  can handle both nonre- 
ductive equations such as injectivity axioms and quasi-reductive equations as they are introduced during 
replacing non-sort-decreasing rules. It is an extension of the one which has been presented and proved correct 
in detail in [Gun87] and [Gan88]. The correctness of the extensions (unfailing completion, quasi-reductive 
equations) is shown in [BG88] and [BG89]. We demonstrate by means of examples tha t  these techniques 
perform successfully on practical examples of order-sorted specifications. 

2 B a s i c  N o t i o n s  a n d  N o t a t i o n s  

We will only introduce the syntactic aspects of order-sorted logic and refer to [GM87] and [SNGM87] for the 
two main variants of semantics for order-sorted specifications. In this paper, notions and notations mainly 
follow [SNGM87] and [GKK87]. 

Every variable x comes with a sort s ~ which is a sort  symbol. For every sort symbol there exist infinitely 
many variables having this sort. 

A subsort declaration is an expresion of form s < s ~, where s and s'  are sort symbols. A funct ion or 
operator declaration has the form f : s l . . .  sn --+ so, where n is the arity of f and sl are sort symbols. An 
order-sorted signature~ usually denoted E °8, is a set of sort symbols, subsort and function declarations. A 
many-sorted signature, usually denoted E~ is a particular case of art order-sorted signature with an empty 
set of subsort declarations. In a many-sorted signature we do not allow more than one declaration for any 
function symbol. By S and ~2 we denote the set of sorts and operators, respectively, of a many-sorted 
signature E. 

The subsort order s <Eo, s ~ is the least quasi-order on the sort symbols of y os generated by the subsort 
declarations. Throughout this paper we restrict attention to signatures for which <l:o, is a partial order. 
If the signature is clear from the context, we will omit the subscript E °s in <~:o,. __.zo, extends to tuples 
of sort symbols of the same length by (s~, . . .  ,_sn) <~o, ( s l , . . .  ,sn), i f fs i  <~o~ si, for 1 < i < n. We write 
s <b s t, if s < s r and if there does not exist any stt such that  s < s ~t < s t. 

Given a set of variables X,  a E°S-term o f  sort s in 7-~o,(X)s is either a variable x such that  s x _< s, 
or has the form f ( t l , . . .  ,tn), where f : S l . . .  sn ~ so is a function declaration in Eos such that  s0 <_ s and 
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ti E Tr.o,(X),, is a term of sort si, for 1 < i < n. 
Many-sorted terms are defined like order-sorted ones. The main difference is tha t  the sort of a many- 

sorted term t is uniquely determined and will be denoted s t in this paper. Given a many-sorted signature E, 
by T~(X)8  we denote the set of many-sorted terms of sort s over the variables in X.  For both order-sorted 
and many-sorted terms t we use the notation t : s to indicate that  t is a term of sort s. 

A ~°8-equation is a pair of Z°~-terms u and v of the same sort written as u~-v. A conditional equation 
over Eos is a formula of form C ~ u ' - v ,  where u'--v is a E°S-equation and C is a finite conjunction of 
~°~-equations ul  "-vl A . . .  h un "--vn, n >_ O. I f  E is a set of (conditional) E°S-equations~ by E = we denote 
the set 

E = = { C  ~ u - v  l C ~ u ~ v  ~ E or C ::v v-+-u C E } .  

An order-sorted (equational} specification consists of an order-sorted signature ~os and a set E of con- 
ditional E°S-equations. 

If O is a syntactic ~°S-object, i.e. a term or (conditional) equation, by var(O)  we denote the set of 
variables occurring in O. 

A ~OS_substitution is a function a from ~°~-terms to Z°S-terms such ~hat 

1. if u is a term of sort s, then a(u) is a term of sort s, 

2. o ' (f( t l  . . . . .  tn)) = f (o ' (g l ) , . . . ,  Or(in)), 

3. dora(a) := {x I a(x)  # x}, the domain of a is finite. 

We will also use the notation ucr for a(u).  
An order-sorted signature ~os is called pre-regular, if for any ~°*-function symbol f and every string 

s l . . .  sn of Z°'-sorts the set {~ ] ( f  : 7~1 . . . ~ n  -4 ~) ~ ~os,  81 . . "  Sn ~:~o, ~'1 • . .~ 'n} is either empty or has a 
minimum element wrt. the subsort order of Eo ,  Eo, is called regu/ar~ if for any string sl  . . .  s~ of E°S-sorts 
such that  there exists a function declaration ( f  : :~I.. -~n --* ~) E ~o8 with s l . . .  sn <Eo, ;~I.- - ~ ,  then there 
exists a least (_s~ . . . . .  ~n,s)  such tha t  ( f  :_s~...s_~ --* _s) e ~]o~ and sl  . . . sn  _<~o, s~ ..._sn. Regularity of a 
signature implies pre-regularity. 

Pre-regularity is required for the existence of initial algebras in the semantics of [SNGM87]. For the 
semantics of [GM87], regularity is a sufficient condition for the existence of initial algebras. Although 
the notion of order-sorted deduction which is used in this paper corresponds to the semantics of [GM87], 
pre-regulary will already be a sufficient condition for the syntactic properites on which our approach of 
order-sorted completion is based. 

An order-sorted signature is called coherent, if each equivalence class of sorts under the equivalence 
closure of __~o, has a maximal element. 

From now on we will assume order-sorted signatures to be pre-regular and coherent. 

3 T r a n s l a t i o n  o f  Order-Sorted Specifications 

3.1 M a n y - S o r t e d  R e p r e s e n t a t i o n s  o f  O r d e r - S o r t e d  T e r m s  

Def in i t i on  3.1 Let ~os be an order-sorted signature. Its t r a n s l a t i o n  into a corresponding many-sorted 
signature ~, is defined as follows: 

1. The sorts  in S are the sorts  in S°s. 

2. I f  f : s l . . . s , ~  --* so is an operator declaration in S ° ' ,  then f*l . . . . . .  ~o : s x . . . s n  --* so E f L  

3. I f  s <b s'  in ~os, then i , c  ,, E 12. 

The translation disambiguates overloaded function symbols and introduces injections i~¢s, to represent 
the containment of s in s t. Injections along chains of subsort relations can be represented by terms in 
elementary injections. As there may be more than one way of going from an s to an s '  we have to order 
these paths if we want a unique representation. For tha t  purpose we assume the partial subsort order to 
be extended to an arbitrary but  fixed total  order <~ on S. The same notation is used for the lexicographic 
extension of <t to sequences of sorts. (This is different to the extension of <~.o, to tuples which we have 
used to define the regularity properties. The latter was defined component-wise.) 

Now we define composite injections to proceed along minimal paths in the subsort graph. 
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Defini t ion  3.2 Let  s <_ d . Let fur thermore s n s n - 1 . . ,  so, n >_ O, be a sequence o f  sorts  min imal  wrt. <t 
such that so = s, sn = s t, and si <b si+l, for  0 < i < n. Then the minimal  compos i te  in ject ion 

is~_aCs, .  , o i~ ,~_2Cs, ,_  1 o . . .  o isoCsa 

f rom s to d will  be denoted as Iscs , .  ( I f  s = d ,  I , c  s, is the identity for  which there is no explicit operator 
symbol in ~ .  Hence, terms Iscs ,( t )  and t are not  distinguished in this ease.) 

We can now go on and define mappings between order-sorted terms and their many-sorted representations 
terms over ~. Any many-sorted term t in Z represents one unique order-sorted term w(t)  which is obtained 

by deleting injections and by collapsing the disambignated operator symbols into the original overloaded 
symbol. 

Def ini t ion 3.3 The mapping w(_) : T ~ ( X )  -+ T~o,(X) is inductively defined as follows: 

1. I f  z : s is a variable, then w ( x  : s) = x : s .  

2* 02(/,1 . . . . . . .  o ( t l , . . . , t , ) )  = f(~(tl) ,--- ,W(t~)),  for  non-injections f,1 . . . . . .  so • ~2. 

3. w(iscs,(t)) = w(t), for  injections iscs, • •. 

In the reverse direction, A(_) will compute the lowest parse of an order-sorted term. 

Def in i t ion  3.4 The lowest  parse  A(_): T~o, (X)  ---, T s ( X )  is inductively aefi.~a . s  foUow~: 

1. A(z : s) = z : s, for  variables x : s • X .  

• = . . . , t n )  , where f : S l . . .  sn -+ so is the operator declaration in Zos for 2. A(f( t l , . .  , t , ) )  Y,1 . . . . . . .  0(tl, ' 
• ~ < 1 <  i < n, and where which sos1.  • s~ is min imal  wrt. <, such that A(ti) • T~.(X),~ and s i si, 

t~ = L,c.,(~(tO), i < i < n .  

As we are putting the codomain so of f at the beginning of the sort sequence sos1 • .. sn when looking 
for a minimal declaration for f ,  A(t) will always have a lowest possible sort. 

P ropos i t ion  3.5 1. w(A(t)) = t 

2. s A(~(0) _< s ~ 

3.2 C o m p u t a t i o n  o f  M i n i m a l  P a r s e s  b y  R e w r i t i n g  

In the preceeding section we have defined a function A(.) which produces a many-sorted representation of 
an order-sorted term. The representation always is a term of a lowest possible sort and, hence, unique 
for pre-regular signatures. On the other hand, there are usually many different many-sorted terms that 
represent the same order-sorted term via w(_). In this section we describe a canonic~ set of rewrite rules 
over 2 which, for any given many-sorted term, computes the lowest parse of the order-sorted term w(t) it 
represents. 

The set of rules consists of rules for computing the minimal path (wrt. <t) between any two sorts s < d 
and of rules which represent the inheritance axioms for overloaded function symbols on subsort hierarchies. 

Ax ioms  (CI)  for composite in ject ions  

i.,c..(1.c.,(x)) = Lc:(~:), 

for s < s '  < s",  if I ,c¢ ,  # i,,c,,, o I ,c  ¢. 

Axioms (INH) for inheritance 

I,~ . . . . . . .  0 ( I~c ,~(x l ) , . . .  , I~ , c , , (x~) )=  I ¢ o c , o ( L i . . & - . 4 ( I ~ c d ( Z l ) , . . .  , I ~ , c , , ( z ~ ) ) ) ,  

t I t i _+ s~ are operator declarations, SoS 1 . sn <, sos1 .. s~, s~ < so, if f : s l . . .  s,, --* so and f : s~. . .  s n . .  . _ 
and if & are maximal 1 sorts such that ~i <_ si  and ~i <_ s~. 

1To select maximal sorts si is not reany required. However, (INH)-axioms for ma~dmal -si subsume (INH)-axioms for non- 
maximal ones. 
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We will now prove that  the equation system L P  = C I  U I N H ,  oriented from left to right, forms a 
canonical system of rewrite rules. First we will define a precedence on E-operators such that  the induced 
recursive path ordering proves the termination of the system. 

Def in i t i on  3.6 B y  >I we denote the following partial order on ~t: 

1. is les  ~ > is~cs~, i f f  J 2 < s2 or {f s~ = s2 and s~ < 31, 
for  inject ions istcs2 and isles ~ . 

2. fst...~.--*8o > i~c~'~ 
far  any order-sorted operator f and any injection iscs,. 

l 
3. f~ . . . . . . . .  o > f ~ . . . ~ ; ,  i f ]  S'oS'l . . .  s ,  <~ sos1.., s,, ,  

t for any two declarations f : s t  . . . s  n -+ S~o and f : 31 . . .  s~ -+ so o f  the same order-sorted operator 
symbol f .  

By  >I  we denote the recursive path ordering on T ~ ( X )  induced by >I.  

P r o p o s i t i o n  3.7 Orienting the equations in L P  from left to right into rules L --* R, we have L >~ R, for 
any o f  these rules. 

The confluence of the system will be proved using the following proposition: 

P r o p o s i t i o n  3.8 I f  
J ( x )  = i~ ._~c~ ,  o i . . . .  c . . . .  o . . .  o i ~ 0 c ~ ( x )  

is some composite injection from so to sn, n > 1, then J ( x )  -~ *cI Is0cs.(x)- 

As a consequence we have J l ( x )  ~c l  J2(x), for any two composite injections J1 and 3"2 from s to s'. 

L e m m a  3.9 For any two E- terms  t : s and t t : s' such that s <_ so, and s' < so, we have w(t) = w(t'),  i f f  
/~c~0(t) ----LP /~'c~0(t') such that the =--Lp-proof only involves intermediate terms smaller than hc~0(t) or 
/~,cs0(t') with respect to >1. 

P r o p o s i t i o n  3.10 The set o f  rules L P  is locally confluent, hence confluent by 3. 7. 

From 3.7 and 3.10 it follows that  L P  is canonicM. We will now prove that  the LP-normalforms of terms 
t represent the lowest parse of the corresponding order-sorted terms w(t).  More precisely, 

L e m m a  3.11 Let t E T ~ ( X ) s  and s x(~(t)) =: s'  < s" < s. 

I. 5,c~,,(~(~(t))) is/rredueible ~nder ~LP.  

2. t >~ 5 ,~-(~(~( t ) ) ) .  

In particular, f rom 1, 3.9, 3.7, and 3.10 we have that t ~Lp= /s,cs(A(w(t))) .  

Altogether we have shown that  two terms t l ,  t2 E T ~ ( X )  are representations of the same order-sorted 
terms, iff they are equivalent under L P .  Moreover, the equivalence can be decided by rewriting the appro- 
priately injected terms to their -*Lp-normalforms. 

3 .3  O r d e r - S o r t e d  D e d u c t i o n  a n d  R e w r i t i n g  

The notion of order-sorted deduction here is the one for the variant of order-sorted logic in [GM87]. Order- 
sorted deduction is described by the following set of inference rules, cf. e.g. [GKK87]: 

Def in i t ion  3.12 ( O r d e r - S o r t e d  D e d u c t i o n )  Let E be a set o f  order-sorted equations over E °~. 

Ref lex iv i ty  
E [-x t - t  , 

for  any t e T~o,(X) .  
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S y m m e t r y  

Trans i t iv i ty  

Congruence  

for ~,#' : X ~ Tr, o , (Y) ,  t • Tr.o,(X) 

Subs t i t u t i v i ty  

E kx t - f  
E Fx  t ' - t  

E ~-x t'-t'~ E k x  tt~-t" 
E ~-x t - t "  

E er  0(=)-¢(=) ,  w • x 
E ~r ~(t)-~'(t) 

E Fy e(t~)-O(~), i < i < n 
E ~-y O(t)-O(~') 

for  ~ = t l&  t' 1 A . . .  A tn~t~ ~ t -  f E E and 8 : var(~) ~ T~o,(Y)  a substitution. 

Clearly, E ~'x t&t ' ,  iff t --E x t', where ~ x =  U~N _=X, with = x =  ~ and t - x  t', iff t = -x  1 t '  or if there 
exist uj, u~ such that uj - x _  1 u} and t - ' t '  can be derived from ui&u~ using one of the above inference rules. 

We will now extend our notion of lowest parses A(_) to unconditional equations. Let tl ~t2 be an order- 
sorted equation, and assume that si = s ~(t~). 

,~(t~ "-t2) = 5~o( ,~( t~)) -  Z,~o(~,(t~)), 

where s is some minimal supersort of both tl and $2, i.e. ~1,t2 E T~o*(X) s. (Due to the coherence of ~os 
such a a s  exists. There may be more than one choice for s. This, however is irrelevant in our context.) In 
particular, if s2 <_ sl ,  the left side of A(t~ "--t2) wilt not have an injection as top symbol. 

Let now 
E # = C I  U I N H  U I N  U A ( E ) ,  

where 
A(E) = {...A(ti "-t~)... ~ A(t~f)  1.. . t~--t~.. .  =:~ t ' - t '  • E }  

are the minimal parses of the equations in E and where 

I N  = {i ,  c s , ( x ) -  i , o , ( y  ) ~ x - y  I i ,o ,  • a }  

is the set of injectivity axioms for the injections in E. 
The following is the proof-theoretic equivalent of the satisfaction theorem in [GJM85]: 

T h e o r e m  3.13 F o r t l , t 2  • T2(X)~ ,  t l  - x  t2, i f fw ( t l )  = x  w(t2). ~E# 

This theorem proves the equivalence of order-sorted deduction in E with standard many-sorted equational 
logic in E #. 

We now go on and compare order-sorted rewriting to many-sorted rewriting. 

Defini t ion 3.14 An  order - so r t ed  condi t ional  rewr i te  rule  zs an order-sorted conditional equation 
C :ez l'--r satisfying (va t (C)  U vat (r ) )  C vat(1) and denoted C =~ l-:~r. 

Defini t ion 3.15 A term t • T ~ ( X )  rewr i tes  to t' with a rewrite rule p = C ~ l-=~r in R at occurrence 
o, which is denoted t -+RX t' = t[o ~ a(r)] whenever 

1. a is a substitution a : vat (p)  --* T~o~(X) such that t /o  = In, 

2. there is a sort s such that, for  x a variable o f  sort s, t[o ¢-- x] is a well-formed term and In, ra • 
~ o , ( X ) , ,  

3. for any u - v  • C there exists a term w such that ua ---~ Rx* w and va --* Rx* w, with ~ Rx* the reflexive 
and transitive closure of--*Rx. 
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I.f X = var(t), we will also write ~ R  and ~*R for ~ R x  and ~*Rx, rest~etively. The smallest fixpoint of 
this reeursion defines -*Rx. 

Many-sorted rewriting is defined like order-sorted rewriting in signatures with an empty set of subsort 
relations. In this case, the second condition of the previous definition becomes trivial. 

T h e o r e m  3.16 u -~;~(R)/LP v iff w(u) ~1~ w(v). 

This theorem proves that order-sorted rewriting is equivMent to rewriting the many-sorted representa~ 
tions of terms modulo the axioms of the lowest parse LP,  using the lowest parses of the order-sorted rlltes 
as rewrite rules. If "-~R is canonical, A(R) /LP  is canonical, too. However~ rewriting modulo L P  does not 
seem to be very efficient. Fortunately, forming the closure Rs  of R by all specializations of the rules, will 
make A(Rs) U L P  canonical, provided R is sort-decreasing and canonical. 

To.formally introduce the notion of specialization it is useful to define the notion of a sort ~ssignment. 
A sort assignment is a map a : ~ --+ S, where ~ is the set of names of variables in X. Hence, a sorted set 
of variables is a pair (~ ,  a), denoted Xa. Sort assignments inherit the subsort ordering such that a _< a ~, 
iff a(x) g at(x), for any x E ~ .  A specialization is a substitution p : Xc~ -+ Xa,, where a' <_ a, sending 
x : a(x) to x : a'(x). To specialize a order-sorted term or formula ¢ means to apply a speciaJJzation to ¢. 
If ~ is a set of order-sorted terms of formulas, by e s  we denote the set of aJl specializations of terms or 
formulas in ~. 

Def ini t ion 3.17 An order-sorted rule C ~ s ~ t  is called sor t -decreaslng,  iff for any specialization p, 
sp-:+tp has a lowest parse such that s ~(sp) > s ~(tp). A many-sorted rule C ~ s-:+t is called sor t -decreasing,  
iff the left side s does not carry an injection as its top symbol. A set of rules is sort-decreasing, if each of 
its members is sort-decreasing. 

An immediate consequence of 3.16 is the following corollary. 

Corollary 3.18 u "-*~,(Rs)/LP v iffw(u) ~ w(v). 

Confluence and termination of R carry over to R# = A(Rs) U L P  as we shall see in the next theorem. 
Let us first make a few remarks about reduction orderings. If we axe given a reduction ordering > on 
Tz~,(X), it can be extended to a reduction ordering >m~ oll T~(X) which is compatible with -~LP, simply 
by defining t >,as t', iffw(t) :> w(t'). In addition, the transitive closure ~ of (>ms U >I),  where >I  is the 
recursive path ordering that we have introduced to order the LP axioms, also is a reduction ordering on 
Tz(X) which is compatible with LP.  This ordering can be used to order A(Rs) tA LP. 

T h e o r e m  3.19 Let R be a set of order-sorted rules. 

1. R is sort-decreasing, iff R# is sort-decreasing. 

2. Let R be sort.decreasing. R is canonical iff Tl# is canonical with a reduction ordering that is compatible 
with --LP" 

3. I.f R#  is canonical and sort-decreasing, then, ~.P~=-E#~ i.e..for any two terms u, v E T~( X )s we have 

_ x  iff  u ~R~ v.  

In the case of unconditional rewrite rules R, R# is unconditional, too. Unfailing many-sorted completion 
[H1~87], [Bac87] will generate any reduced variant of R~. 

3.4 Elimination of N o n - S o r t - D e c r e a s i n g  R u l e s  

Theorem 3.19 requires order-sorted rules to be sort-decreasing for the construction of an equivMent canonica~ 
system of ma~y-sorted rules. Likewise, order-sorted completion as proposed in [GKK87] requires rules to 
be sort-decreasing and faJls, if non-sort-decreasing rules are generated. We shall see in section 5.1 that 
translating into many-sorted specifications and applying conditional equation completion (to den1 with the 
injectivity axiom of injections) is successful in simple cases of non sort-decreasing rules. In many interesting 
cases, like in the subsequent example, the completion procedure which we will describe in section 4 below 
will not terminate. 
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E x a m p l e  3.20 

sort  r~Nat < naG, nat  < i n t ,  nzNat < nz In t ,  nz In t  < in t  
op 

0 : nat  
s : nat -> nzNat 
+ : int*int -> int, nat*naG -> nat, nat*nzNat -> nag 

nzNat*nat -> naG, nzNat*nzNat -> nzNat 
- • nag -> int, nzNat -> nzInt, int -> int, nzInt -> nzInt 
• : int*int -> int, nat*nat -> nat 
square : int*int -> nat 

var i:int, j:int, n:nat 
axioms 

-(0) = 0 
-(-i) = i 
i+O = i 

O+i = i 
k+s(m) = s(k+m) 
(-s(k)) + s(m) = (-k) + m 
i + (-j) = -((-i)+j) 
i*O = 0 
O*i = 0 
i*s(n) = i*n + i 
i*(-j) = -(i * j) 
(-i)*j = -(i * j) 
square(i) -- i*i 

The last a~dom, when oriented from left to right, is clearly not sort-decreasing. A specification with the 
same initial algebra would be the one in which this equation is replaced by 

i • i-+-n ~ square(i)'-n, 

with n a variable of sort nat. This equation, when oriented from left to right, is sort-decreasing. However, 
it has the extra variable n in its condition and fight side. The lowest parse of this equation would be 

i * i-in~ci~t(n) :¢" square(i)'-n. 

Equations of this kind are usually not admitted as rewrite rules. In fact~ we plan to associate a specific 
operational semantics with it. It should be specifying the replacement of a square(i) by any n which can be 
obtained from normalizing i ,  i and type checking the result by matching inatCi~t(n) with the normalform. 
If the normalform is unique, this process of finding the substitution for i and n at rewrite-time is completely 
backtrack-free. Unfortunately, this idea of deterministic oriented goal solving is not a complete goal solving 
method in general. Fortunately, an adequately designed completion procedure can make it become complete. 

Our idea of how one can replace non-sort-decreasing equations by sort-decreasing ones should be ob- 
vious, not requiring any further formalization. However, we should be saying something about when this 
replacement preserves the initial algebra of a specification. We assume to be given a set E of order-sorted 
equations, as well as its many-sorted equivalent E #. 

Def ini t ion 3.21 Let C be a set of unconditional equations, let t 6 Tz(X)s be a term of sort s, vat(C) C X ,  
and s' < s. We say that t is o f  t ype  s' in con tex t  C, if  for any ground substitution a of the variables in 
X such that Ca C =~# there ezists aterm u,  6 T~.(X),, such that ta =~# ; , ,o(U~).  

In our above example we have ~ * ~ of type nat in the empty context as for any ground substitution i * i is 
equal to i~c~(( i ,~No~c~.~  o s)~*~(0)). 

Propos i t ion  3.22 Let C ~ Islcs(l)----"/s~cs(r) be a conditional equation and let Is~cs(r) be of type st in 
context C. Then, replacing C ~ Iszc~(1) "--£~o(r) by 

c A 5,o(r)-" I~o(~) ~ l "--~, 

with x a new variable of sort s t, preserves =-t#, and hence the initial algebra of the specification. 
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One half of the proof of this proposition is that  paramodulation of C ~ Is~cs(l)-I~cs(r ) on the condition 
of the injectivity axioms for the injections will generate the replacement C A Is~cs(r)--Is~c~(x ) ~ t'--x. We 
shall see tha t  during completion supe~osit ions of this kind will be performed anyway. Yet, completion very 
often will not terminate because of other snperpositions on the originally given equation. We bdieve that  
sufficiently powerful ground completion procedures, once they have been developed for conditional equations, 
can solve this problem in cases where the previous proposition applies. In other words, ground completion 
of the original specification can be expected to terminate in this case. 

4 Completion of Many-Sorted Conditional Equations 

In this section, we will assume to be given a fixed many-sorted signature ~. Equations~ terms, substitutions, 
etc. will be taken over this signature, unless specified otherwise. Furthermore, we assume a reduction 
ordering > to be given on T~(X).  > ~  wilt denote the transitive closure of > U st, with st the strict subterm 
ordering. > ~  is noetherian and stable under substitutions. 

4.1 A n n o t a t e d  E q u a t i o n s  a n d  R e d u c t i v e  R e w r i t i n g  

We do not put any restrictions on the syntactic form of conditional equations. In particular, conditions and 
right sides may have extra variables. To compensate for this permissiveness, the application of equations 
at rewrite-time will be restricted. Completion will guarantee tha t  this restricted application is complete. 
Formally, application restrictions can be modelled by considering a given set E of equations as a generator 
for rewrite rules. 2 In particular, the set E r of reductive instances of the equations in E is of interest: 

E r = {Ca ~ s(r-:*ta ] C ~ s - t  E E=,sa > t~,sa > ua, sa > va, for any u-~v E C} 

In the general case, --*E* can be quite inefficient and require (restricted) paramodulation to solve condi- 
tions of equations in E .  Furthermore, the computed solutions have to be tested for reductivity. To increase 
efficiency of rewriting, it can be useful to further restrict application of equations at rewrite-time. 

Vee will annotate equations to specify in which way their use at  rewrite-time should be restricted.* For 
the purposes of this paper, an equation can be annotated as operational or nonoperationaL The intuitive 
meaning is tha t  a nonoperational equation should not contribute at all to the equational theory. Injectivity 
axioms, for example, should be irrelevant at rewrite-time. 

In operational equations C =v s - t ,  condition equations u - v  E C will be annotated as either oriented or 
unoriented. We will use the notation u --- v to indicate the annotation "oriented". For a oriented condition 
oriented goal solving is wanted. Altogether: 

De f in i t i on  4.1 Let E be a set of annotated equations. E is viewed to generate the set E ~ of rewrite rules 
Ca ~ s a n t a  such that 

1. C ~ s -  t E E = is annotated as operational and Ca ~ sa-~ta E E T, i.e. the instance is reductive, 

2. i f  u -~ v E C, then van' is ~E~-irreducibIe for any --+E~-irreducibte substitution a'. 

Clearly, -~E~C~I~C-+E, where the subset inclusions are proper, hence ~E-#----E in general. E is called 
complete, iff ~ E , = = E  and if -+Eo is canonical. A completion procedure at tempts to complete E in this 
sense. 

In many practical cases, a final system E obtained by completion will have additional properties which 
make ~ E  o to be efficiently computable. For example, i f  

i * i ~ ina~Cin~(n) =~ square(i)'--n. 

with the condition annotated as oriented, is dement  of a complete E, square(i) needs only be rewritten for 
those instances of i for which the -*E~-normalform of i * i is of form inatcint(n). Moreover, if i • i is smaller 
in the reduction order than square(i), the replacement n will also always be smaller than square(i), making 
any application of the equation reductive. No reductivity tests axe required at  rewrite-time. Equations which 
have this property will be called quasi-reduetive below. Note that  let-expressions with patterns in functional 
programming languages such as MItLANDA are another example of equations with oriented conditions, cf. 
definition of quicksort below. 

~In [BG88] we develop a more general concept of application restrictions based on a notion of relevant substitutions. 
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4.2 Q u a s i - R e d u c t i v e  E q u a t i o n s  

To simplify the formal t reatment  in this section, we can assume tha t  operational equations have oriented 
conditions only. (If an equation has an unoriented condition u __t v, we can replace the latter by the two 
oriented conditions u = x and v =- x, where x is a new variable.) 

In the classical case of unoriented conditions, the class of reductive equations [Kap84], [JW86], Mlows 
for efficient rewriting [Kap87]. In particular, conditions of equations are easily proved or disproved, and no 
goal solving is required. Moreover, there are no reductivity tests required at rewrite-time, as any instance 
of a reductive equation is reductive. 

In the case of oriented goal solving there exists a similarly efficient class of equations. Oriented goal 
solving ua --**Eva reduces to normalizing ua and, then, matching va  with the normal form, if any of the 
variables of u is already bound by the matching of the redex, or by the solution of some other condition 
equation. To formalize this idea, we will have to look at how variables are bound within an equation. We 
call a conditional equation ul-+-Vl A . . .  A u~--vn =t. s~.t  (with oriented conditions) deterministic,  if, after 
appropriately changing the orientation of the consequent and choosing the order of the condition equations, 
the following holds true: 

~ar(uO C vat(s) U U (var(uj) u ~:ar(~)), 
l<j<~ 

and 
n 

~ar(t) C vat(s) U U (,,ar(uj) u ~,ar(vj)). 
j= l  

To arrive at a concept for avoiding reductivity proofs at rewrite-time, let us now assume the existence of 
some enrichment E I D E of the signature such that  the given reduction ordering on T ~ ( X )  can be extended 
to a reduction ordering on Tz,(X). 

Def in i t i on  4.2 A determinis t ic  equation ut  "-Vl A . . .  h un'=vn ~ s'--t, n > O, is called quas i - r educ t ive ,  
i f  there exists a sequence hi(~) o f  terms in Tz,(X), ~ e X ,  such that s > hi(u1), hi(v~) > h~+l(u~+]), 
1 < i < n, and hn(vn) >_ t. A n  uncondit ional equation s - t  is quasi-reductive, i f s  > t. 

The equation 
i • i - i ~ a t c i ~ ( n )  ~ s q u a r e ( i ) - n  

becomes quasi-reductive under a recursive path ordering, if square > • in precedence. Choosing, hl(~) = ~, 
the inequalities square( i )  > i * i and inatCint(n) >_ n are obvious. Also quasi-reductive is 

split( ~, O -  q~ , t2 ) ~ sort( ~o~s( x, l) ):---a~e~d( sort( l~ ), eons( ~, sort(h))), 
with hl(~) = f(~, x), where f is a new auxiliary function symbol. The termination proofs can be given 
by an appropriately chosen polynomial interpretation. It has to be verified that  f ( sor t (cons (x ,  l)), x) > 
f(split(~, t), ~) and/((l~, l:), ~) > append(sort(t0, cons(~, sort(l~))). 

Quasi-reductivity is a proper generalization of reductivity: 

P r o p o s i t i o n  4.3 I f  the equation Ul "--Un+l A . . .  A Un~U2n =2;" s ~ t  iS reductive, then the equation 

?tl-~Xl A Un+l "--X 1 A . . .  A Un'--xn A U2n'--X,n :2;. S'-ut~ 

is quasi-reductive, i f  the xi  are new, pairwise distinct variables. 

L e m m a  4.4 Let E be finite and Ul -V l  A . . .  A Un "--vn ~ s& t E E a quasi.reductive equation. 

1. I f  a is a substi tution such that u ia  ~ *E via, 1 < i <_ n, then, sa  > ta.  

2. I f  N t -*E= N "  is decidable for  all terms N I such that N >st N ~, then the applicability o f  the equation 
u ~ - v l  A . . .  A un "--vn =¢" s-- t in N is decidable. 

C o r o l l a r y  4.5 Let E be a set o f  annotated equations in which any operational equation is quasi-reductive. 
Then, ~ E ,  is decidable. 

For confluent --*s-, the applicability of a quasi-reductive equation can be decided by matching the left side 
and~ then, for 1 < i < n~ matching the vi against the normal forms of the substituted ui to obtain another 
part of the substitution. As quasi-reductive equations are deterministic, each variable in ui is bound at the 
time when the i- th condition is to be checked. Computing the substitution a is completely backtrack-free 
in this case. Moreover, no termination proofs are required at  rewrite-time. 
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4.3 C o m p l e t i o n  I n f e r e n c e s  a n d  S t r a t e g i e s  

In this abstract we will only briefly describe the basic inference rules and fairness requirements in completion 
of annotated, application-restricted equations. For details we refer to the full version [Gan88b] and to 
[Gun87], [Gan88] and [BG88]. 

Standard completion CC in the conditional case according to the concepts in [Gan87] and further refined 
in [BG88] consists of three inference rules for adding consequences, one rule for simplification and one rule 
for elimination of conditional equations. Conseqences axe added by 

• paramodulating an equation on the consequent of an equation (i.e. computation of contextual critical 
pairs) 

• pararnodulating an equation on some condition of an equation 

• resolving some condition of an equation with x "--x. 

Paramodutation is restricted in that terms are never replaced by bigger terms in the reduction ordering. 
Also, superposition is limited to the nonvariable part of a literal. 

Equations C =~ s-~t are simplified by rewriting with quasi-reductive equations, using the (skolemized) 
condition equations C as additional rewrite rules. 

An equation C ~ s-+-t can be eliminated, if the current set E of equations admits a proof of C }- s - t  
which is simpler wrt. the proof ordering than the proof in which C =~ s~t is applied under the identity 
substitution to the hypotheses C. In practice, the different proofs of C ~'E s - t  have to be enumerated to 
a certain depth and their complexities compared against the complexity of the proof which has lead to the 
creation of C ~ s'-'t~ cf. [Gan88]. 

The fairness requirements in CC-inference rule application depend on the annotations of the equations. 
The general case is described in [BG88] and [Gan88b]. As a particularly interesting subcase we mention the 
following result: 

T h e o r e m  4.6 A CC-derivation Eo, Et , . . .  is fair, i.e. the final system E~ = U9 nk>j Ek is complete, if 
the following holds true: 

1. Eoo does not contain any unconditional equation annotated as nonoperational. 

2. Any operational equation in E~ is quasi.reductive. 

3. Uk Ek contains all instances of each nonoperationaI equation ~ E E~ which can be obtained by parumod- 
ulating operational equations of Eoo on one selected condition of 7. 

~. uk Ek contains all instances of each nonoperational equation ~7 E E~ which can be obtained by resolving 
the same selected condition of ~l by x~-x. 

5. U~ Ek contains all critical pairs between operational equations in Ee¢. 

6, UkEk contains all instances of each operational equation y E Eoo which can be obtained by paramodu- 
fating operational equations of E~ on the right sides of the oriented condition equations of ~. 

5 Order-Sorted Completion: The Many-Sorted Way 

In this section we illustrate by means of exa~aples that our techniques of completion for conditional equations 
can be successfully applied to order-sorted specifications. In the examples, equations will be operational, 
unless labelled by a "- ' .  Moreover, we rearrange conditions of nonoperational equations such that the first 
condition is always the one which is selected for superposition. Operational equations will all be reductive 
or quasi~reductive with the given orientation of literals and ordering of conditions. 
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5.1 S m o l k a ' s  E x a m p l e  

Our first example is due to Smolka and shows the incompleteness of order-sorted replacement of equals by 
equals, cf. [SNGM87] or [KKM88], in the case of non sort-decreasing rules. 

E x a m p l e  5.1 

sort sl < s2 
op a:sl, b:sl, d:s2, f:sl -> sl 
axioms 

a = d  

b=d 

In this example, f(a)-f(b) can be derived by order-sorted deduction, however it cannot be proven by 
replacement of equals by equals. The many-sorted equivalent E # consists of the folllowing equations: 

E x ample  5.2 

I i(a) = d 
2 i (b)  = d 
3-  i (x )  = i ( y )  --> x -- y 

where i : ~i --+ 82 is the injection i n c h .  Axiom 3 is the injectivity property of {. Orienting 1 and 2 from 
left to right creates the following final system of equations: 

E x ample  5.3 

1 i ( a )  = d 
3- i (x )  = i (y )  => x = y 
4- i(x) = d => x = a 
5 b=a 

Equation 4 is generated from superposing equation i on the condition of the nonoperational injectivity axiom 

3 (cf. fairness constraint 3). We have here decided to classify 4 as nonoperafional although it becomes a 
quasi-reductive equation when orienting its literals from right to left. After this, 4 generates equation 5 
from superposition with equation 2. If b > a in precedence, equation 5 is reductive, allowing to el/minate 
equation 2 by reduction. Any other superposition on the condition of 3 or 4 does only generate equations 
which can later be eliminated by the inference rules of simplification and elimination. 

5.2 S q u a r e s  o f  I n t e g e r s  

We return to the specification of integers as given in example 3.20. The result of translating into many-sorted 
and completing this system is the following: 

E x ample  5.4 

1 
2 
2a 
2b 
2c 
3 
3a 
3b 
4 
4a 
5 
$a 
6 
7 
7a 
7b 
7c 
8 
8a 
9 

-(0) = int(O) 
- (- (i:int)) = i 
- (- (Xl:nzIn~)) = XI 
- (- (Xl:nat)) = int(Xl:nat) 
- (- (X1:nzNat)) = nzInt(Xl:nzNat) 
(i:in~)+inZ(0) = i 
(X2:nat)+O = X2 
(X:nzNa~)÷0 = nat(X:nzNat) 
int(0)+ (i:int) = i 
0÷ (Xl:nat) = XI 
(k:naZ)+nat(s(m:nat)) = nat(s((k:nat)+ (m:nat))) 
(X2:nzNat)+nat(s(m:nat)) = nat(s((X2:nzNat)+ (m:nat))) 
int(-s(k:nat))+int(nzlnt(s(m:nat))) = - (k:naZ)+int(m:nat) 
(i:in¢)+ (- (j:int)) = - (- (i:int)+ (j:int)) 
(i:int)+int(- (Xl:nzInt)) = - (- (i:int)+int(Xl:nzInt)) 
(i:int)+int(- (Xl:nzNat)) = - (- (i:inZ)+int(nzInt(Xl:nzNat))) 
(i:int)+ (- (Xl:nat)) = - (- (i:inZ)÷int(Xl:nat)) 
(i:int)*int(0) = int(0) 
(X2:nat)*0 = 0 
int(0)* (i:int) = int(0) 
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9a O* (Xl:na~) = 0 
i0 (i:int)*int(nzlnt(s(m:nat))) = (i:int)*int(m:nat)+ (i:int) 
lOa (X2:nat)*nat(s(m:nat)) = (X2:nat)* (m:nat)+ (X2:nat) 
ii (i:int)* (- (j:int)) = -(i:int)* (j:int) 
11a (i:int)*int(- (X1:nzInt)) = -(i:int)*int(Xi:nzInt) 
llb (i:int)* (- (X1:nat)) = -(i:int)*int(Xl:nat) 
llc (i:int)*int(- (X1:nzNat)) = -(i:int)*int(nzlnt(Xl:nzNat)) 
12 (- (i:int))* (j:int) = -(i:int)* (j:int) 
12a int(- (Xi:nzInt))* (j:int) = -int(Xl:nzInt)* (j:int) 
12b (- (Xi:nat))* (j:int) = -int(Xl:nat)* (j:int) 
i2e int(- (X1:nzNat))* (j:int) = -int(nzInt(Xl:nzNat))* (j:inZ) 

13 (i:int)* (i:int) ~ int(k:naZ) => square(i:int) = k 

13a (i:int)* (i:int) 

II 
I2 
I3 
I5 
I6 
I7 
I8 
I9 
IiO 
Ill 
I12 
I13 
li4 
Ii5 

il- 
l2- 
i3- 
i4- 
i5- 
i6- 

int(nzlnt(X:nzNat)) => square(i:int) = nat(X:nzNat) 

-int(Xl:nat) = - (Xl:nat) 
-int(Xl:nzlnt) = in~(- (Xl:nzlnt)) 
-nat(Xl:nzNat) = int(- (Xl:nzNat)) 
-nzInt(X1:nzNat) = - (X1:nzNat) 
int(X2:nat)+int(Xl:nat) = int((X2:nat)+ (Xl:nat)) 
nat(X2:nzNat)+ (Xi:nat) = (X2:nzNat)+ (Xl:nat) 
int(X2:nat)*int(Xl:nat) = int((X2:nat)* (Xl:nat)) 
int(nat(X:nzNat)) = int(nzInt(X:nzNat)) 
int(X2:nat)+int(nzIn¢(X:nzNat)) = int((X2:nat)+nat(X:nzNat)) 
int(nzInt(X:nzNat))+int(Xl:nat) = int((X:nzNat)+ (Xl:nat)) 
int(nzInt(X:nzNat))+int(nzInt(Y:nzNat)) = int((X:nzNat)+nat(Y:nzNat)) 
int(X2:nat)*int(nzInt(X:nzNat)) = int((X2:nat)*nat(X:nzNat)) 
int(nzInt(X:nzNat))*int(Xl:nat) = int(nat(X:nzNat)* (Xl:nat)) 
int(nzInt(X:nzNat))*int(nzInt(Y:nzNat)) = int(nat(X:nzNat)*nat(Y:nzNat)) 

nat(X:nzNat) = nat(Y:nzNat) => X = Y 
int(X:nat) = in~(Y:nat) => X = Y 
nzlnt(X:nzNat) = nzInt(Y:nzNat) => X = Y 
int(X:nzln¢) = int(Y:nzInt) => X = Y 
int(nzInt(X:nzNat)) = int(Y:nat) => nat(X:nzNat) = Y 
int(nzlnt(Xl:nzNat)) = int(nzlnt(X:nzNat)) 

and int(nzInt(X:nzNat)) = (il:int)* (i1:int) => X = Xl 

The initial set of many-sorted equations E # consists of the equations 1-13, I1- I9 ,  and i l - i4 ,  s The remaining 
equations are generated during completion. The ( INH)-equa t ions  have a number in I1-18 or I10-I15, 
equation I9 is the only (CI)-axiom. The (nonoperationai) injectivity axioms are the equations i l - i4 .  It is 
sufficient to start  completion with just the ( INH)-equa t ions  I 1 - I 8  between any two neighboring operators 
(wrt. <t),  as the remaining ones are generated as criticM pairs. 

The final system also contains the lowest parses of many specializations (indicated by letters a, b, c , . . . )  
of the initial order-sorted rules. This is in accordance with theorem 3.19. In a reduced final system like 
the one above, however, not all specializations need to be present. Equation 13a has been generated from 
superposing I9 on the right side of the condition of 13, cf. 4.6. In this example, completion has just verified 
the completeness of the initial system. No new order-sorted equation has been generated. The new equations 
on the many-sorted level serve to synchronize the application of order-sorted rules with the computation of 
lowest parses. 
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paper. 
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