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Abstract 

Consider a class C of hyperedge--replacement graph grammars and a numeric function on graphs 
like the number of edges, the degree (i.e., the maximum of the degrees of all nodes of a graph), 
the number of simple paths, the size of a maximum set of independent nodes, etc. Each such 
function induces a Boundedness Problem for the class C: Given a grammar HRG in C, are the 
function values of all graphs in the language L(HRG), generated by HRG, bounded by an integer 
or not? We show that the Boundedness Problem is decidable if the corresponding function is 
compatible with the derivation process of the grammars in C and if it is composed of maxima, 
sums, and products in a certain way. This decidability result applies particularly to the examples 
listed above. 

1. Introduction 

Context-free graph grammars (like edge- and hyperedge--replaeement grammars as investigated, 
e.g., by Banderon and Courcelle [BD 87] or in [HK 85+87b] or like boundary NLC grammars as 
introduced by Rozenberg and Welzl [RW 86a]) have been studied intensively for some time now 
because o f -  at least - two reasons: 
(1) .Although their generative power is intentionally restricted, they cover many graph languages 
interesting from the point of view of applications as well as of graph theory (for example, certain 
types of flow diagrams, PASCAL syntax diagrams, certain types of Petri nets, graph representations 
of functional expressions, series-parallel graphs, outerplanar graphs, k-trees, graphs with cyclic 
bandwidth < k). 
(2) Of all classes of graph grammars discussed in the literature, they seem to render the most 
attractive theory with a variety of results on structure, decidability and complexity (see, e.g., 
Arnborg, Lagergren and Seese [ALS 88], Bauderon and Courcelle [BC 87, Co 87], Della Vigna and 
Ghezzi [DG 78], Lautemann [La 88], Lengauer and Wanke [LW 88], Rozenberg and Welzl [86a+b], 
Slisenko [SI 82], and [HK 83 + 85 + 87b, HKV 87, Kr 79]). 

In particular, Courcelle [Co 87], Arnborg et al. [ALS 88], Lengauer and Wanke [LW 88], and 
[HKV 87] present syntactic and semantic conditions such that, for a graph property P satisfying 
the conditions, the following hold for all context-free graph grammars of the types considered in 
the respective papers: 
(1) It is decidable whether (or not) some graph with property P is generated: 
(2) It is decidable whether (or not) all generated graphs have property P. 
(3) It is decidable in linear time whether (or not) a generated graph represented by a derivation 

(or something equivalent) has property P. 
The results apply to properties such as connectivity, planarity, k-colorability, existence of Hamil- 
toniau and Eulerian paths and cycles. 
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Based on the framework of hyperedge-replacement graph grammars, we continue this line of con- 
sideration in this paper. We are going to investigate the decidability of a different type of problems 
concerning functions on graphs and above all numeric quantities like the numbers of nodes, edges 
and paths, the node degree, maximum and minimum lengths of paths and cycles, etc. The kind of 
question we ask for a class of grammars may be called Boundedness Probtem. It is as follows: 
(4) Is it decidable whether (or not), eoncering a particular quantity, the values of all graphs 

generated by a grammar are bounded? 
For example, we want to know whether the node degree or the number of paths grow beyond any 
bound within a graph language. In the main result, we show that such a Boundedness Problem is 
decidable for a class of hyperedge-replacement grammars if the corresponding quantity function 
is built up by maxima, sums and products and if the function is compatible with the derivation 
process of the given grammars. Examples of this kind are the bounded-node-degree problem, 
the bounded-maximum-path-length problem, the bounded-maximum-number-of-paths problem 
and others. It should be mentioned here that the only result of the same nature occurring in the 
literature is the decidability of the bounded-degree problem for NLC grammars (see [JRW 86]). 

The paper is organized in the following way. Sections 2 and 3 comprise the preliminaries on 
(hyper)graphs and hyperedge-replacement grammars as needed. In Section 4, we discuss several 
examples of numeric functions which are compatible with the derivation process of our grammars 
in a certain way. In Section 5, we introduce the general notion of compatible functions, and we 
relate them with our earlier notion of compatible predicates [ttKV 87]. Finally, we show in the 
main result in Section 6 that the Boundedness Problem corresponding to a numeric function is 
decidable if the function is pointwise defined as the maximum of sums and products and if it is 
compatible. 

Except for the proof of the main theorem in Section 6, we omit proofs in this version. They can 
be found in the long version of the paper which will appear elsewhere. While the general results 
work for arbitrary classes of hyperedge-replacement grammars, we have to admit that most of our 
examples are formulated for the class of edge-replacement grammars. But we are confident that 
all of them can be adapted to more general classes of hyperedge--replacement grammars. 

2.  P r e l i m i n a r i e s  

This section provides the basic notions on graphs and hypergraphs as far as needed in the paper. 
The key construction is the replacement of some hyperedges of a hypergraph by hypergraphs 
yielding an expanded hypergraph. In our approach, a hyperedge is an atomic item with an ordered 
set of incoming tentacles and an ordered set of outgoing tentacles where each tentacle grips at a 
node through the source and target functions. Correspondingly, a hypergraph is equipped with 
two sequences of distinguished nodes so that it is enabled to replace a hyperedge. 

2.1 Def in i t ion  (hypergraphs) 

1. Let 0 be an arbitrary, but fixed alphabet, called a set oflabeJs (or colors). 
2. A ttyperg~aplt over O is a system (V,E,s ,~ , l )  where V is a finite set of nodes (or vertices), 
E is a finite set ofJtyperedges, s : g ~ V* andt  : E ~ V* 1 are two mappings assigning a sequence 
of sources s(e) and a sequence of targets t(e) to each e E E, and 1 : E --4 C is a mapping labe/_/ng 
each hyperedge. 
3. A hyperedge e e E of a hypergraph (V,E,  ~,i,l) is called an (m,n)-edge for some m,n E M if 
Is(e)[ = m and It(e)[ = n. ~ The pair (rn,n) is the type of e, denoted by type(e), e is said to be 
welI-£ormed if its sources and targets are pairwise distinct. 

1 For a set A, A* denotes the set of all words over A, including the empty word A. 
For a word w E A*, [tul denotes its length. 



277 

4. A multl-pointed J~ypergraph over C is a system H = (V, E, s,~, I, begin, end) where the first five 
components define a hypergraph over C and begin, end E V*. Components of H are denoted by 
V~, E.~, s~r , i s ,  l q, begin~r, e,d~r, respectively. The set of all multi-pointed hypergraphs over C is 
denoted by He.  
5. H E 7-/c is said to be an (rn,n)-hypergraph for some m,n E 1N if l~egin , , l  = m and lend~, I = n. 
The pair (m, n) is the type of H,  denoted by ~ype(H). H is said to be welI-fo~med if all hyperedges 
are well-formed and the begin-nodes and end-nodes of H are pairwise distinct. 
6. Let H E 7"{v, beginH = begin~ ...begin,~ and endj~ = end1 ...end~ with beginl,endj E V~r for 
i =  1 , . . .  ,m a n d j  = 1 , . . .  , , .  Then EXT~  = {begin;]i = 1, . . .  ,m} U {end~l j = ~,. . .  ,n} denotes 
the set of externaI nodes of H. Moreover, INT~z = VH - EXT~  denotes the set of internal nodes 
of H. 

R e m a r k s :  1. There is a 1-1-correspondence between hypergraphs and (0,0)-hypergraphs so that 
hypergraphs may be seen as special cases of multi-pointed hypergraphs. 
2. An (m, n)-hypergraph over C with (1,1)-edges only is said to be an (m, n)-g~aph. The set of 
all (1,1)-graphs over C is denoted by 9c. 

2 . 2  Definit ion (special hypergraphs) 

1. A mult i-pointed hypergraph H is said to be a slngleton if tE~[ = 1 and [V q - EXTHI = O. 
e(H) refers to the only hyperedge of H and I(H) refers to its label. 
2. A singleton H is said to be a t~andle if sH(e) = begin>z and i l l (e)  = end~. If  t~(e) = A and 
iype(e) = (re,n)  for some m,n e 12V, then H is called an (rn,n)-handle induced by A. 

R e m a r k :  Given H E 7/c,  each hyperedge e E E a  induces a handle e '  by restricting the mappings 
sH, t.~, and l.~ to the set {e}, restricting the set of nodes to those ones occurring in sa(e)  and 
~r (e), and choosing begin°, = s~ (e) and end°, = ~A (e). 

2 . 3  Defini t ion (subhypergraphs and isomorphic hypergraphs) 

1. Let H:H' E 7/c.  Then H is called a (weak) subhypergraph of H' ,  denoted by H C H' ,  if 
V~ C V~,, E~ C E~,, and ,H(e) = ,~,(e) ,  ~ ( e )  = ~ , ( e ) ,  l~(e) = tH,(e) for all e C F ~ .  
[Note that  nothing is assumed on the relation of the distinguished nodes.] 
2. Let H,H'  E 7-lc and iy : V~ --* VH,, iz : EH ~ EH, be bijective mappings. Then i = ( i r , i z )  : 
H -~ H' is called an i s o m o . p ~ s m  from H to H' if i;. ( , , ,  (e)) = s . , ( ; .  (e)), i ;  ( ~  (e)) = *~,( i~ (e)), 
b , (e ) )  = t~ , ( i~ (e ) )  for all ~ ~ E ~  ~ well as i ; , (bcg i .~ )  = ~ e g i . ~ , ,  d , ( ~ d ~ )  = end~,  3 H and 
H ~ are said to be isomorptffc, denoted by H ~ H ' ,  if there is an isomorphism from H to H' .  

Now we are ready to introduce how hypergraphs may substitute hyperedges. An (m, n)--edge can 
be replaced by an (m, n)-hypergraph in two steps: 
(1) lZemove the hyperedge, 
(2) add the hypergraph except the external nodes and hand over each tentacle of a hyperedge 

(of the replacing hypergraph) which grips to an external node to the corresponding source or 
target node of the replaced hyperedge. 

Moreover, an arbitrary number of hyperedges can be replaced simultaneously in this way. 

2 . 4  D e f i n i t i o n  (hyperedge replacement) 

Let H E 7-/c be a multi-pointed hypergraph, B C__ EH, and repl : B ---r 7-lc a mapping with 
type(repl(b)) = ~ype(b) for all b E B. Then the ~eplacement of B in H through repl yields the 
mult i-pointed hypergraph X given by 

3 For a mapping f : A ~ B, the free symboIwise extension f* : A* --, B* is defined by 
f* (a l . . .a~)  = ] ( a l ) . . . / ( a ~ )  for all k E /N and ai E A (i = 1 , . . . , k ) .  
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• Ex = (E~ - B) + E~.(a,,z<~) 
, each hyperedge of E a  - B keeps its sources and target% 
• each hyperedge of E,~r,(~) (for all b E B) keeps its internal sources and targets 

and the external ones are handed over to the corresponding sources and targets of b, i.e., 
s x ( e )  = h*(s,~r,,(D(e)) and ix (e )  = h'(t,~F,(D(e)) for all b E B and e 6 E,~,,(~) 

where h : V,~r,,(D ~ Vx is defined by h(v) = v for v E Vrerz(b) - EXT, , r f fb ) ,  
h(~,) = , ;  (~ = 1,. . . ,m) for ~eg~,,,¢<,) = ~ . . . ~  and ,~(~) = , ~ . . .  s~, 
h(e j )  = t~- ( j  = 1 , . . .  ,n)  for end,,rz<~ ) = e ~ . . . e ,  and tzt(b) = ~ . . . ~ .  

• each hyperedge keeps its label, 
• beginx = begin~ and endx  = endH. 

The resulting mult i-pointed hypergraph X is denoted by R E P L A C E ( H ,  repl). 

R e m a r k :  The construction above is meaningful and determines (up to isomorphism) a unique 
hypergraph X if h is a mapping. This is automatically fulfilled whenever the begin-nodes and 
end-nodes  of each replacing hypergraph are pairwise distinct. If one wants to avoid such a restric- 
tion, one has to require that  the following apphcation condition is satisfied for each b E B: 
If begin,~t(~) = x l . . . x , ~  and end ,~(~)  = z ,~+l- . -z ,~+~ as well as sH(b) = Yl---Y,~ and 
in(b)  = y,~+l . . .  Y,~+,, then, for i , j  = 1 , . . .  , m  + n, x; = z i implies !ti = Vi. 

3 .  H y p e r e d g e - R e p l a c e m e n t  G r a m m a r s  a n d  L a n g u a g e s  

In this section we give a short summary of the basic notions on hyperedge-reptacement grammars 
generalizing edge-replacement grammars as investigated e.g. in [HK 83+85] and context-free string 
grammars. Details and examples can be found in [I4K 87a+b]. 

Based on hyperedge replacement, one can derive multi-pointed hypergraphs from multi-pointed 
hypergraphs by applying productions of a simple form. 

3 . 1  D e f i n i t i o n  (productions and derivations) 

1. Let N _ C. A production (over N) is an ordered pair p = (A, R) with A E N and R 6 He .  A 
is called 1eft-hand side o f p  and is denoted by lhs(p),  R is called r lght -hand side and is denoted 
by rhs(p).  The type of p, denoted by iype(p),  is given by the type of n .  
2. Let H 6 7-lc, B C_ E ~ ,  and P be a set of productions. A mapping prod : B -+ P is called a 
pzoduct lon base in H if l~(b) = lhs(prod(b)) and type(b) = type(rhs(prod(b)))  for all b 6 B. 
3. Let H, H ~ E 7"lc and prod : B -+ P be a production base in H. Then H dlrectly derives 
H'  through prod if H '  is isomorphic to R E P L A C E ( H ,  repl) where repl : B --+ 7-lz is given by 
repl(b) = rhs(prod(b)) for all b 6 B. We write H = ~  H '  or H ==~ H '  in this case. 

4. A sequence of direct derivations H0 ===> HI ==>. . .  ==> Hk is called a derivation from/fro to H~ 
(of length k). Additionally, in the case H -~ H' ,  we speak of a dsHvatlon from H to H '  of length 
0. A derivation from H to H '  is shortly denoted by H = ~  H '  or H ==~ H' .  If the length of the 

P 

derivation should be stressed, we write H ~ H '  or H ==~ H' .  / ,  

5. A direct derivation through prod : 0 --+ P is called a dummy. 5 A derivation is said to be va//d 
if at least one of its steps is not a dummy. 

The sum symbols + and ~ denote the disjoint union of sets; the symbol - denotes the 
set- theoretic difference. 

A production base prod : B ---+ P in H may be empty, i.e., B -- 0. In this case H ~ H t 
through prod implies H -~ H r, and there is always a trivial direct derivation H ==6 H through 
prod. 
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R e m a r k s :  1. The application of a production p = (A,R)  of type (re ,n)  to a multi-pointed 
hypergraph H requires the following two steps only: 
(1) Choose a hyperedge e of type (m, n) with label A. 
(2) Replace the hyperedge e in H by R. 

2. Some significant properties of direct derivations are: On the one hand, the definition of a direct 
derivation includes the case that  no hyperedge is replaced. This dummy step derives a hypergraph 
isomorphic to the initial one. On the other hand, it includes the case that  all hyperedges are 
replaced in one step. Moreover, whenever some hyperedges can be replaced in parallel, they can 
be replaced one after the other leading to the same derived hypergraph. 

Using the introduced concepts of productions and derivations hyperedge-replacement grammars 
and languages can be introduced in a straightforward way. 

3.2 Def in i t ion  (hyperedge-replacement grammars and languages) 

1. A layperedge-reptacement grammar is a system HRG = (N,T,P~Z) where N ___ G is a set of 
nontermLnaJs, T ___ C is a set of terminals, P is a finite set ofproductJoaas over N, and Z E 7-/c is 
the axiom. The class of all hyperedge-replacement grammars is denoted by 7-/7~g. 
2. HRG is said to be typed if there is a mapping l~ype : N U T --+ gg X ~V such that, for 
each production (A,R) e P, l~ype(l) = ~ype(R) and liype(l~(e)) = ~ype(e) for all e E Ea~ and 
l~ype(Iz(e)) = ~y2e(e) for all e E Ez. HRG is said to be ~¢e//-fozmed if the r ight-hand sides of 
the productions are well-formed and all hyperedges in Z are well-formed. 
3. The/aypexgraph language L(HRG) generated by HRG consists of all hypergraphs which can 
be derived from g applying productions of P and which are terminally labeled: 

L(HRG) = {H e "Hr IZ ~ H}. 

R e m a r k s :  1. Even if one wants to generate graph languages rather than hypergraph languages, 
one may use nonterminal hyperedges because the generative power of hyperedge-replacement gram- 
mars increases with the maximum number of tentacles of a hyperedge involved in the replacement 
(see [ I tg  87b]). 
2. Without  effecting the generative power, we will assume in the following that  N and T are 
finite, N N T = $, and Z is a singleton with l (g )  E N. F~rthermore, we will assume that  the 
hyperedge-replacement grammars considered in this paper are typed and well-formed. 

The results presented in the following sections are mainly based on some fundamental aspects of 
hyperedge-replacement derivations. Roughly speaking, hyperedge-replacement derivations cannot 
interfere with each other as long as they handle different hyperedges. On the one hand, a collection 
of derivations of the form e" =:~ H(e) for e E E~ can be simultaneously embedded into R leading to 
a single derivation R = ~  H.  On the other hand, restricting a derivation R = ~  H to the handle e" 
induced by the hyperedge e E E~ one obtains a so-called "restricted" derivation e" : : ~  H(e) where 
H(e) C_ H. Finally, restricting a derivation to the handles induced by the hyperedges, and sub- 
sequently embedding them again returns the original derivation. In other words, hyperedge- 
replacement derivations can be distributed to the handles of the hyperedges without losing in- 
formation. We state and use this result in the following recursive version concerning terminal 
hypergraphs which are derivable from handles. 

3 . 3  T h e o r e m  

Let H RG = ( N~ T, P~ Z) be a typed and well-formed hyperedge-replacement grammar, A E NUT, 
and H E H r .  Then there is a derivation A * = = ~ R = ~ H  for some k >_ 0 s if and only if 

A" ==# R and, for each e E E~, there is a derivation In (e) ° = ~  H(e) with H(e) C H such that 
H ~- REPLAGE(R, repI) with repl(e) = H(e) for e E ER. 

6 For a symbol A E N U T with ltype(A) = (rn, n), A" denotes an (rn, n)-handle induced by A. 
~ o t e  that  (m, n)-handles induced by a symbol A are isomorphic]. 
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R e m a r k s :  1. The derivation l~(e)* =~H(e) may be valid or not. In the first case, it has the 
same form as the original derivation, but it is shorter as the original one. In the latter case, H(e) 
is isomorphic to e" (resp. ln (e ) ' )  and hence a terminal handle. 

2. Given a derivation R = ~  I-/, the derivation le(e)" ~ H(e) for each e E /?~ is called the/ibre 
of e and - -  the other way round - -  the given derivation is thejoint embedding of its fibres. 

4. Some Graph-Theoretic  Functions Compatible With 
Derivations 

A hyperedge-replacement grammar as a generating device specifies a (hyper)graph language. Un- 
fortunately, in a finite amount of time, the generating process only produces a finite section of the 
language explicitly (and even this may consume much time). Hence one may wonder what the 
hyperedge--repIacement grammar can tell us about the generated language. As a matter  of fact, by 
Theorem 3.3, we have the following nice situation. Given a hyperedge--replacement grammar and 
an arbitrary terminal (hyper)graph H with derivation A ° ==k R = ~  H, we get a decomposition of 
H into "smaller" components which are derivable from the handles of the hyperedges in R. If one 
is interested in values of graph-theoretic functions of derived (hyper)graphs, one may ask how a 
certain value of a derived (hyper)graph depends on values of the components. A function is said 
to be "compatible" with the derivation process of hyperedge-replacement grammars if it can be 
computed for each derived (hyper)graph H by computing the values (or related values) for the 
components and composing the values to the value of H. 

In this section, we pick up several graph-theoretic functions and show that  they are "compatible" 
with the replacement process of hyperedges. A formal definition of compatibility is given in the 
next section. We discuss the number of nodes and hyperedges, the number of paths and cycles, 
the length of a shortest path, the length of a longest simple path,and the minimum and maximum 
degree. 

Let HRG = (N, T, P, Z) be a typed and well-formed hyperedge-replacement grammar, H C 7"/r, 

A ° ==~ R = ~  H a derivation of H in HRG, and, for e E E~, 1.~(e) ° ~ H(e) be the fibre o f R ~  H 
induced by e. Then the number of nodes in H can be computed from the number of nodes in R 
and the number of internal nodes in the H(e) 's .  Similarly, the number of internal nodes can be 
computed. Even simpler, the number of hyperedges in H can be determined by the number of 
hyperedges in the H(e)~s. 

4 . 1  T h e o r e m  (Number of Nodes and ttyperedges) 

For a hypergraph H 6 7-/c, let IVH I denote the number of nodes, IINT g I the number of internal 
nodes, and IE,tl the number of hyperedges in H. Then 

I v . l =  tv~l+ ~ IINT.(,)h 

]INT.I = lINT.l+ ~ IINT.(.)[, 

IEH[ = ~ IE~(.)I. 
cEER 

R e m a r k s :  1. Similarly, the composed function size given by size(H) = lvHl+ JEst can be 
handled. It makes use of the auxiliary function intsize given by ints~ze(H) = I/NTHI + [E~ I. 
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2. The density function dens given by dens(H) = ~ if tVsl > 0 (and dens(H) = ~ ~ otherwise) Iv,,l 
can also be expressed in such a way: 

d~ndH) = IV~l + E,E~,~ IINT~(,)I 

The expression for computing dens(H) makes use of the possibility to compute the number of 
internal nodes as well as the number of hyperedges of the H(e)'s. It does not make use of the 
density of some of the H(e)'s. rn 

For simplifying the technicalities, we restrict our following consideration to the class gT~g of edge- 
replacement grammars in the sense of [HK 83+85]. To be more explicit, a typed and well-formed 
hyperedge-replacement grammar HRG = (N, T, P, Z) is in gT~g if and only if the right-hand sides 
of the productions as well as the axiom are (1,1)-graphs. Note that, in this case, each G E L(HRG) 
is a (1,1)-graph, i.e., a graph with two distinguished nodes begina and enda. 

Let G be a graph. A path joining vo and v~ is a sequencep = vo,el,vl,e2,.. .  ~e~,v,, of alternating 
nodes and edges such that for 1 < i < n, vi-1 and vi are the nodes incident with ei. If v0 = v~ 
then p is said to be a cycle. If in a path each node appears once, then the sequence is called a 
shnple path. If each node appears once except that v0 = v, and n > 3 then p is a simple cycIe. 
The ]ength of a path or a cycle ~v, denoted length(p), is the number of edges it contains. "e on p" 
denotes the fact that e occurs in p. 

4 . 2  T h e o r e m  (Number of Simple Paths, Minimum and Maximum Simple-Path Length) 

For a (1,1)-graph G, let PATHa denote the set of simple paths joining begina and end~ and 
nurapa~h(G) the number of these paths in G. Moreover, let rainl;ath(G ) and rnaxpa~h(G) denote 
the minimum resp. maximum simple-path length, if any (and minpa~h(G) = rnaxpa~h(G) = ¢, 
otherwise s). Then 

p E P A T H R  ¢ on p 

rnin1~ath(a) = min ~ minpaih(G(e)), 
p E P A T H  ~ 

eo~p 

, a=pa h(G) = m a x  
:D E P.4.T//~ 

~ O R p  

The number of simple cycles, the minimum cycle length, and the maximum simple-cycle length of 
a graph can be determined using the computation of the number of simple paths, the minimum 
path length, and the maximum simple-path length, respectively. 

dens, rninpa~h, and rnaxpa¢h are defined to be functions with values in IV U {<>}, the set of 
all non-negative integers plus a special symbol <~. We use this special symbol % if the considered 
function has no sensible integer value. We calculate with <~ as follows: V i E I V ni E M U {<>}, 

* E n; = o and H n, = ~ if and only if nj = ~ for some j E I, 
iE1 i E I  

* minn ;  = minn ;  and maxni  = maxn;  for I r = {i E Ilni ~<,}, and 
iE1 iE1 ~ iE1 iE1 ¢ 

minn;  = ~> and maxm = o for I = ~. 
iEJ iE1 
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4 . 3  T h e o r e m  (Number of Simple Cycles, Minimum and Maximum Simple-Cycle Length) 

For a (1,1)-graph G, let GYCLEa denote the set of simple cycles and numcycle(G) the number 
of these cycles in G. Moreover, let mincyde(G) and maxcyde(G) denote the minimum resp. 
maximum simple-cycle length, if any; otherwise, let mincycle(G) = <~ = raaxcycle(G). Then 

.u cyae(G) = l-[ + 

mincyde(G) = min { min ~" minIJath(G(e)) ,ecrv~R "-~, , 0min mincyde(G(e)) , 
E ~  J 

{ m a x  ~ maxpa~h(G(e)) , maxmaxcycle(G(e))}. rnaxeycle(G) = max c E C r C ~ a .  ~ ~E.E~ 

4 . 4  T h e o r e m  (Minimum and Maximum Degree) 

For a graph G, let rnlndegree(G) and maxdegree(G) denote the minimum resp. maximum degree 
among the nodes of G. Moreover, let mininidegree(G) denote the minimum degree among the 
internal nodes of G and bdegree(G) and edegree(G) the degree of beglnG resp. enda. Then 

F 
mindegree(G) = min [ ' ( v ~  min Da(v) ' ,E-v.min minm~degree(G(e))_ 

minin~degree(G) = min ~ min Da(v) min minlntdegree(G(e))} 
I ~E1-NT.~ J eq-~R 

mazdegree(G) - max ~ max De(e) max maxdegree(G(e)) } 
[,£1rs ~ eE~x 

bdegree(G) = Da(begina) and edegree(G) = Do(enda) 

where, for v 6 Va, Da(v) = ~ bdegree(G(e)) + ~ edegree(G(e)). 

5.  C o m p a t i b l e  F u n c t i o n s  

In this section we introduce the notion of compatible functions in such a way that all functions 
considered in the previous section are special cases. Roughly speaking, a function f0 on hypergraphs 
is said to be compatible with the derivation process of hyperedge-replacement grammars if, for 
each hypergraph H and each derivation of it, the value of H, ]o(H), can be computed from the 
values of some specific subhypergraphs H(e) determined by the fibres of the derivation. As the 
examples will show, this view is oversimplified for most applications. To compute the value of 
H, it might be necessary to compute the values of some other related functions for the H(e)'s. 
Therefore, we use families of functions indexed by some finite set I and we need a mapping assign 
which determines the values for the H(e)'s with respect to the different value functions. 

The notion of compatible functions generalizes obviously our earlier notion of compatible predicates 
(see [HKV 87]). More interesting, a certain type of compatible functions that are composed of 
minima, maxima, sums, and products induce compatible predicates of the form: the function 
value of a graph exceeds a given fixed integer, or the function value does not exceed a fixed integer. 
Consequently, we get the decidability of the problems (1), (2), and (3) in the introduction for these 
predicates as a corollary. 
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5 .1  D e f i n i t i o n  (compatible functions) 

1. Let g be a class of hyperedge-replacement grammars, I a finite index set, VAL a set of 
values,/C : 7"to x I ~ V A L  a function s , and/ct a function defined on triples (R, asslgn,i) with 
R E Tlv, assign : Ex X I --* VAL ,  and i E I. Then/C is called (g,/c')-compatlb]e if, for all 
H R G  = (N~ T, P, Z) E g and all derivations of the form A* ~ R = ~  H with A E N and H E 7-/r, 
and for all i E I ,  

/C(H, i) =/C'(R, a ,s ign,  i) 

where assign : 1P~ x I -+ V A L  is given by assign(e,j)  =/C(H(e), j)  for all e e En and all j e I .  
2. A function/¢0 : 7-/v --* V A L  is called g-compatible if functions/C and/cr and an index i0 exist 
such that/c0 = ] ( - , i 0 )  and/C is (g, ] ' ) -compatible.  9 

R e m a r k :  Intuitively, a function is compatible if it can be computed for a large hypergraph derived 
by a fibre by computing some values for the smaller components of the corresponding shorter 
fibres. Such a function must be closed under isomorphisms because the derivability of hypergraphs 
is independent of the representation of nodes and hyperedges. 

5 . 2  Examples  

By Theorem 4.1, the following functions on hypergraphs are 7-/7~g-compatibte: the number of 
nodes, the number of hyperedges, and the density of a hypergraph. By Theorems 4.2-4.4, the 
following functions on graphs are STag-compatible: the number of simple paths connecting the 
external nodes, the minimum-path length (of paths connecting the external nodes), the maximum- 
simple-path length (of paths connecting the external nodes), the number of simple cycles, the 
minimum-cycle length, the maximum-simple-cycle length, the minimum degree, and the maximum 
degree of a graph. 

We recall now the notion of compatible predicates and relate it with compatible functions. 

5 . 3  D e f i n i t i o n  (compatible predicates) 

1. Let C be a class of hyperedge-replacement grammars, I a finite index set, P R O P  a decidable 
predicate l° defined on pairs (H, i) with H E 7-/v and i E I,  and PROP'  a decidable predicate on 
triples (R, assign,i) with R E 7-/c, a mapping assign : E~ --+ I, and i E I. Then P R O P  is called 
(C,PROP')-compatlble if, for all HRG = (N,T ,  P jZ)  E C and all derivations A* ==~ R ~  H 
with A E N and H E 7-/r, and for all i E I, P R O P ( H , i )  holds if and only if there is a mapping 
assign : E~ --4 I such that PROP' (R ,  asslgn,i) holds and PROP(H(e) ,  assign(e)) holds for all 
eE  E_~. 
2. A predicate PROPo on 7-/c is called C-compatJb]e if predicates P R O P  and P R O P '  and an 
index i0 exist such that  PROPo = P R O P ( - ,  io) ~1 and P R O P  is (C, PROP~)-compatible. 

R e m a r k s :  1. Intuitively, a property is compatible if it can be tested for a large hypergraph with 
a long fibre by checking the smMler components of the corresponding shorter fibres. 
2. Examples of compatible properties are: connectivity, planarity, existence of Hamiltonian and 
Eulerian paths and cycles, k--colorability for each k > 0 (see [HKV 87] and [Ha 88]). 

s We assume that all considered functions are dosed under Jsomorpldsms, i.e., for a function/C, 
if H ~ H' for some H, H' E 7-/c, then/C(H, i) =/C(H', i) (resp. /C(H, assign, i) =/C(H', assign, i)) 
for all i E I. 

9 For i e I , / c ( - , i )  denotes the unary function defined by /C( - , i ) (H)  =/C(H,i) for all H E 7-/a. 
10 We assume that  all considered predicates are dosed under JsomorpMsms, i.e., if a predicate 

holds for H E 7-/c and H -~ H t, then • holds for Hi, too. 
11 For i E I,  P R O P ( - , i )  denotes the unary predicate defined by 

P R O P ( - ,  i)(H) = P R O P ( H ,  i) for all H E 7-/c. 
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3. In [HKV 87] it is shown, that, for all C-compatible properties PROPo, it is decidable whether, 
given any hyperedge-replacement grammar HRG E C, P.ROPo holds for some H E L(HRG) and 
PROPo holds for all H E L(HRG). 

5.4 T h e o r e m  

Let PROPo be a C-compatible predicate. Then the function/0 : 7-/c --+ {0, 1} given by 

1 if PROPo(H) holds 
te°(H) = 0 otherwise 

is C-compatible. 

Certain C-compatible functions with values in/N* = L r U {<>} induce specific C-compatible predi- 
cates. 

5.5 D e f i n i t i o n  

1. A function / : 7/v X I ~ / N  ° is said to be (C, min, max, +, .)-compatible K there exists a n / '  such 
that for each right-hand side R of some production in C and each i E I, / ' (R ,  - , i )  corresponds 
to an expression formed with variables assign(e,j) (e E ER, j E I) and constants f rom/N by 
addition, multiplication, minimum, and maximum, and / is (C, / ' )-compatible. The function is 
(C, max, +~ .)-compatible if the operation rain does not occur. 
2. A function/0 : 7/c --*/No is (C, min, max, +, .)-compatible (resp. (C, max, +,  .)-compatible) if 
a function / and an index i0 exist such t h a t / c  = f ( - ,6)  and / is (C,min, max,+, .)-compatible 
(resp. ( C , max, +,-)-compatible). 

5.6 T h e o r e m  

Let /to : 7-~c -+ tV ~' be a (C,min,max,+,  .)-compatible function for some class C of hyperedge- 
replacement grammars. Moreover, let n E ~ o .  Then the predicates given by "/0(H) < n" and 
"/o(H) > n" are C-compatible. 1~ 

5.7 C o r o l l a r y  

Let ]0 be a (C, min, max, +, .)-compatible function for some class C of hyperedge-replacement 
grammars. Moreover, let n E £tv-*. Then, for all HRG E C the following statements hold. 
(1) It is decidable whether (or not) there is some H E L(HRG) with fo(H) < n. 
(2) It is decidable whether (or not), for all H E L(HRG), lo(H) <_ r~. 
(3) It is decidable in linear time whether (or not):a generated hypergraph H E L(HRG) repre- 

sented by a derivation (rasp. a derivation tree) has a value/0(H) < n. 

P r o o f :  Corollary 5.7 follows immediately from the C-compatibility of the predicate " [0 ( - )  < n" 
(see Theorem 5.6) and the theorems for C-compatible predicates given in [HKV 87]). [] 

6 .  A h / I e t a t h e o r e m  f o r  B o u n d e d n e s s  P r o b l e m s  

Given a graph-theoretic function f0 and a class C of hyperedge-replacement grammars, we are 
going to study the following type of questions for all HRG E C: "Is it decidable whether (or 
not) the values of all hypergraphs generated by HRG axe bounded?" The question turns out to be 
decidable provided that f0 is (C, max, +,  .)-compatible. We call this result "metatheorem" because 
of its generic character: Whenever one can prove the (C, max, +, .)-compatibility of a function (and 

12 We assume that, for all n E/N*', <> ~ n. 
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we have given various examples in section 4), one gets a particular decision result for this function 
as corollary of the metatheorem. 

6 .1  T h e o r e m  

Let f0 be a (C, max, + ,  .)-compatible function for some class C of hyperedge-replacement grammars. 
Then~ for a l l  HRG E C, it is decidable whether or not there is a natural  number ~ E ~r such that 
~Co(H) < n for all H 6 L(HRG). 

Proof: Let fo be a (C, max, + ,  .)-compatible function. Let/C and/ct be the corresponding functions 
over the index set I so that/C is (C,/c')-compatible and lc0 = / C ( - ,  i0) for some i0 E I. 
Let HRG = (N, T, P, Z) be a typed and well-formed hyperedge-replacement grammar in C. By 
Definition 5.1, we may assume that,  for each A E N,  the grammar HRG(A) = (N,T,P,A*) is in 
C, too. (C-compatibili ty is concerned with productions of a grammar, not with the axiom.) 
The proof is based on the following idea. We construct a directed graph D containing all relevant 
information on derivations in HRG and look for certain cyclic structures in D. This enables us to 
decide whether or not the values may grow beyond any bound. 
Let 3" = {% 0,1, big} and [-]  : ~b/* ~ J be the mapping given by [m] = big if m > 2 and [m] = rn 
otherwise. By (a generalized version of) Corollary 5.7, we can effectively determine the set 

E X I S T  = {(A~p : I ~  ])[3H E ~ r  : A ' = ~ H  A Vj E I : ~ ( H , j ) ]  = p ( j ) } .  H E?/~e is said 
to be an (A,p)-hypergraph if H can be derived from the handle induced by A and, for all j E I ,  
[/C(H,j)] = ~( j ) .  We define a directed graph D with two types of edges, called greateJ~eqaaI-edges 
and greater-edges as follows. Let V = {(A,p,i)I(A,p ) E E X I S T  Ap(1) = big} be the node set 
of D. The edge set of D is determined as follows: Let (A,R)  E P be a production of HRG, 
q : ER × I ~ J a function such that, for all e E E~, (l~(e), q(e, - ) )  E E X I S T ,  i E I an index, and 
[/C'(R, q, i)] = big. Moreover, let p :  I --+ ] be the function given by I~(j) --- []'(R, q,j)] for j E I. 
By assumption, the function/C is (C,max,-+-, .)-compatible. Since multiplication distributes over 
addition and maximum and addition distributes over maximum, we may assume t h a t / C ' ( R , - ,  i) is 
a maximum of sums, each formed from products of constants and variables assiga(e,j) (e E E~, 
j E I).  Substitute assign(e,j) by q(e,j), if q(e , j )  ~ {%0,1}, and simplify, i.e., delete all sums 
that  evaluate to o, all products that  evaluate to 0 and all factors that  evaluate to 1. 

, If some sum simply is as~ign(e,j), then we add an edge from (A,p,i) to ( l~(e),q(e,-) , j)  in 
D, a so called greaterequal-edge, denoted by (A,p , i )  ==~ (Is(e) ,q(e,-) , j ) .  

• If some sum contains a~sign(e,j), but also a non-tr ivial  factor or some other product, 
then we add a so called greater-edge from (A,p , i )  to ( l~(e) ,q(e,-) , j )  in D, denoted by 
(A,p, ;) --* (l~(e), q(e , - ) , j ) .  

In the following, we will show that  the graph D contains all information to decide whether or 
not some function values grow beyond any bound. It turns out that  the greater-edges of D 
play an important  role. Remember that  for each (B,p' , j)  in D, there is at least one derivation 
B ° = ~  G in HRG with [ / ( G , - ) ]  = p '  and /C(G,j) > 2. We will show that,  whenever we have 
a derivation B ° ~ G  in HRG with [/C(G,-)] - - p '  and/C(G, j )  >_ 2 and there is a greater-edge 
(A,p , i )  --* ( B , p ' , j )  in D, then there exists a derivation A" = ~  H in HRG with [/C(H,-)] = p  and 
/C(H,i) >/C(G,j). 
C l a l m  1: Let (A,I%i),(B,IJ,j) E V and G be a (B,p ' ) -hypergraph.  
(1) If (A,p,  i) ~ (B,p' , j) ,  then there is an (A,p)-hypergraph H with/C(H,i) >/C(G, j ) .  
(2) If (A,/~, i) =~ ( B , p ' , j ) ,  then there is an (A,p)-hypergraph H with ](H,i)  > f (G, j ) .  

P r o o f  of C l a i m  1: Let (A,p,i) ~ (B,la',j) be a greater-edge in D and G be an arbitrary 
(B,/~')-hypergraph. By construction of D, there is some production (A,R) E P and some 
q : E~ × I -~ I such that,  for all e E E~, (l~(e),q(e,-) E E X I S T .  Moreover, there is some 
e' E E~ with l~(e') = B and q ( e ' , - )  = /~ ' .  By definition of E X I S T ,  for each e E ER, there 
exists a derivation l~(e) ° =~H(e )  such that  [/C(H(e),-)] = q(e,-) .  Since l~(e') = B and G 
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is an (B,p ' ) -hypergraph,  there exists a derivation l~(e') ° = ~ G  such that  i f ( G , - ) ]  = p ' .  Joint 
Embedding of the derivations l~(e) ° =:~ H(e) for e E E~ - {e'} and the derivation l~(e')" =~  G 
- instead of l~(e')* = ~  H(e') - into R yields a derivation R ~  H. Combining it with the direct 
derivation A" ~ R, we get a derivation A ° = ~  H. By the (C~ max, +~ .)-compatibili ty of f ,  H is 
an (A,T)-hypergraph: For all j E I, we have [f(H,j)] = [~'(R, asslgn',j)] = [ / ' (R, [ass ign ' ] , j ) ]  
= [ / ' (R , [ass ign] , j ) ]  = [/ '(R,q,j)] = p( j )  where asslgu ' (e , - )  = ass ign(e , - )  = f ( H ( e ) , - ) f o r  
e E E~ - {e ' } ,  assign'(e' , - )  = ] ( G , - ) ,  and asslftn(e' , - )  --- [ (H(e ' ) , - ) .  Moreover, by the special 
choice of the edges of D, ] (H, i )  = [ '(R,  assign',i) > assign'(e',j) = f ( G , j ) .  [Observe that  in 
the sum leading to the creation of (A,p, i) -+ (B,p~,j) all remaining variables are substituted by at 
least 2.] Analogously, if (A,p, i )  =# (B ,p ' , j )  is a greaterequal-edge in D, we get [ (H, i )  > f ( G , j ) .  
[] 

In the following, we will look for special structures in D, called lasso structures. A subgraph L 
of D is called a Jasso stxuctare if it contains for each node a unique outgoing edge and each cycle 
contains a greater-edge. A node (A,p, i )  of D is said to be unbounded, if, for all n E/N', there is 
an (A,T)-hypergraph /-/ with ](H, i) > n; otherwise it is said to be bounded. 

C l a i m  2: Let L be a lasso structure in D. Then every (A,p~ i) in L is unbounded. 

P r o o f  of C l a i m  2: Assume to the contrary and let k be minimal such that,  for some (A,p, i) in 
L, for every (A,p)-hypergraph H we have ] (H, i )  <_ k. By the above claim we have for the unique 
successor ( S , p ' , j )  of (A,p, i )  in L and every (S ,p ' ) -hypergraph  H that  f ( H , j )  < k. By choice 
of k, there must exist a (B,p')-hypergraph g with ] (H , j )  = k and we have (A,p , i )  ::~ (S ,p ' , j ) .  
Repeating this consideration we eventually get a lasso 13 in L whose cycle has greaterequal-edges 
only, a contradiction. [] 

C l a i m  3: There exists a lasso structure L in D containing all unbounded (A,T , i). 

P r o o f  of  C l a i m  3: Let k be the maximal ](H,i), where H is an (A,p)-hypergraph such that 
(A,p , i )  is bounded, but  at least 2. Moreover, let ~(k)  be determined as follows: Note that each 
]~ (R , - , i )  with R a r ight-hand side of some production of HRG,  i E I, can be expressed as a 
maximum of sums of products of variables and constants. Evaluate each of all these sums by 
replacing each variable by k E ~ r , ,  and let ¢ (k)  be the maximum of these values plus 1. In the 
following, we define a subgraph L of D iteratively using sets OK and N O K ,  such that  the following 
properties hold a£ter each step: 
(1) OK U N O K  = {(A,p , i )  E VI(A,p,I)  is unbounded}; 
(2) OK A N O K  = 0; 
(3) OK C 1,~ C OK U NOK;  
(4) each node in O K  has a unique outgoing edge in L; 
(5) each cycle of L contains a greater-edge; 
(6) each maximal path  14 of L ends with a greater-edge. 

Initially, let OK = t), N O K  = {(A,p , i )  E VI(A,p,I  ) is unbounded}, and L be the empty graph. 

For the iteration step, choose a derivation A" = ~  H of minimal length such that  H is an (A,p)-  
hypergraph with f ( H , i )  > q~(k) and (A,p , i )  E N O K .  Let (A, R) be the first production of this 
derivation. We have hypergraphs H(e),  e E E~, and some q : Ea  × I --* ~r such that  H(e) is an 
(l~(e),q(e,-))-hypergraph for e E E~. f ' ( R , - , i )  in its simplified normal form is a maximum 
of sums, and, by definition of k and ~,  the maximum is attained for a sum containing a variable 
assign(e,j)  such that  f (H(e ) , j )  > k. Put ( B , p ' , j )  = ( l~(e) ,q(e,-)~j) ,  OK = OK U {(A,p,i)},  
N O K  = N O K  - {(A,p, i )} ,  add to L the corresponding edge from (A,p j i )  to (B ,p ' , j )  and - if 
necessary - (A,p , i )  and/or  ( B , p ' , j ) .  The first four conditions on L given above hold true (we 
have [ (H(e ) , j )  > k, therefore, ( B , p ' , j )  E OK U NOK) .  If the new edge is a greater-edge, then 

is If we add to a path vl . . .  v , ,  which has distinct nodes by definition, an edge u, vi, 
i E { 1 , . . . ,  n - 1}, then the resulting graph is called a /asso.  

1, We call a path  max/mal, if its last node has outdegree 0. 
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each new cycle contains it, each new non-trivial maximal path ends with it ( (B ,p ' , j )  ~ OK) or 
ends with a non-trivial maximal path that already existed ( (B,p ' , j )  E OK). If the new edge is 
a greaterequal-edge, we must have f (H(e) , j )  > ~(k), thus (B,p' , j )  E OK, since we have chosen 
a shortest derivation. Hence any new non-trivial maximal path ends with an old one starting at 
(B,p' , j) .  If  there are new cycles, then we already had (A,p,i) E V~ and any edge leading to 
(A,p, i) is a greater-edge. 
Since the set {(A,p, i) E VI(A,~, i) is unbounded} is finite, the construction is finished after a finite 
number of steps. After these steps, OK = {(A,p,i) E Vl(A,p,i) is unbounded} and NOK = 0. 
Moreover, by (3), (4), and (5), V~ = OK, each node of L has a unique outgoing edge in L, and 
each cycle of L contains a greater-edge. Consequently, the constructed L is a lasso structure and, 
since Vz = {(A,:0, i) E Vl(a,p, i) is unbounded}, L contains all unbounded (a ,p ,  i). [] 

Now we may proceed as follows: (1) Construct the graph D for HRG. (2) Check for each subgraph 
of D whether it is a lasso structure. (3) Check for each lasso structure L whether it contains 
(l(Z),~,io) for somep : I --* ] .  
If there is a lasso structure L in D containing (l(Z),p, i0) (for some p), then, by Claim 2, (l(Z),p, i0) 
is unbounded, meaning that, for all n E M, there is an (l(g),p)-hypergraph H with [ (H,  i0) > n. 
Hence, for all n E M, there is a hypergraph H e L(HRG) with ]o(H) > n. 
Conversely, if, for all n E ~V, there is a hypergraph H E L(HRG) with f0(H) > n, then, for all 
n E gq, there is a p  and an (l(g),p)-hypergraph H with ](H, io) > n. Since the number ofp 's  
is finite, we can find some p such that, for all n E l~ r, there is an (l(g),p)-hypergraph H with 
f (H ,  i0) > n. Therefore, (l(g),p,  i0) is unbounded and, by Claim 3, there exists a lasso structure 
containing (l(Z),p,io). This completes the proof of the theorem. [] 

Combining the compatibility results of Section 4 and Theorem 6.1, one obtains a list of decidability 
results concerning boundedness problems. 

6 . 2  C o r o l l a r y  

For each edge-replacement grammar ERG E gT~g and each function in the following list, it is 
decidable whether (or not) the function values of the graphs in L(ERG) grow beyond any bound: 
the number of nodes, the number of edges, the number of simple paths connecting the external 
nodes, the number of simple cycles, the maximum-simple-path length of paths connecting the 
external nodes, the maximum-simple-cycle length, and the maximum degree of a graph. 

P r o o f :  The statements follow directly from the theorems 4.1-4.4 and 6.1. [] 

R e m a r k s :  1. Remember that the functions "number of nodes" and "number of hyperedges" are 
compatible for arbitrary hyperedge-replacement grammars HRG E "H'R.g. 
2. Although we avoided the troublesome technicalities in this paper, we are convinced that the 
other considerations of this section work for more general types of hyperedge--replacement gram- 
mars, too. For example, all the statements should hold even if the class gY~g is replaced by the 
class of all hyperedge-replacement grammars which generate ordinary graph languages and use 
hyperedges with a bounded number of tentacles as nonterminals. We even think that the consid- 
ered functions are compatible for arbitrary hyperedge-replacement grammars if their definition is 
properly adapted to hypergraphs. 

Finally, let us mention that some problems - -  like the connectivity problem, the maximum-clique- 
size problem, and the chromatic-number problem - -  are trivial in the following sense: for all 
hyperedge-replacement grammars HRG, there is a bound (depending only on HRG) such that 
the function values of all graphs do not exceed the bound. This knowledge can be used to show 
that other boundedness problems - -  as the minimum-clique-covering problem and the ma~dmum- 
indepentent-set p r o b l e m -  are decidable. 



288 

The clique partition numbex of a graph G, C(G), is the smallest number of cliques that form a 
partition of the node set Va. A set of nodes in a graph G is independent if no two of them are 
adjacent. The largest number of nodes in such a set is called the independence number of G and 
is denoted by I(G). 

6 .3  T h e o r e m  

For each hyperedge-replacement grammar HRG ~ 7-lTZg generating a set of graphs, it is decidable 
whether (or not) the clique partition number and the independence number of graphs in L(HRG) 
grows beyond any bound. 

P roof :  Since for each hyperedge-replacement grammar HRG, the maximum clique size is bounded 
on L(HRG), say by c(HRG) > 1, and, for each G 6 L(HRG), 

< C(G) <_ h c(HRG) 

the clique partition number is bounded on L(HRG) if and only if the number of nodes is bounded 
on L(HRG). Since for each hyperedge-replacement grammar HRG the chromatic number is 
bounded on L(HRG), say by k(HRG) > 1, for each H E L(HRG), the maximum number of 
equally colored nodes in a k(HRG)-coloring of G, MAX(G), is a lower bound of I(G). On the 
other side, IVal < k(HRG). MAX(G). Thus, 

IV l < Iv l. 
k(HRG) <- - 

Therefore, the independence number is bounded on L(HRG) if and only if the number of nodes is 
bounded on L(HRG). [] 

7. D i s c u s s i o n  

Each class C of graph grammars and each function ] on graphs with integer values establish a 
Boundedness Problem: 

Is it decidable, for all graph languages L(GG) generated by GG in C, whether or not 
there is a bound n such that ](G) _< • for all G E L(GG)? 

In this paper, we have been able to show that the Boundedness Problem is solvable for classes 
of hyperedge-replacement grammars and functions that are compatible with the derivation pro- 
cess and where the values of derivable graphs are composed of maxima, sums, and products of 
component values. Although this result applies to a variety of examples it seems to be strangely 
restricted. Further research should clarify the situation: 
(1) We would expect that the metatheorem holds under more general or modified assumptions. 

Especially, we would like to know how functions given by minima or differences or divisions 
work. 

(2) We suspect that certain combinations of arithmetic operations are not allowed. For instance, 
maxima and minima seem to antagonize each other - -  at least sometimes. 

(3) Compatible functions are defined for arbitrary domains. But we have got significant results 
only for boolean and integer values. What about other domains? How can be arbitrary 
compatibility be exploited? How do other meaningful interpretations look like? 
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