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Constructor-based sets of Horn clauses constitute a class of formulas for presenting verification 
problems occurring in data type specification as well as functional and logic programming. Inductive 
proofs of such clause sets can be carried out in a strict top-down manner by inductive expansion: the 
set is transformed via (linear) resolution and paramodulation into a case distinction, which covers all 
ground substitutions. Being a backward method, inductive expansion reduces the search space of 
corresponding forward proofs. The method does not put confluence or termination restrictions on the 
theorems to be proved such as procedures based on inductive completion do. Moreover, inductive 
expansion does not prescribe a strategy for controlling search trees so that the user may select 
"promising" paths according to specific applications. 

1. Introduction 
The mathematical models used in data type specification and program verification are term-generated. Each 
carder element of the model is obtained by evaluating a ground, i.e. variable-free, functional expression. Hence 
a valid statement takes the form of an inductive theorem, which means that all ground instances are derivable. 
The proof is carded out by induction on the structure of ground terms (cf. [Bur69]) or, more generally, by 
induction with respect to a Noetherian relation on ground terms. 

As one knows from inductive proofs in general, it might be difficult, not only to fred a suitable Noetherian 
relation, but also to state an appropriate induction hypothesis, which often turns out to be a generalization of the 
theorem to be proved. While classical theorem proving provides explicit (more or less heuristic) induction rules 
to solve these problems, inductive completion (or inductionless induction) tries to get rid of induction steps by 
switching to consistency (or conservative extension) proofs (cf. [HH82], [JK86], [KM87], [Pad88a]). 

Inductive completion puts strong restrictions not only on the underlying specification, but also on the 
theorems to be proved. Its requirement that axioms and theorems induce a Church-Rosser set of rewrite rules 
entails a number of syntactical restrictions, which might not be welcome, although some of these restrictions can 
be lowered if one uses weaker Church-Rosser criteria (cL [HR87], [Pad88a]). In this paper, we describe an 
alternative method for proving inductive theorems based on traditional approaches like IBM79], [Hut86] and 

[GG88]. 
We start out from (Horn) clauses, written as P~T, where p is an atom(ic formula) and l( is a finite set of 

atoms, called a goal, which consists of the premises under which p is required to hold. The existence of 
premises compels us m choose between two definitions of an inductive theorem: 

Let AX be a set of axioms and t- be a complete inference relation for valid clauses (cf. Section 2). For each 
clause p ~ y  and each ground substitution f, let p[f]~y[f] denote the instance o f p ~ b y f ,  i.e. the clause 
constructed from p ~ ' / b y  instantiating all variables according to f. By the first definition, p ~ ' / i s  an inductive 

theorem ff for all ground substitutions f, 
AX u ~'[ f ]  I -  pEf"]. (1) 

Alternatively, one may define: p~'~ is an inductive theorem if for all ground substitutions f, 

AX I- ~'[f] implies AX I- pill. (2) 

(1) is equivalent to the validity of p ~ y  in all term-generated models of AX (cf. [Pad88a], Cor. 4.3.3), while 
(2) characterizes the validity of p ~ '  in the subclass of all initial models. (2) is weaker than (1): By (1), we may 
use ~'[f] in a proof of PEf]. By (2), we may also use formulas which occur in every derivation of 7Eli. When 
analyzing data type specifications one observes that crucial consequences of their axioms are valid in the sense 
of (2), but not in the sense of (1) (cf., e.g., [Pad88b] or [Pad88a], Ex. 4.3.4). In data base applications, the 
essence of (2) is known as the closed world assumption (cf. [Rei78]) that certain implications p ~ q  are in fact 
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equivalences. If, for deriving an instance of p it is necessary to derive the corresponding instance of q, then 
q ~ p  holds true as well, but, in general, only in the sense of (2). It is often the case that, for proving an 
implication inductively, one needs the inverse of an axiom as a lemma (of. Ex. 4.8). 

We present the proof method of inductive expansion in three steps. First, the (meta-)implication involved in 
(2) is eliminated. Therefore, a set IN of variables, called input variables, is separated from all other variables, 
which are called output variables. Input terms contain only input variables, output terms contain only output 
variables. Some (weak) conditions are put on the theorems to be proved such that (2) becomes a consequence of 
the following non-implicational property: For all ground substitutions f, 

AX I- ({p}ug')EfllN÷g] forsomeg. (3) 

(Here f+g stands for the parallel composition of f and g, which maps the domains of f and g to the images of f 
and g, respectively.) Moreover, we distinguish clause sets M such that M consists of inductive theorems if and 
only if for all ground substitutions f, 

AX I- ({p}u~')I'fllN÷g] forsome p~=~, ¢ Mandsomeg.  (4) 

This characterization is valid if M is constructor-based, i.e., 

• for all pc=' /e  M, ' / is a set of equations with input terms on the left-hand side and constructors on the right- 
hand side, 

• the set of premises over all clauses of M constitutes a complete and minimal case distinction, 

where constructors are output terms such that 

• each two constructor instances elf] and dig] are decomposable, i.e. c[f] and dig] are equivalent (w.r.t. the 
underlying axioms) only if c = d and f and g are equivalent. 

In a second step, we aim at reducing the infinite number of forward proofs involved in (4) to a finite number 
of backward proofs (here called expansions) of the form 

<{pt}u~q.id> I-EX <81,g4>, 
. . .  ( 5 )  

<{Pn}U~'n,id> I-EX <6n,gn> 
such that {p~'~ ..... pn¢=~,.} covers the set of theorems to be proved and each ground substitution f is 
subsumed by some <8,,gin>, i.e. A× ~- 8~[h] and g~[h] = t for some h . /d  denotes the identity substitution and 
b-EX stands for the inference relation generated by (linear) resolution [Rob65] and paramodulation [RW69]. 

The actual power of the approach is accomplished in a third step when inductive resolution and para- 
modulation rules are added to t-E×. Applications of these rules simulate induction steps by resolving or para- 
modulating upon induction hypotheses. Furthermore, an inductive rule produces an atom of the formfz >> z" 
where f is the substitution obtained so far, z is the sequence of input variables, z' is a copy of z and >> is a 
Noetherian relation, which justifies the induction step. Regardingfz > > z' as a subgoal amounts to proving M 
and the soundness of the induction step simultaneously. This is what we call inductive expansion: resolving and 
paramodulating upon axioms, lemmas and induction hypotheses. The main resuk of the paper (Theorem 4.7) 
characterizes constructor-based inductive theorems as being provable by inductive expansion. 

Section 2 presents basic notions concerning the syntax and semantics of Horn clause specifications with 
equality. Section 3 gives a precise definition of constructor sets and constructor-based clause sets along with 
their characterization as inductive theorems (Theorem 3.4). Section 4 starts from resolution and paramodulation 
as the basis of backward proofs and leads to the main resuk, given by Theorem 4.7 (see above). 

At certain points, an inductive expansion relies on complete case distinctions (called case matrices). The 
requirement for completeness will be reduced to the question whether certain terms are base-representable. 
Theorem 5.3 tells us how this property can be proved by inductive expansion as well. 
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2. Preliminaries 

Given a set S, an S-sorted set A is a family of  sets, i.e. A = {A s t s ¢ S). For all w = (sl,. . . ,sn) c S*, Aw 
denotes the cartesian product As~x_.×Asn. A signature SIG = (S,OP,PR) consists o f  a set S of  sorts and two 
S+-sorted sets OP and PR the elements of  which are called function (or operation) symbols and predicate 
symbols, respectively, S-sorted function symbols are called constants. 

We assume that for all s ~ S, PRss implicitly contains a predicate symbol =-s, called the equality predicate for 
s. We also fLx an S-sorted set X of  variables such that for all s ¢ 5, ×s is countably infinite. 

Example  2,1 The signature of  our running example throughout the paper provides constructor functions 
for Boolean values, natural numbers,  sequences and bags (multisets) together with operations that will be 
axiomatized later. 

SORT 
sorts bool, nat, seq, bag 

symbol tgpe 
opns true bool 

false bool 
0 nat 
_+I nat --e nat 
s seq 
_&_ nat,seq --e seq 

~" bag 

add(_~) nat,bag--~ bag 

le(_,_) nat,nat --~ bool 

seqToBag(_) seq ---> bag 
insert(_,_) nat,seq --> seq 
sort(_) seq --> seq 

preds _ ~. _ nat,nat 
_ > _ nat,nat 

sorted(_) seq 

_ >> _ seq,seq 

We hope that the notation is self-explanatory. I 

Given a signature SIG = (S,OP,PR), a SIG-structure A consists o f  an S-sorted set, also denoted by A, a 
function F ~ : Aw--'>As for each function symbol F ¢ 0Pws,  w ¢ S*, s c S, and a relation pa ~ Aw for each 
predicate symbol P ¢ PRw, w c S ÷. T(SIG) denotes the S+-sorted set o f  terms (and term tuples) over SIG. 

Given a term t, root(t), var(t) and single(t) denote the leftmost symbol of  t, the set of  all variables of  t, and 
the set of  variables that occur exactly once in t, respectively, t is ground if var(t) is empty. GT(S1G) denotes the 
set of  ground terms over SIG. We assume that SIG is inhabited, i.e. for each sort s there is a ground term t of 
sort s. 

When speaking about terms in general, we use the prefix notation: F is placed in front of  its argument list t to 
give the term Ft. In examples, however,  the layout o f  terms is adapted to the underlying signature where infix, 
postfix or mixfix notations may occur as well. 

Let A and B be S-sorted sets. An S-sortedfunction f : A---~B is a family of  functions, i.e. f = {fs:A~---*Bs I s 
¢ S). The set o f  S-sorted functions from A to B is denoted by B A. The functions of  T(SIG) X are called 
substitutions. Given a substitution f, dora(f), the domain off, is the set of  all x ~ X such that fx ;~ x. I f  dom(f) 
is empty, f is called the identity substitution and is denoted by id. I f  dom(f) is finite, say dom(f) = (x~,-.,xn), and 
i f  f×l = tt,..., fx~ = t n, we also write (t~/x~,..., tn/x n] instead of  f. Given V c X,f/V, the restriction of  f to V, is 
defined by (flV)(x) = fx for all x ~ V and by (fiV)(x) = x for all x ~ X-V. f is ground if the range of  f consists 
of  ground terms. 
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The instance of a term t by f, denoted by t//], is the term obtained from t by replacing all variables of t by 
their values under f. Conversely, one says that t subsumes t[f] or that t is aprefix of t[f]. f unifies t and t' if t[f] 
= t'[f]. The sequential composition of two substitutions f and g, denoted by f[g], is defined by (f[g])(x) = 
(fx)[g] for all x ~ X. Accordingly, f[g] is an instance of f, and f subsumes f[g]. The parallel composition of f 
and g, denoted by f+g, is defined only if f and g have distinct domains. Then (f+g)(x) = fx if  x E dom(f), and 
(f+g)(x) = gx otherwise. 

Given w ¢ S*, P ¢ PRw and u ¢ T(SIG)w, the expression Pu is called an atom. If  P is an equality predicate 
and thus w = (s,s) for some s E S and u = (t,t') for some t,t' ¢ T(SIG)w, then Pu is called an equation, written 
as t=t'. The notions vat, instance and unifier extend from terms to atoms as if predicate symbols were function 
symbols. 

Finite sets of atoms are called goals. A clause P ~ T  consists of an atom p, the conclusion of pc= T, and a goal 
T = {Pl,...,Pn}, the premise of P~T.  If  p is an equation, then P ~ T  is a conditional equation. If  T is empty, then 
P~Y is unconditional and we identify P ~ T  with the atom p. Note that unconditional clauses and goals are the 
same. 

A specification is a pair (SIG,AX), consisting of a signature SIG and a set AX of clauses, comprising the 
axioms of the specification. 

Example 2.1 (continued) The axioms of SORT, specifying sort as "insertion sort", are given by: 

vaFs 
@xms 

x , g : n a t ;  s:seq;  b:bag 
seqToBag(e) ~ ~" (BA 1 ) 
seqToBag(x&s) E add(x,seqToBag(s)) (BA2) 
add(x,add(g,b)) = add(y,add(x,b)) (BA3) 
sort(e) ~ e (IS1) 
sor t (x&s)  -= inser t (x ,sor t (s ) )  ( IS2) 
inser t (x ,s)  m x&e (IN1) 
inser t (x ,y&s)  = x&g&s  ~= x ~- y (IN2) 
inser t (x ,g&s)  mE g&inser t (x ,s)  ~= x > g (IN3) 
le(0,x)  = t rue  
te(x* 1,0) i false 
le(x*l,y*l) ~= le(x,g) 

x(.g wi== le(x,g)_=true (LEI) 

X > y ~ le(x,y)  ~ fatse (LE2) 
sorted(e) (SO 1) 
sorted(x&s) (S02) 
sorted(x&y&s) ~ x ~ y, sorted(y&s) (S03) 

x&s >> s (GR) I 

A clause Pu~Ptu~,...,Pnu n is valid in a SIG-stmcture A if for all b ~ A X, (V 1 ~.i~.n :b*u~ c Pr) implies b*u 
¢ pA where b* is the unique (SIG-) homomorphic extension of b to T(SIG). Given a clause set AX, A is a 
SIG-model of AX if each P ~ T  E AX is valid in A and if  for all s ~ S, r ~  is the identity on As. 

Let us fix a specification (SIG,AX). The cut calculus with equality consists of the congruence axioms for all 
equality symbols (w.r.t. SIG) and two inference rules: 

(SUB) For all substitutions f, p (~ ,  t-  pEf]~ 'Ef] .  I 
m 

( C U T )  (p~ 'u(q} ,q¢=8}  I-- p~'~u& I 
b-C denotes the corresponding inference relation. The class of all SIG-models of AX satifies a clause pc=;, if 

and only ff p can be derived from A X u 7  via the cut calculus with equality such that the variables of ~ need not 
be instantiated (cf. [Pad88a], Cot. 4.2.4). 

Two terms t and t' are called AX-equivalent ff AX ~-C t - t ' .  Two substitutions f and g are AX-equivalent if  
for all x ~ X, fx and gx are AX-equivalent. 
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Definition A clause P¢=7 is called an inductive AX-theorem ff for all ground substitutions f, 

AX t--C ;~[f] implies AX ~-C P[f ] .  

The set of inductive AX-theorems is denoted by 1Th(AX). A set M of clauses is an inductive AX-theorem if all 
clauses of M are inductive AX-theorems. | 

The model-theoretic counterpart of inductive theorems are initial structures: 

A SIG-structure A is initial w.r.t. AX if A satisfies AX and each model B of AX admits a unique (SIG-) 
homomorphism from A to B. Ini(AX) denotes the (isomorphism) class of initial structures w.r.t. AX. 

Theorem 2.2 (cf. [Pad88a], Thin. 4.4.3) p ~ y e  ITh(AX) if f tni(AX) s a t i s f i e s p ~  I1 

Corol lary  2.3 ITh(ITh(AX)) = ITh(AX). | 

3. Constructor-based Clause S e t s  

General  Assumption (part I) Let IN be a fixed fmite set of variables, called input variables. The elements 
of the complement OUT = X-IN are called output variables. Input terms are terms containing only input 
variables, output terms are terms containing only output variables. 1 

Definition A set T of output terms is ground complete for  a term t i f  for all ground substitutions f there is t' 
e T such that t[fl is AX-equivalent to some instance of t'. T is ground complete i fT  is ground complete for all 
ground terms. T is a set of  constructors if for all c,d e T and ground substitutions f,g such that c[f] and dig] 
are AX-equivalent, c equals d and flvar(c) is AX-equivalent to glvar(c). I 

In many applications, the constructor property can be checked easily by referring to a given initial st~cture A 
w.r.t. AX: Ground terms are AX-equivalem iff they denote the same element of A in terms of which the 
property is obvious. A "syntactical" constructor criterion is given in Section 6. 

In order to define constructor-based clause sets we need a schema for presenting case distinctions. 

Definition A finite set CM of finite sets of equations is a (constructor-based) case matrix with input INo c_ 
X if either CM = {~r} or CM = { {t~c t) o ~, I l<_i_~, 7 ¢ CMi} for a term t, a ground complete set {Cl,...,e n} of 
output terms (constructors) for t, and (constructor-based) case matrices CM1,...,CM n with input IN0 o vat(el}, 
..... ]NO u var(cn), respectively, such that var(t) c_ IN0 and for all l<i_~_n, var(ci) n IN0 = g. 1 

For instance, a constructor-based case matrix using SORT (cf. Ex. 2.1) is given by 

{{s =-- e},  
{s = x&e},  
{s = x&g&s ' } ,  { le(x,g) --- t rue},  
{s --- x&g&s' ) ,  { le(x,g) = false)}  

The case matrix condition is purely syntactic except for the ground completeness of {c 1 ..... Cn}. How to 
prove this property is the topic of Section 5. 

A case matrix covers the set of ground substitutions: 

Proposition 3.1 Let CM be a case matrix with input INO. Then for  all ground substitutions f there are y e 
CM a,~l a substitution g such that gx I--C 7f fllNo+g.7-. | 

Sometimes the case matrix condition is too restrictive (cf. the first covering derived in Ex. 4.8). In fact, it 
suffices to get a case matrix as an instantiation of a set of sets of equations: 

Definition A set EM of sets of equations is extendable to a case matrix if  there are output variables 
Xl,...,xn and output terms Cl,...,Cn such that CM = {Tf[ct/xt,...,Cn/Xn] I ~' ¢ EM, l < i ~ }  is a case matrix. I 

Prop. 3.1 immediately, implies 

Proposition 3.2 Let EM be extendable to a case matrix with input INO = IN (see above). Then for  all 
ground substitutions f there are ~, e CM and a substitution g such that AX I--C 7[flIN*g2. | 
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For unconditional theorems, (2) and (3) (cf. Sect. 1) coincide. (Take IN = X.) If premises are involved, the 
equivalence of (2) and (3) is guaranteed only for conswactor-based clause sets. 

Definition A set M of clauses is constructor-based if there is a constructor-based case matrix CM with 
input IN such that 

(a) 7 ~ CM iff there is p with p ~ / ~  M, 
(b) for all P¢=7 ~ M, vat(p) ~ IN u vat(7), 
(c) f o r a l l p ~ y , q ~ 8 ~  M w i t h p ~ / # q ~ 8 ,  T is not a subset of & I 

Conditions (a)-(c) are purely syntactic. (c) forbids different clauses with subsuming premises. The "if '  part 
of (a) can always be ensured by adding to M a clause × ~ x ~  for each "missing case" ~ ¢ CM, provided that 
CM exists, i.e., predicates are available for specifying a complete case distinction. If  the set of premises does 
not cover all ground substitutions, one may decompose it into a case matrix and a common condition ~ and treat 

by premise elimination (el. Sect. 4). 

Constructor-based clause sets turned out to comprise a language used very frequently for writing functional 
and logic programs. From sorting algorithms via tree and graph manipulating functions up to interpreters, this 
language is powerful enough for bringing them into a concise and executable form (cf. [Pad87,88b,c,e]). The 
translation of a suitable sublanguage into PASCAL is described in [GHM88]. 

The following lemma is crucial for characterizing constructor-based inductive theorems (cf. Thm. 3.4). It 
says that each ground substitution satisfies at most one clause of a constructor-based clause set. 

Lemma 3.3 Let M be a constructor-based clause set, p ~ 7 , q ~ 6  ¢ M and f,  g be ground substitutions such 
that AX l--C ({P}U~')EflllV+g2o6Et]. Then 7 = 6 and AX I-C qEf]. I 

Theorem 3.4 A constructor-based clause set M is an inductive AX-theorem iff for all ground substitutions 
f there are p ~ ,  ~ M and a substitution g such that AX I--C ((p}uT)[fltN+9]. l 

Theorem 3.4 provides the basis for inductive proofs of constructor-based clause sets. In the next section, we 
ram from forward proofs using the cut calculus to backward proofs based on resolution and paramodulation. 

4. I n d u c t i v e  E x p a n s i o n  

Derivations via the cut calculus proceed bottom-up from axioms to the theorems to be proved. In contrast, 
resolution andparamodulation work top-down from a goal by applying axioms backwards unt~ the empty goal 
is achieved, indicating that the initial goal is solvable. A solution is built up stepwisely in the course of the 
proof. We call such a derivation an expansion in order to stress the "procedural interpretation" of Horn clauses 
underlying this kind of proof. 

For guaranteeing the completeness of paramodulation it is well-known that in some (rare) cases functionally- 
reflexive axioms of the form FxEFx must be applied. In [Pad88a], Chapter 5, we have shown that these 
additional axioms need only occur as superterms of instances of other axioms. Hence, instead of adding all 
fi.mctionally-reflexive axioms to AX, we replace AX by the set of prefixed axioms of  AX. 

Definition Pre(AX), the set of prefixed axioms of  AX, is the smallest set of clauses, which contains all 
conditional equations of AX and satisfies the following closure property: 

• If u - - -u '~  ~ Pre(A×) and t is a term of the form F(Xl,...,Xn) such that sort(x i) = sort(u) for some 1<'<1~, 
then t[ulx~'I--tEu'Ix,]~ ¢ Pre(AX). I 

Definition The expansion calculus consists of three rules (given below) for transforming pairs consisting 
of a goal and a substitution. We assume that the variables of a goal subjected to a derivation step belong to a set 
GV of variables, which do not occur in axioms. If  the step brings axiom variables into the goal, they must be 
renamed as variables of GV before the derivation continues. 

I Resolution Rule Let T be a goal, pbeanatom,  q ~ c A × , f b e a s u b s t i t u t i o n a n d g b e a u n i f i e r o f p a n d q .  
Then <~'U(p), f> ~ <(~'uO)Eg], fEg]IGv>. ...... 
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Ilsubstituti°n[ ParamodulationRUleand g be a unifier Let 8 be a goal, x E single(8), t be a term, u - - -u '~  (or u ' ~ u ~ )  c Pre(AX), fbe a o f t  <6[t(X3' f > a n d  u. Thenv_ <(aEu'/×]u~)[g3, fEg]lGV>. I 

[ Unification Rule Let y be a goal, f be a substimtion and g be a unifier of terms t and t'. Then I 
. . . . . . .  < T u { t ~ t ' } ,  f> I -  <~'[g], fCg'l>, , ........... 

An expansion is a sequence <Tl,f l  > ..... <Tn,fn> of goal-substitution pairs such that for all l_<i<n, 
<7i+l,fi+l > is obtained from <~/i,fi > by applying a rule of the expansion calculus. 

b-EX denotes the corresponding inference relation.! 

Theorem 4.1 ([Pad88a], Thin. 5.3.5) Let ~be a goal and f be a substitution such that var(7) u dora(f) _c 
GV. Then AX I--C ~,COif andonly if <~,,id> I--EX ~',t>. I 

~EX uses only (prefixed) axioms to resolve or paramodulate upon. Cor. 2.3 allows us to apply lemmas as 
well, i.e., Pre(AX) can be extended to the set ITh(AX) of all inductive AX-theorems. For ground terms, Thin. 
4.1 remains valid: 

Corollary 4.2 Let ybe a goal and f be a ground substitution such that var(7) u domOO ~ G~L Then AX t--C 
7I f ]  i f f  <~fid> I-EX <H,f>. I 

Suppose we have a set of expansions 
<~,icl> I-EX <~',gl >, 
<2',id> t--EX <,O',gz>, 

such that each ground substitution f is subsumed by some gi. Then, by Cor. 4.2, y is an inductive theorem. 
Instead of expanding <y,id> into the empty goal one may stop in a situation like 

q, , id>  Z-EX <a~,g~>, 
<~,,id> I-EX <~z,gz >, 

where <at,g~>,<Sz,gz>,... represents a ground complete case distinction. 
Definition A set GS of goal-substitution pairs is ground complete if for all ground substitutions f there are 

<5,g> 6 GS and a substitution h such that A×uEAX V- 8[h] and g[h]lIN is AX-equivalent to flIN. | 
The combination of Cor. 4.2 with the characterization of constructor-based clause sets (Thin. 3.4) leads to 
Corol lary  4.3 Let M be a constructor-based clause set such that for all p ~ ,  e M there is a ground 

substitution fwith AX t--C 7[f2. M is an inductive AX-theorem iff there is a countable set of expansions 

<(p~}u~'~,id> I--EX <Z~,g1>, 
<{Pz}U~'z, ld) I-EX ¢82,g2 >, 

such that M = (p~,~,p2c-7~,..J and {<8~,g~>, <82,gz>,...) is ground complete. I 
For checking the ground completeness of (<a~,g~>,<Sz,gz>,...) one may, again, refer to case matrices: 

Proposition 4.4 A finite se t  (<8~,gt>,...,<Sk,gk>} of goal-substitution pairs is ground complete if the set 

a~ u (x~g~x I x (IN) 

a k u {x--=gkx I X ¢ IN) 

is extendable to a case matrix. II 
With Prop. 4.4, the ground completeness of a set of goal-substitution pairs is reduced to the ground 

completeness of term sets (cf. Sect. 5). 
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So far, the proof procedure involved in Cot. 4.3 does not employ induction steps. Consequently, infinitely 
many expansions will often be needed in order to obtain a ground complete set of goal-substitution pairs. As in 
corresponding forward proofs, only the explicit use of induction hypotheses may reduce the search space to a 
finite proof tree. But how do induction hypotheses enter the expansion calculus? 

In principle, the idea is as classical as the step from bottom-up derivations to top-down expansions. We find 
it, for instance, in Manna and Waldinger's deductive tableaus used for program synthesis (cf. [MW80], 
[MW87]), especially in the "formation of recursive calls". It amounts to including Noetherian relations into the 
specification, which allow us to distinguish certain instances of a clause as induction hypotheses. 

Definition A binary relation R on a set A is Noetherian or well-founded if there are no infinite sequences 
a 1,a2,a3,... of elements of A such that for all ~1 ,  <ai,ai+l> e R. II 

Here we are interested in relations on GT(SIG) which arise from a binary predicate >>, being part of the 
specification (SIG,AX). 

Definition Let s ¢ S and >> ¢ PRss (cf. Sect. 2). Then 

R(>>) = {(t,O ¢ GT(SIG) 2 1AX f-C t >> t'}. I 

The Noetherian property of R(>>) can be reduced to one of its interpretations: 

Proposition 4.5 R(> > ) is Noetherian iff there is a SIG.model A of AX such that >>A, the interpretation 
of>> on A, is Noetherian. | 

General Assumption (part 2; cf. Sect. 2) We order a subset of IN, say {z I ..... Zn}, into a sequence, say 
z = (z 1,...,zn), and assume a predicate symbol >> e PRss such that R(>>) is Noetherian. 

For avoiding name clashes we also use a primed copy of {z 1 ..... Zn}. So let z' = (z l',...,zn'), and for all 
clause sets M, let M' be M with all variables replaced by their primed counterparts. | 

R(>>) is compatible with AX-equivalence: If  AX t-C {t>>t', t-:u, t'=u'}, then by congruence axioms for =-, 
AX F-C u>>u'. In particular, AX b-C {t>>t', trot'} implies AX k-C t'>>t', which means that R(>>) can only be 
well-founded if it is disjoint from AX-equivalence. Therefore, R(>>) cannot agree with a reduction ordering 
needed for inductive completion (cf. Sects. 1 and 7): a reduction ordering contains an "oriented" version of AX- 
equivalence. This does not contradict the fact that the definition of a reduction ordering may use (parts of) the 
"semantic" relation R(>>) (cf. the semantic path orderings in [Der87a]). 

Semantic relatious, which are compatible with AX-equivalence, on the one hand and reduction orderings on 
the other hand are employed for different purposes. The former are a means for ensuring that inductive proofs 
of semantic properties are sound. The latter guarantee a purely syntactic condition: the well-foundedness of 
rewrite sequences. 

Now think of a forward proof of q ~ O  by using induction hypotheses. Usually, one reduces the set of all 
ground substitutions to a finite covering, say {fl,---,fn}, presupposes the validity of all premise instances ¢[ f~] 
and infers the corresponding conclusion instances q[f~]. In the course of deriving qEfi] from ~[f~], an induction 
step replaces a ground instance of a, say ¢[g], by q[g], provided that gz is "less than" f~z (see the General 
Assumption). In other words, the clause 

q ~ ~ u {fiz>>zl (*)  

is regarded as an additional axiom: q[g3 is the result of ctming (*) with OEg] and f~z>>gz. Indeed, (*) represents 
an induction hypothesis. 

The forward proof will succeed only if a suitable covering {fl ..... fn} has been guessed and if no 
generalization is needed, i.e., if  q~=O is strong enough for generating induction hypotheseses. The backward 
proof, on the other hand, which proceeds by resolution and paramodulation on axioms, lemmas and induction 
hypotheses leads more or less automatically both to a covering and to necessary generalizations. 

Definition Let M be a clause set. The inductive expansion calculus (for M) consists of the expansion 
calculus and two additional roles: 
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I Inductive Resolution Rule Let2tbeagoaI, pbeanatom,  q ~  eM' , fbeasubs t i tu t ionandgbeaunif ie r  

I ofpandq .  Then <rU{P}, f> I-- <(~,uau{!,z>>z'})rg3, f!g'l>. 

Inductive Paramodutation Rule Let 8 be a goal, x E single(8), t be a term, u~u'~a (or u'=u~a) ~ M', f 
be a substitution and g be a unifier of t and u. Then 
I <SEtlx], f> I- <(SEu'Ix]u~'u{fz>>z'})Eg], fig]>. 

An application of the Inductive Resolution or Paramodulation Rule is called an M-induction step. An M- 
induction step is closed if the output variables of the hypothesis resolved or paramodulated upon are regarded as 
constants (and thus prevented from subsequent instantiations). 

An inductive M-expansion is a sequence <'/hfl>,...,<]tn,fn > of goal-substitution pairs such that for all 
l<i<n, <'fi+l,fi+l> is obtained from <'/i,fi > by applying a rule of the inductive expansion calculus. If all M- 
induction steps in the sequence are closed, the expansion is called a closed inductive M-expansion. 

I-EX(M) denotes the corresponding inference relation. I 
Sometimes several clauses can only be proved by simultaneous induction. Therefore let us generalize clauses 

to formulas n/~=% where V and % are goals. ~=% stands for the union of all p ~  over all p ¢ % As before, 
we use Greek letters for goals and small Latin letters for atoms. 

The question remains whether inductive M-expansions are sound. As the reader might expect, this can be 
proved by Noetherian induction with respect to R(>>). 

Lemma 4.6 Let M be a constructor-based clause set. If for all ground substitutions f there are 7J~, ¢ M, a 
substitution g and an inductive expansion <~u~,,ia> t-EX(M) <~',g> such that g/IN and f/IN are AX-equivalent, 
then M is an inductive AX-theorem. I 

Of course, Lemma 4.6 does not characterize the set of those constructor-based clause sets which are 
inductive theorems. The inductive rules involved in t-EX(M) depend on the predicate >>. Instead, the important 
fact we conclude from Lemma 4.6 is the possibility of carrying out induction steps in backward proofs as well 
as in forward proofs, with the aim of achieving a finite proof. Moreover, backward induction improves over 
forward induction because it leads to linear proofs without any second-order arguments. 

Yet we must cope with the restriction to constructor-based clause sets M, in particular with the requirement 
that the set of premises of M be a case matrix. In turn, this implies that the predicates used in the case matrix 
must be specified completely, the positive as well as the negative cases. 

In fact, the restriction can be weakened. We can also handle conditional clause sets of the form M ~ O  where 
M is a constructor-based clause set, .~ is an input goal, i.e., varGs) ~ IN, and M¢,-,S stands for the set of all 
clauses ~ = ~ u O  with Su~,  ¢ M. The proof of M ~ O  proceeds as an inductive M-expansion, with possible 
applications of the following inference rule: 

1 PremiseEliminati°nRuleLetTbeag°alandfbeasubstituti°rLThenf°rallSc-~'<,uS[f], f> ~ <"  f>' I 

As an immediate consequence of Lemma 4.6, Cot. 4.3 holds true for ~-EX(M) as well as for I-EX. Moreover, 
Prop. 4.4 provides a criterion for checking the ground completeness of the final set {<84,gt>,<82,g2>,.-} of goal- 
substitution pairs. In summary, this yields 

Theorem 4.7 Let M be a constructor-based clause set. M (or M ~ 4 ;  see above) is an inductive AX- 
theorem if there is a finite set of expansions 

<~uT~,ld> I-EX(M) <e~,g~>, 

<~?nU~'n,id> t-EX(M) <Sn,gn > 
such tl'~t M = {~t~ ~,2'v...,~ ~ '~ }  and 
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e~ u (x=g~x I x ¢ IN}, 

8. u (x~g.x l x ~ IN} 

is extend~ble to a case ~ ,  called the derived covering. I 

Examp le  4.8 Two  equations capture the con~cmcss of  insez~on sort as specified in Section 2 :T1  says that 
sort returns a sorted sequence. T2 ensures that the sorted sequence is a permutation of the original one. 

sor ted(sor t (s) )  (T 1 ) 
seqToBag(sort(s)) r= seqToBag(s) (T2) 

With IN = {s}, { {Tl,T2} } is a constructor-based clause set. One obtains three inductive { {T1,T2} }- 
expansions using two lemmata, namely: 

sor ted( inser t (x ,s) )  ~ sorted(s) (L1) 
seqToBag(insert(x,s))  E seqToBag(x&s) (L2) 

goal substitution axioms and lemmas 
applied 

1 sorted(sort(s)) (T I) 
seqToBag(sort(s)) = seqToBag(s) (T2) 

1.1 sorted(sort(e)) s/s 
seqToOag(sort(s)) -= seqToBag(e) 

sorted(s) IS 1 
seqToBag(¢) ~ seqToBag(e) 

• ' SO I, unification 

1.2 sorted(sort(x&s')) x&s'/s 
seqToBag(sort(x&s')) =- seqToBag(x&s') 

sort ed(insert(x,sort(s'))) IS2 
seqToBag(insert(x,sort(s'))) ~ seqToBag(x&s') IS2 

sorted(sort(s')) L I 
seqToBag(x&sort(s')) ~ seqToBag(x&s') L2 

x&s' >> s' TI as 
seqToBag(x&sort(s')) = seqToBag(x&s') induction hypothesis 

add(x,seqToBag(sort(s'))) z add(x,seqToBag(s')) GR, BA2 

x&s' >> s' T2 as 
add(x,seqToBag(s')) E add(x,seqToBag(s')) induction hypothesis 

8R, unification 

The first induction step in expansion 1.2 applies the Inductive Resolution Rule, while the second one is an 
application of the Inductive Paramodulation Rule: T2 is applied from left to right to the subterm 
seqToBag(sort(s')). The coveting derived by expansions 1.1 and 1.2 is the set {{s~e}, {s~x&s'}}, which is a 
case matrix because {e,x&s'} is ground complete for s (cf. Ex. 5.4). 
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With IN = {x,s }, the following inductive { { sorted(i nsert(x,s)) } }-expansions yield a proof of L1. 

2 sorted(insert(x,s)) 

2.1 sorted(Jnsert(x,e)) sls 

sorted(x&e) IN I 

% S02 

2.2 sort ed(insert(×,y&s')) y&s'/s 

2.2. I sorted(x&y&s ~) IN2 

x(_g 

sorted(y&s') S03 

x(_y 

x ~_ y premise elimination 

le(x,y) -= true LEI 

2.2.2 sort ed(y&insert(x,s')) IN3 
x>y 

2.2.2.1 sorted(y&insert(x,s)) e/s" 
x>y 

sorted(y&x&e) IN I 

x>g 

sorted(x&~) S02 
y~_×, x>y 

y(_x, x>y SOl 

x>y y(.x ~ x>y 

le(x,y) ~ false LE2 

2.2.2.2 sorted(y&insert(x,z&s")) z&s" ls '  
x > y  

2.2.2.2. I sorted(y&x&z&s") IN2 
x,_z, x>y 

sorted(x&z&s") S03 
y~.x, x-~z, x>g 
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sorted(x&z&s') 
xc.z, x > y  g<-x ~== x>y  

sorted(z&s') S03 
x<.z, x > y  

sorted(y&z&s") sorted(z&s) 
x <. z, x> y ~== sorted(y&z&s) (L3) 

x <. z, x > g premise elimination 

le(x,z) E true tEl 
le(x,y) ~ false LE2 

2.2.2.2.2 sorted(y&z&insert (x,s")) IN3 
x>z ,  x > y  

sorted(z&insert(x,s')) S03 
y<.z, x>z,  x > y  

sorted(inser/(x,z&s")) IN3 (from right to left) 
y<_z, x>z,  x>y 

sorted(z&s") LJ as 
z&s" >> s" induction hypothesis 
y~.z, x>z ,  x>y 

sorted(z&s") GR 
y<.z, x>z,  x > y  

so~ed(y&z&s') sorted(z&s) 
y<_z, x>z ,  x > y  ~= sorted(y&z&s) (L3) 

sorted(y&z&s') y <. z 
x > z, x > y 4.= sorted(y&z&s) (L4) 

x > z, x > y premise elimination 

Je(x,z) = false LE2 
le(x,g) m false LE2 

The coveting derived by these expansions is 
s ffi e ( 2 . 1 )  

s w g&s' le(x,g) t true (2.2.1) 
s = g&s le(x,g) i false (2.2.2.1) 
S t gS~Z~S" le(x,y) = false le(x,z) = true (2.2.2.2.1) 
S i - y&z&s"  le(x,y) ~ false le(x,z) = false (2.2.2.2~2) 

I t  is extendable to a case matrix by replacing s' with e and z&s", respectively. Note that ]emmas L3 and LA 
constitute the inverse of S03. They are inductive theorems, but do not hold in all term-generated models of 
SORT. As inverses of an axiom, L3 and LA are consequences of the dosed worm assumption (c£ Sect. 1). 

Finally, 1,2 is proved by inductive { {£,2} }-expansions: 
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3 seqToBag(insert(x,s)) --- seqToBag(x&s) (L2) 

3. I seqToBag(insert(x,s)) -= seqToBag(x&~) Sis 

seqToBag(x&e) -= seqToBag(x&s) IN I 

3" unification 

3.2 seqToBag(insert(×,y&s')) ~- seqToBag(x&y&s') y&s'Is 

3.2. I seqToB~g(x&y&s') --- seqToBag(x&y&s') IN2 

x~_y 

x ,. y unification 

le(x,y) ~ true LEI 

3.2.2 seQToDag(y&insert(x,s')) -= seqToBag(x&g&s') IN3 

x>y 

add(y,seqToBag(insert(×,s'))) ~ add(x,seqToBag(y&s')) BA2 

x>y 

gas' >> s' L2 as 
add(y,seqToBag(x&s')) ~ add(x,seqToBag(g&s')) induction hypothesis 
x > y  

add(y,add(x,seqToBag(s'))) -= add(x,add(y,seqToBag(s'))) GR, BA2 
x > y  

X > y BA3 

le(x,y) ~ false LE2 

The covering derived by these expansions is a case malzix, namely: 
s - - e  (3.1) 
S -= y&s' le(x,y) ~ true (3.2.1) 

s ~ y&s' le(x,y) ~ false (3.2.2) I 

5. H o w  to P r o v e  t h e  G r o u n d  C o m p l e t e n e s s  o f  T e r m  Set s  

Theorem 4.7 provides a proof method for inductive theorems where case matrices are presupposed both at the 
beginning and at the end of the proof; at the beginning because we have to start out from a constructor-based 
clause set the important property of which is that its premises constittrte a (constructor-based) case matrix; at the 
end because the final goal-substitution pairs must correspond to a (not necessarily constructor-based) case 
matrix. 

Apart from syntactic conditions, a set of goals is a case matrix if  it is built up from ground complete sets of 
output terms. As we mentioned in Section 3, the constructor condition can be derived immediately from the 
Church-Rosser property of AX. Ground completeness, however, is a condition that needs its own proof 
methods. 
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Theorem provers devote a considerable amount of work to checking that the functions used have been 
defined completely (of. [BM79], [Hut86]). At first sight, this does not seem to be necessary for proving 
theorems. But most proofs are carried out by case reasoning and thus the question arises whether a case 
distinction is complete. When it is presented as a case matrix CM, the question just amounts to whether the 
right-hand sides of CM-equations "cover" the left-hand sides. This leads to a new verification problem where 
induction is needed again. However, one may run into a cycle when this proof is also based on a case 
distinction. The problem can be overcome by expressing these cases on a "lower level", in terms of a particular 
set of base terms. In consequence, ground terms must be base-representable, which is indeed a sort of 
functional completeness. (For dealing with partial functions, non-base-representable terms are admitted, too. 
However, for simplifying the presentation, we do not consider such cases here.) 

Moreover, ground completeness is an existential statement. 

Both deviations from the kind of theorems considered in previous sections call for a particular method for 
proving ground completeness. 

Definition Let BOP ~ OP be a set of base operations. GBT denotes the set of ground base terms, i.e. 
ground terms over BOP. We assume that for all s e S, GBT s is nonempty. A ground term Ft is innermost if  F 

BOP and t is a base term (tuple). 

A term t is base-representable if for all f e GBT X there is a base term that is AX-equivalent to t[f]. BR 
denotes the set of base-representable terms. Subsets of BR are called base-representable sets. A substitution is 
base-representable if  fiX) is base-representable, l 

Base-representability can be expressed in terms of a base existential theorem, i.e. a goal with existentially 
quantified variables: 

Definition A goal ~g is a base existential theorem if for all f ¢ GBT × there is g ¢ GBT × such that A× F-C 
~[fllN+g]. I 

Proposition 5.1 Let GEN be a set of input terms such that each innermost term is subsumed by some t 
GEN. GBT is ground complete (c~. Sect. 3) or, equivalently, GEN is base-representable, i f  for  some output 
variables xl,...,Xn, 7J(GEN) = {ti~xl I t ~.1~.n) is a base existential theorem. I 

The analogue of Lemma 4.6 for proving base existential theorems reads as follows. 

Lemma 5.2 Let ~u be a goal. l f for  all f ¢ 6BT x there are g ¢ BR x and a closed inductive M-expansion 
¢ % t a> I-EX (~ ) ~,0",9> such that ~IN and g/IN are AX-equivalent, then ~ is a base existential theorem, l 

While Lemma 4.6 establishes the correctness of inductive expansion w.r.t, universally quantified clauses, 
the previous lemma deals with existential theorems and thus requires closed expansions where the existentially 
quantified output variables of induction hypotheses are not instantiated. This is necessary because an induction 
hypothesis assures a validating instantiation, but in general not the one non-closed expansions would generate. 

A second deviation of Lemma 5.2 from Lemma 4.6 concerns the range of substitutions. Since 5.2 deals with 
base theorems and with expansions into a base case matrix (see below), the given substitution f is a base 
substitution and the derived substitution g must be base-representable. 

Finite coverings of GBT x should be given as base case matrices: 

Definition A set C of terms is ground base complete if each ground base term is subsumed by some c ¢ 
C. A finite set CM of finite sets of equations is a base case matrix with input INO ~ X if  either CM = {~} or CM 
= {(tEc~} u ~ I l<'<~.n, ~ c CM i} for a base-representable term t, a ground base complete set {Cl,...,Cn} of 
output base terms, and base case matrices CM 1 ..... CM n with input IN0 u var(e~) .... . .  IN0 u var (c , ) ,  
respectively, such that var(t) ~ IN0 and for all l < i ~ ,  var(ci) n IN0 = ~r l 

The following result is concluded from Lemma 5.2 just as Theorem 4.7 is derived from Lemma 4.6. 

Theorem 5.3 Let GEN be a set of  input terms and q~ -- ~(GEN) (cf. Prop. 5.1) such that each innermost 
term is subsumed by some t e GEN. GBT is ground complete or, equivalently, GEN is base-representable, i f  
there is a finite set of closed inductive 7J-expansions 
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<%id> I-EX(~ ) <e~,g1>, 

<%td> t-Et(t~) <Sn,gn> 
such that g~,.,.,g, ¢ BRX and 

e~ u (x~g~x I x ~ IN) 

$,, u {x~g,,x I x ¢ IN) 

is a base case matrix, called the derived covering. I 
Example 5.4 When claiming that the coverings derived in Example 4.8 are case matrices we have assumed 

that the sets C1 = {e,y&s'}, C2 = {e,x&s,x&y&s'} and C3 = (true,false} are ground complete for the terms s 
and l e(x,y), respectively. For justifying this statement with the help of Theorem 5.3 we choose (true, f a lse, 0, 
_+ 1, e, _&_, ~', add(_~)) as the set BOP of base operations. Innermost terms are, for instance, given by 
sorted(O&e) and insert(O+ I ,~). 

Of course, if GBT is ground complete, then, in particular, C1, C2 and C3 are ground complete for s and 
le(×,y), respectively, as required. Suppose that the base-representability of GEN0 = (le(x,y), seqToBag(s)) has 
already been shown. Let GEN1 = (i nsert(x,s), sort(s)). Since each innermost term is subsumed by some t 
GEN0 u GEN1, GBT is ground complete if  and only if GEN1 is base-representable. Hence by Thm. 5.3, it is 
sufficient to construct closed inductive expansions ofT1 = (insert(x,s)Eso} and T2 = {sort(s)---So). 

goal substitution axioms and lemmas 
applied 

1 i nsert(x,s)-=so (T1) 

1.1 $5 ¢/s, x&s/so IN1 

1.2 x ~- y y&s' /s ,  x&y&s ' /s  o IN2 

le(x,y) -= true LEt 

1.3 y&insert(x,s') ~ s o y&s'Is IN3 

x>y 

y&S 4 E s o T I  as 
y&s' >> s' induction hypothesis 
le(x,y) -= false LE2 

le(x,y) m false y&sllso unification, GR 

The derived covering is the base case matr ix {(s---s}, (s~y&s' ,  le(x,y)---true), (s~y&s',  le(x,y)-=false)}. 
(By assumption, le(x,g) c GEN0 is base-representable.) By Thin. 5.3, expansions 1.I-1.3 imply that 
i nsert(x,s) is base-representable. Note that the induction step in expansion 1.3 is closed because the (output) 
variable s~ is not replaced later on. 

2 sort(s)~s o (T2) 

2. i  E e /s ,  ~ts  o IS1 

2.2 insert(x,sort(s')) z so x&s'ts 1$3 
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i n s e r t ( x , s t )  I s O T 2  as 
1 nduc t i  on h y p o t h e s i s  

J~ i n s e r t ( x , s t ) / s  o u n i f i c a t i o n ,  GR 

The derived covering is the base case matrix is {{s=s), {s=x&s')). Since l nsert(x,st) is base-representable, 
we conclude from Thm. 5.3 that sort(s) is base-representable, too. I 

6. Conclusion 

We have presented a calculus for proving inductive theorems by resolving and paramodulating upon axioms, 
lemmas and induction hypotheses. The theorems must be given as constructor-based sets of Horn clauses. The 
derivations end up with a ground complete set of goal-substitution pairs. As a criterion for ground 
completeness, we introduced the notion of a case matrix, which reduces the completeness requirement from 
goal-substitution pairs to term sets. Constructors and ground complete term sets are the only non-syntactical 
notions associated with inductive expansion. As to ground completeness, we have shown in Section 5 how this 
property can be proved with the help of closed inductive expansions. As to constructors, one may refer to goal 
reduction, which extends term rewriting to a rule for transforming goals: 

[ Reduction Rule Let , be a goal, x ~ single(8), u,u'--~ ¢ AX and f be a substitution. Then I 
8[uEf]/x] ~- 8[u'Ef]/x]o,~[f]. 

A goal reduction stops successfially if a goal consisting of reflexive equations has been obtained: 

Success Rule Let 7, be a goal consisting of equations of the form t - t  such that the Reduction Rule is'not 
applicable to 7. Then ~, ~- Z. . ..... 

~-R denotes the corresponding inference relation. AX is called Church-Rosser if all proofs using the cut 
calculus have a "reduction counterpart", i.e., AX I--C ~' implies 7 ~R g. The literature is full of criteria for the 
Church-Rosser property (cf., e.g., [Pad88a]). It yields the following constructor criterion: If  AX is Church- 
Rnsser on ground goals and no left-hand side of a cunditional equation of AX "overlaps" a term of a term set T, 
then T is a set of constructors. 

Another consequence of the Church-Rosser property is the possibility of restricting paramodulation to the 
more effective rule of narrowing, invented by [Lan75]. Indeed, the crucial Lemma 4.6 could also be based upon 
rules different from resolution and paramodulation, provided that they are complete in the sense of Thm. 4.1 
(perhaps only for a particular class of specifications, like Church-Rosser ones.) More detailed suggestions 
concerning this line of developing inductive proof methods are given in [Pad88e]. It must be noted, however, 
that every restriction of the inference rules might prevent induction hypotheses from being generated. For 
instance, narrowing does not admit applying an equation from right to left as we did in expansion 2.2.2.2.2 of 
Example 4.8. But this application was necessary for proceeding with an Ll-induction step. 

Inductive completion, the current alternative for proving inductive theorems (cf. Sect. 1), is also based upon 
the Chureh-Rnsser property. In spite of the resemblance between narrowing steps and the basic steps of 
inductive completion, i.e., the construction of critical pairs (pointed out in [Der87b], Sect. 4.2), there is an 
important difference between "inductive narrowing" and inductive completion. In the latter case, the Church- 
Rosser property is extended from the axioms to the conjecture that is to be proved. In fact, sophisticated 
Church-Rosser criteria take into account the special role of the conjecture (cf., e.g., [Fri86], [Kiic87], [HK88], 
[Pad88d]). Nevertheless, many examples have shown that the remaining eonditiorts are more difficult to 
establish than the constructor-based clause set requirement. 



368 

References 

EBM79] R.S. Boyer, J.S. Moore, A Computational Logic, Academic Press (1979) 
EBur69] R.M. Burstall, Proving Properties of Programs by Structural Induction, Comp. L 12 (1969) 

41-48 
[Der87a] N. Dershowitz, Termination of Rewriting, J. Symbolic Comp. 3 (1987) 69-t 15 
[Der87b] N. Dershowitz, Completion and its Applications, Report (i987) 
[Fri 86] L. Fribourg, A Strong Restriction of the Inductive Completion Procedure, Proc. ICALP '86, 

Springer LNCS 226 (1986) 105-115 
[GG88] S.L Garland, LV. Guttag, Inductive Methods for Reasoning about Abstract Data Types, Proc. 

POPL '88 (1988) 219-228 
[GHM88] A. Geser, H. Hugmann, A. Mtick, A Compiler for a Class of Conditional Term Rewriting 

Systems, Proc. Conditional Term Rewriting Systems '87, Springer LNCS 308 (1988) 84-90 
[HH82] G. Huet, J.M. Hullot, Proofs by Induction in Equational Theories with Constructors, J. Comp. 

and Syst. Sci, 25 (1982) 239-266 
[HK88] D. Hot'bauer, R. Kutsche, Proving Inductive Theorems Based on Term Rewriting Systems, Proc. 

Algebraic and Logic Programming, Math. Research 49, Akademie-Verlag Berlin (1988) 180-190 
[HR87] J. Hsiang, M, Rusinowitch, On Word Problems in Equational Theories, Proc. ICALP '87, 

Springer LNCS 267 (1987) 54-71 
[Hut86] D. Hurter, Using Resolution and Paramodulation for Induction Proofs, Proc. 10th GWAi, 

Springer Informatik-Fachberichte 124 (1986) 265-276 
[JK86] J.-P. Jouaunaud, E. Kounalis, Automatic Proofs by Induction in Equational Theories without 

Constructors, IEEE Symp. Logic in Comp. Sci. (1986) 358-366 
[KM87] D. Kaput, D.R. Musser, Proof by Consistency, Artificial Intelligence 31 (1987) t25-157 
[KiJc87] W. Kfichlin, Inductive Completion by Ground Proof Transformation, Proc. Resolution of 

Equations in Algebraic Structures, Austin (1987) 
[Lan75] D.S. Lankford, Canonical Inference, Report ATP-32, Univ. of Texas at Austin (1975) 
[MW80] Z. Manna, R. Waldinger, A Deductive Approach to Program Synthesis, ACM TOPLAS 2 (1980) 

90-121 
[MW87] Z. Manna, R. Waldinger, How to Clear a Block: A Theory of Plans, J. Automated Reasoning 3 

(1987) 343-377 
[Pad87] P. Padawitz, ECDS - A Rewrite Rule Based Interpreter for a Programming Language with 

Abstraction and Communication, Report MIP-8703, Univ. Passau (1987) 
[Pad88a] P. Padawitz, Computing in Horn Clause Theories, EATCS Monographs on Theor. Comp. Sci. 

16, Springer (1988) 
[Pad88b] P. Padawitz, Can Inductive Proofs be Automated? EATCS Bulletin 35 (1988) 163-170 
[Pad88c] P. Padawitz, Program Verification Revisited (1988), submitted 
[Pad88d] P. Padawitz, Proof by Consistency of Conditional Equations (1988), submitted 
[Pad88e] P. Padawitz, Reduction and Narrowing for Horn Clause Theories (1988), submitted 
[Rei78] R. Reiter, On Closed World Data Bases, in: H. Gallaire, J. Minker, eds., Logic and Data Bases, 

Plenum Press, New York (1978) 55-76 
[Rob65] J.A. Robinson, A Machine-Oriented Logic Based on the Resolution Principle, J. ACM 12 (1965) 

23-41 
[RW69] G. Robinson, L. Wos, Paramodulation and Theorem-Proving on First-Order Theories with 

Equality, in: Machine Intelligence 4, Edinburgh Univ. Press (1969) 135-150 


