
A Self-Applicable Partial Evaluator

for Term Rewriting Systems

Anders Bondorf
DIKU, University of Copenhagen

Universitetsparken 1, DK-2100 Copenhagen 0, Denmark (*)
uucp: anders@diku.dk

Abstract 1. Introduction

This paper describes a fully self-applicable partial
evaluator developed for equational programs in the
form of term rewriting systems. Being self-
applicable, the partial evaluator is able to generate
efficient compilers from interpreters as well as a
compiler generator automatically.

Earlier work in partial evaluation of term rewriting
systems has not achieved self-applicability due to
the problem of partially evaluating pattern match-
ing. This problem is overcome by developing an in-
termediate language for being able to express patt-
ern matching at an appropriate level of abstraction.

We describe the intermediate language and partial
evaluation of it. Binding time analysis, a well-
known preprocessing technique, is used. We intro-
duce further preprocessing to deal efficiently with
our intermediate language.

The system has been implemented and compilers
for small languages as well as a compiler generator
have been generated with satisfactory results.

K e y w o r d s

Decision trees, functional languages, pattern match-
ing, elementary matching operations, binding time
analysis, abstract interpretation, partially static
structures.

(*) Until July 1989:
University of Dortmund, Lehrstuhl Informatik V
Postfach 50 05 00, D-4600 Dortmund 50
Federal Republic of Germany
uucp: anders@ unidoi5.1s5.in formatik.uni-dortmund.de

The potential use of partial evaluation for doing
compilation, compiler generation, and even compi-
ler generator generation has been known since the
early seventies [Futamura 71]. A few years ago
these promising ideas were carried out for the first
time in practice in the LISP based "Mix" project in
the Copenhagen group around Neil D. Jones
[Jones, Sestoft, & Scmdergaard 85]. Various
people have since then been working on partial eva-
luation in Copenhagen and other places. The aims
have been to understand partial evaluation better
and to develop stronger partial evaluators: to make
them "as automatic as possible" and to use stronger
languages.

Partial evaluation is a general program transfor-
mation which, given a subject program and static
values of some but not all of its input parameters,
produces a so-called residual program [Ershov 82].
This, when applied to the rest of the inputs,, will
yield the same result the original program would
have yielded on all its inputs. Partial evaluation is
thus program specialization: its effect is to yield a
new program equivalent to the original on a certain
subset of its input. We therefore also refer to a par-
tial evaluator as a specializer.

To compile by partial evaluation, an interpretive
specification of the language is needed. By specia-
lizing the interpreter with static input being the in-
terpreted source program, a target program is pro-
duced (compilation). And by self-application, spec-
ialization of the specializer itself with static input
being an interpreter, a stand-alone compiler is gen-
erated. Finally, by specializing the specializer with
the static input being the specializer itself, a compi-
ler generator is produced.

82

Equational programming, that is programming
with term rewriting systems [Dershowitz 85] [Huet
& Levy 79] [Huet & Oppen 80], provides a conve-
nient formalism for defining computations. In par-
ticular, as described in [Hoffmann & O'Donnell
82] and also [Turchin 86] (for the language RE-
FAL), equational programming can be used for de-
fining interpretive language specifications. It has
therefore been a natural goal to realize the ideas of
partial evaluation in the context of term rewriting
systems: to use self-application to transform inter-
preters written in equational style to compilers, also
written in equational style. This transformation has
been performed for other languages (first time:
[Jones, Sestoft, & Sondergaard 85]), but to our
knowledge never before for term rewriting
systems.

Self-application means that the specializer plays
two roles: as specializer and as subject program.
The specializer therefore has to be written in the
same language as the language of the programs it
treats. Such a specializer is called an autoprojector
[Ershov 82]. Experience from the "Mix" project
has shown that successful specialization of a self-
interpreter (an interpreter written in the same langu-
age as it interprets) is a first step towards self-
application. This is indeed plausible as one may
consider a specializer as being a "smart" interpreter:
to evaluate static expressions, it contains the code
of an interpreter. An autoprojector is a "self-
specializer", and thus a "smart" self-interpreter.
Therefore, ff an autoprojector performs badly when
specializing a self-interpreter, then it cannot be ex-
pected that it will ever be able to specialize itself
(self-application) in a satisfactory way.

We have already described partial evaluation of
a subclass of term rewriting systems in [Bondorf
88]. The partial evaluation methods described there
gave good results in a number of cases, including
specialization of a non-trivial interpreter (for a
small lambda calculus based language with higher
order functions). However, when a self-interpreter
for the term rewriting system language was specia-
lized, the partial evaluator did not perform well:
enormous specialized (self-) interpreters resulted
due the way of dealing with pattern matching.
Since a self-interpreter could not be specialized sa-
tisfactorily, self-application was out of question.

In this paper we describe an approach which has
achieved self-application: rather than directly spec-
ializing a program in the form of a term rewriting
system, we first translate the program into an inter-
mediate form. This program is then specialized
yielding a residual program, also in intermediate
form. Finally, the residual program is translated
back into a term rewriting system:

rewrite residual rewrite
rule program rule program

, t

Tree I t residual
program ~ Tree program

static input

(Tree is the name of the intermediate language; the
specializer is called Treernix.) In the intermediate
language, pattern matching is expressed in the form
of so-called decision trees (or matching trees [Huet
& Levy 79]): pattern matching has been factorized
into explicit primitive operations for comparing va-
lues and decomposing data structures. But the in-
termediate language still contains enough structure
to make it possible to perform the translation back
into pure rewrite rule form. LISP or, say, ass-
embler language (!) as intermediate language would
not suffice here. One could of course in principle
translate a residual program written in e.g. LISP
into rewrite rule form, but the result would hardly
be readable. Consequently, existing LISP based
partial evaluators [Jones, Sestoft, & SCndergaard
88] [Mogensen 88] cannot be used for our pur-
pose.

Our concrete decision tree language basically is
a functional language, but its control primitives dif-
fer from those of for instance Mixwell [Jones,
Sestoft, & S~ndergaard 88]. Furthermore, to
match the intension of being an intermediate langu-
age for term rewriting systems, there are certain re-
strictions imposed on the allowed expression
forms. To partially evaluate decision tree pro-
grams, well-known techniques for partial evalua-

83

tion of funct ional programs [Jones, Sestoft, &

Sondergaard 88] can be used as a start point, but
they must be modified to deal with the new control

primitives and restrictions.

Of the two hardest non-trivial problems of par-
tial evaluat ion, those of termination and self-
application, the main concern of this paper is self-
application. We therefore address binding time ana-
lysis, and more generally preprocessing, in some
detail. Preprocessing is essential for efficient self-

application [Bondorf, Jones, Mogensen, & Sestoft

89].

1.1 Outline

In section 2 we summarize definitions and termi-

nology. In section 3 we argue for using decision
trees; our concrete decomposit ion tree language is
described in section 4. Section 5 describes partial

evaluation of decision tree programs, and it ends
with a br ief discussion of finiteness. Section 6 is
devoted to preprocessing. Section 7 contains an
overview of the results. In section 8 we mention re-

lated work, and in section 9 we conclude.

2. Definitions and terminology

In this section we review some basic concepts of
partial evaluation and term rewriting systems.

2.1 Programming languages and program
specialization

Let V be a universal domain containing programs
and data values, including a specific element [], and
suppose vl : v2 is in V for any vl , v2 in V. An ex-

ample is the set of all Lisp S-expressions. As in
ML we write Ix1, x2 xn] to stand for xl : [x2
xn] so [xl, x2 xn] = xl : x2 :... : xn : [], where :

associates to the right.

A programming language, for instance Li, is a
partial function that maps programs to meanings,
which themselves are partial functions from input

to output:

Li: V - --> (V - --> V)

An Li-prograrn p is any p e V such that L i p is defi-

ned. Each program will take one input which,

however, may be a list.

Suppose p is an L2-Program expecting inputs of

the form [vs, vd]. A residual program for p with re-
spect to vs is an L3-program Pvs satisfying

L3 Pvs vd = L 2 p [vs, vd]

We also say that Pvs is p specialized with respect to
vs, and vs is called the static (often referred to as
"known" or "available") input, while vd is the dy-
namic ("unknown") input.

A partial evaluator (or program specializer) is an

L 1-program mix such that L 1 mix [p, vs] is a residual

program for every p, vs. This can be re-expressed

by the "mix equation":

L 3 (L 1 mix [p, vs]) vd = L 2 p [vs, vd]

p is called the subject program of partial evaluation.

For mix to be an autoprojector, L 1 = L 2. We shall
only be interested in the case where also L 2 = L a, so
L 1 = L 2 = L a = L. In our case L is the decision tree

language.

2.2 Interpreters and compilers

Let S: V - ---> (V - --4 V) be a programming langu-

age, perhaps different from L. Given an S-program

source that maps some input data to an output re-
sult, an interpreter for S written in L is an L-

program int such that for all source and data

L int [source, data] = S source data = result

An S-to-L compiler written in L is an L-program

comp mapping source programs written in S onto
target programs written in L:

target = L comp source

where target must satisfy

L target data = S source d a t a = result

2.3 Compilation and compiler generation

The program speeializer mix described above may

be used to compile from S to L by specializing int
with respect to source:

target = L mix [int, source] = intsource

By the mix equation it is easy to see that this target
program satisfies the requirement:

L target data = S source data = result

If L = S, then int is a self-interpreter sint. In this

case

84

L sintsource data = L source data

for all data.

By self-applying the partial evaluator, we can
generate a compiler from the interpreter:

comp = L mix [mix, int] = mixin t

When given a source program, this comp produces
a target program (this follows immediately from the
mix equation):

L comp source = L mix [int, source] = target

We define that

cogen = k mix [mix, mix] = mixmi x

and see that when given an interpreter, cogen pro-
duces the compiler: comp = L cogen int.

2.4 Term rewriting systems

We assume some knowledge about term rewriting
systems, but we shall here shortly review some
concepts in order to set up a terminology.

We consider a set of variables V, and a set of
operators E such that for all op~ Y.: arity(op)>0 (an
arity is also called a rank). The set of terms Tz(V)
generated by Y. over V is defined such that: 1)
every variable is a term; 2) every operator op~ Y.
for which arity(op)=0 is a term; 3) if t 1 t n are
terms and if there exists an operator op~ E for

which arity(op)=n, then op(t t t.n) is a term.
The set of ground terms T z is defined as the set of
terms without variables. Terms with variables are
called open terms.

A term rewriting system is a set rewrite rules,
which may be ordered (in which case the system is
a priority rewrite system [Baeten, Bergstra, &
Klop 87]). A rewrite rule is a pair of terms (li, ri)
with the restriction that 1 i is not a variable; it is writ-
ten as li---~r i where 1 i is called the left-hand side and
r i is called the right-hand side. A further restriction
is that no variable must occur in any r i unless it
also occurs in the corresponding 1 i. A term is linear
if no variable occurs more than once in it. A (left-)
linear rewrite rule is a rewrite rule in which the left-
hand side is linear.

Sometimes E will be divided into two disjoint
sets, E = A + F. A is the set of function symbols
(or defined operators) and F is the set of construc-
tors. The set T F is denoted as the set of ground
constructor terms. A functional term rewriting

system is a term rewriting system in which the left-
hand sides are restricted to be of the form 8(Pl
Pn) (n>0) where 5e A and all pi e TF(V), that is,
they do not contain function symbols. Functional
term rewriting systems correspond to "systems
with constructors" [Huet & Levy 79].

3. Mot iva t ion for dec is ion trees

Successful self-application can only be expected if
a self-interpreter can be specialized satisfactorily.
In this section we motivate the use of decision trees
rather than term rewriting systems by arguing that
specialization of a rewrite system self-interpreter
yields large residual programs, whereas good re-
sults are achieved for decision trees.

Recall (section 2.3) that for a self-interpreter sint
and for an arbitrary L-program source

L sintsource data = L source data

f o r a l l data. sintsource and source are thus p rog rams

which compute the same function, and they are
also written in the same language, k. We may
therefore expect that they also textually are "almost

equal": sinlsource ~ source. In other words, if
sintsourco is significantly bigger or runs significant-
ly slower than source, then the self-interpreter was
not specialized satisfactorily. In that case we cannot
expect successful self-application of the specializer.

3.1 Specialization of a self-interpreter for
term rewriting systems

A self-interpreter for rewrite rule programs con-
tains some code for matching a term against a patt-
ern (a left-hand side of a rule). This code traverses
the term and the pattern in parallel and yields either
a substitution for the variables in the pattern (in the
case of a successful match) or a mismatch. If a
mismatch occurs, then the matching algorithm is re-
applied to the term and another pattern. The proc-
ess continues until a successful match is found (if it
exists). The algorithm is of course inefficient; in
addition to this, specialization of it gives undesired
results, as we shall now see.

Let us consider a small piece of a (functional)
term rewriting system source:

85

f(a, b) --~ one rule f l
f(a, c) --~ two rule f2

. . . ---) ... f(X, Y). . .

Here f is a function symbol, a, b, and c are con-
structors, and X and Y are variables.

Specialization is performed as a symbolic eva-
luation over a domain of terms containing variables
representing the dynamic unavailable values. Dur-
ing specialization of the self-interpreter with respect
to source, the self-interpreter is going to handle the
term f(X, Y). The self-interpreter calls its matching
algorithm to match f(X, Y) against the two f rules.
But now we are specializing the self-interpreter,
not executing it, so we (the specializer) do not
know the values bound to X and Y (they depend on
the unavailable input data); we only know the patt-
erns from the two f rules in source. The specializer
therefore produces a specialized version of the
matching algorithm: it can match a term against the
two f rules. The specialized matching algorithm
will be something like this:

match(f 1)(X, Y) --~
if X = a then

if Y = b then one successful match
else match(f2)(X, Y) try next rule

else match(f2)(X, Y) try next rule

match(f2)(X, Y) --~
if X = a then

if Y = c then two successful match
else ... failing match

else ... failing match

The naive if-then-else structure has been inherited
from the "trial and error" matching algorithm of the

self-interpreter. In pure rewrite rule form, with all
cases listed, we get the following priority rewrite
system (ordered from top to bottom):

match(f l)(a, b) --) one

match(f 1)(a, Y) --) match(f2)(a, Y)
match(f 1)(x, Y) ---) match(f2)(X, Y)
match(f2)(a, c) ~> two
match(f2)(a, Y) ---+ ...
match(f2)(X, Y) --) ...

successful match
try next rule (i)
try next rule (ii)
successful match
failing match
failing match

By unfolding the match(f2) terms in (i) and (ii)
through instantiation (backwards substitution) of
the variables X and Y for all relevant cases, we get:

match(f l)(a, b) --~ one

match(fl)(a, c) --~ two
match(fl)(a, Y) --~ .,,
match(fl)(a, Y) --~ ...
match(fl)(a, c) --~ two
match(f 1)(a, Y) --) ...
match(f 1)(x, Y) ---) ...

successful match
successful match 6)
failing match (i)
failing match 6)
successful match (ii)
failing match (ii)
failing match (ii)

Such instantiations correspond to Turchin's con-
tractions [Turchin 86]. We note that overlapping
left-hand sides make instantiation followed by un-
folding semantically problematic.

Now match(f1)(in sintsouree) closely corre-
sponds to f (in source), but redundant rules have
been generated due to the structure of the self-
interpreter. The number of such extra rules de-

pends on the product of the number of rnatch(fx)
rules for every left-hand side x of f in source! This
is of course completely unacceptable for realistic

programs; we do not achieve sintsource ~ source.
The above program may be reduced by removing
redundant rules; however, to detect these a rather
complex machinery is needed. Experience has
shown that unacceptably slow partial evaluation re-
sults.

3 . 2 Spec ia l izat ion of a sel f - interpreter for
decis ion trees

Let us now consider a decision tree for the program
piece in source (we omit a formal definition of de-
cision trees; the semantics is the obvious one):

f(X, Y) ---).
case X of

a: case Y of
b: one

c: two

end
end

successful match
successful match

A self-interpreter for a decision tree language does
not have to deal with mismatch cases. The decision
tree guides the pattern matching: it is now a simple
parallel search in the decision tree and the term. If a
mismatch is found, then the term does not match
any rule. We choose to consider this as an error, a
match error, so it is semantically correct for the self-
interpreter not to care about mismatches at all. A
match error at the level of the interpreted program
source will be reflected as an error at the level of
the self-interpreter itself.

86

The specialized matching algorithm now looks
like this:

match(f)(X, Y) -->
if X = a then

if Y = b then one
else

if Y = c then two
{ no "else" }

{ no "else" }

successful match

successful match

If no match is found, the absence of "else"
branches results in an error. By converting the
equality tests into ease dispatches, we get:

match(f)(X, Y) -->
case X of

a: case Y of
b : o n e
c: two

end
e n d

successful match
successful match

This exactly corresponds to the original piece of
source. This should make it plausible that it is
possible to achieve sintsourco -= source for decision
trees.

4. The decision tree language Tree

As indicated by the previous example, the idea is to
translate a set of left-hand sides into a decision tree
(with the right-hand sides at the leaves) in which
pattern matching is factorized into a series of ele-
mentary matching operations. The choice of pattern
matching primitives is a compromise between two
contrasting requirements: strong primitives close to
the rewrite rule form are desirable for the transla-
tions to and from rewrite rule form. But simple pri-
mitives are desirable for partial evaluation.

4.1 Syntax and semantics

Basically, the language Tree is a statically scoped,
untyped and first order functional language that
uses innermost (call-by-value, strict) deterministic
reduction. Other reduction strategies like normal
order reduction (lazy evaluation) could also be defi-
ned, but this would require a complete revision of
the partial evaluator; partial evaluation depends
strongly on the operational properties of a langu-
age. Innermost reduction is the simplest to deal
with for at least two reasons: 1) there are no infinite

data structures; 2) pattern matching operations do
not influence redex reduction as in lazy pattern patt-
ern matching.

The data structures are Lisp S-expressions built
from an in principle infinite set of O-ary construc-
tors (like Lisp atoms and Prolog 0-ary functors)
and one fixed binary constructor "." (like Lisp
"cons" or Prolog "."). Arbitrary constructors could
be introduced as syntactic sugar (together with
some kind of type checking system), but they have
not been included in the core language. Allowing
arbitrary constructors would necessitate the encod-
ing of programs when they are used as input to a
self-interpreter or to the partial evaluator. Actually,
when specializing a self-interpreter or the speciali-
zer itself with respect to a program, it is necessary
to encode this program twice. By disallowing arbi-
trary constructors, we avoid all encoding and de-
coding problems. Notation: as in LISP, we use (a 1
... a n) as shorthand for (a 1 . (.... an)), and 'a as short-
hand for (quote a).

The (abstract) syntax of Tree follows:

Syntax

P • Program programs
F e Function functions
B e Body bodies
A e Alternative alternatives
P E Pattern patterns
R ~ R right-hand sides
V ~E Var variables
N e Name function names
C E cst cons tan t s

S ~ Symbol O-ary atomic symbols

P : : = (F +)

F ::= (N (V*) B)

B ::= (case V A*) I (equal V 1 V 2 B 1 B2) I R
A ::= (P ~ B)

P ::= 'C I (V1 • V2) I else
R ::= 'C I (R1. R2) [V I (call N R*) I (xcall N R*)

C : := S I (C1 • C2)

One function corresponds to one decision tree.

Pattern matching is performed by c a s e and
equal, ease is used for matching a term against a
constructor, equal for comparing two terms for

87

equality. The case alternatives are matched in a
strictly deterministic order from top to bottom until
a match is found. The body corresponding to the
matched pattern is then evaluated. If no pattern
matches, an error occurs and the evaluation stops
with a match error. If more than one pattern
matches (corresponds to overlapping left-hand
sides in a term rewriting system), only the first one
is considered (thus imposing a priority). A term
matches a pattern 'C if the term is equal to the con-
stant C. A term matches a pattern (V 1 . V2) if it is a
pair, i.e. a term constructed with the binary con-
slructor. The left part (the "car") of the term is then
bound to V 1, the right part (the "cdr") to V 2. An
else pattern is an "always match". The equal con-
struction is a simple kind of conditional (useful for
dealing with non-linear rewrite rules). Read it as "if

V 1 = V 2 then B 1 ¢lse B2".

The case construction is similar to "case expres-
sions without default/fail clauses" [Augustsson 85]
[Peyton Jones 87]. These have a particularly
simple flow of control, which is desirable for par-
tial evaluation. The drawback is that duplication of
right-hand sides sometimes occurs when a rewrite
rule program is translated into decision tree form.

The (non-nested) R parts correspond to right-
hand sides of rewrite rules; they constitute the
leaves of the decision tree. Points to notice are that
quote is used in the usual Lisp way to denote con-
stants (ground constructor terms), that function
symbols are preceded by the keyword call (so re-
dexes, or calls, are identified syntactically), that ex-
ternal functions are available through xcall, and fin-
ally that the pairing operator is written as ".". Func-
tions have fixed arity; type correctness with respect
to this is checked statically.

The distinction between the syntactic forms
Body and R implies that all pattern matching tests
must occur in the beginning of a function body.
This reflects the intension with the language as
being an intermediate form for rewrite rule pro-
grams. In these, the operations of matching and
evaluation of the right-hand side of the matched
rule are completely separated. Also, only variables,
not arbitrary expressions, may be tested by case
and equal. We thus disallow the possibility of spec-
ifying evaluation of an arbitrary expression during
pattern matching. This reflects that pattern match-
ing is a "passive" process, a search for a match giv-

ing a substitution. It does not itself compute.
(Note: lazy pattern matching is also "passive" in
this sense, even though it may force evaluation of a
suspended call in the term.)

4.2 Example

For an example, let us consider a program piece
that tests whether a given (ground constructor)
term t matches a given pattern p. Let the terms be S-
expressions and let the patterns be either constants,
pairs, or variables:

Pat = (C. Const) [(Pat. Pat) I Variable

A variable is an atomic symbol different from C.
The program piece is the following one:

(match (p t)
(case p

((p l . p2) --)
(case pl

('C ---) (equal p2 t 'true 'false)) constant
(else ----) /x~r

(case t
((t l . t2)

(call and (call match pl t l) (call match p2 t2)))
(else --~ 'false)))))

(else ---)'true))) variable

(and (bl b2) (case bl ('false --) 'false) (else --) b2)))

The deterministic pattern matching distinguishes
constant from pair patterns, and equal compares a
term and a constant pattern.

4.3 Translation to and from Tree

The problem of developing and discussing efficient
algorithms for translating from rewrite rules to de-
cision tree form and vice versa is outside the scope
of this paper. However, we must ensure that Tree
is strong enough to be useful as an intermediate
language. The most severe restriction of Tree is its
fixed innermost reduction strategy; we only addr-
ess the problem of representing term rewriting
systems with innermost reduction. We cannot ex-
pect Tree to be suitable for handling normal order
reduction (nor other reduction strategies).

We first observe that it is possible to translate
any functional term rewriting system based on S-
expression data types (possibly with non-linear as
well as prioritized rules) into Tree: group together
all rewrite rules with left-hand sides rooted by the

88

same function symbol, while keeping the specified
priority. Then translate each group into a Tree func-
tion. This is always possible as one may generate
the naive (and indeed inefficient) program, which
just does naive pattern matching, testing one rule at
a time. For certain restricted classes of term rewrit-
ing systems, there exist much better algorithms
[Augustsson 85] [Peyton Jones 87].

The other way around, we see that any Tree
program can be translated into a (functional) re-
write system: for each decision tree (fnnction),
generate one rewrite rule for each leaf. The order of
the re,m'ite rules must be the same as the order of
the leaves (when considering the "flattened" deci-
sion tree). For instance for the match program, this
translation gives the following non-linear priority
rewrite system (written in a syntax close to Tree):

(match ('C. p2) p2) ----> 'true constant
(match ('C. p2) t) --> 'false constant
(match (p l . !32) (t l . t2)) ----> pair

(call and (call match pl t l) (call match p2 t2))
(match (p l . p2) t) --~ 'false pair
(match p t) --> 'true variable

(and 'false b2) --> 'false
(and bl b2) --> b2

When decision trees contain duplicated leaves, so-
phisticated algorithms may generate rewrite
systems with fewer rules than leaves.

General (non-functional) term rewriting systems
can be mapped into functional ones, and therefore
also into Tree. The idea is to split operator occurr-
ences into constructor and function symbol occurr-
ences by performing the following steps: (1) re-
place all nested occurrences of left-hand side opera-
tors by constructors; (2) replace all right-hand
operators by function symbols; (3) for all function
symbols now occurring in any right-hand side, add
a rule, with lowest priority, that replaces the func-
tion symbol by a constructor. For instance, let us
consider a rewrite system for combinator logic (the
example comes from [Klop 87]):

@(@(@(s, f), g), x) -> @(@(f, x), @(g, x))
@(@(K, x), y) --> x
@0, x) -~ x

Here @ is an operator for function application; S,
K, and I are operators, f, g, x, and y are variables.

By splitting the operator occurrences, we get a
functional priority rewrite system (in Tree-near
syntax):

(@ ('@ ('@ 's 0 g) x) -> (ca, @ (call @ f ×) (ca, @ g x))
(@ ('@ 'K x) y) --> x
(@'Ix) - ~x
(@×y) ~ (' @ x y)

The functional version of the rewrite system oper-
ates on data structures with constructors rather than
operators, but otherwise the behavior is the same.
The systematic replacement of nested left-hand side
operators by constructors is correct since, for in-
nermost reduction, data structures only contain
constructors, not function symbols. The extra rules
replace function symbols by constructors; they are
applied to terms (calls), which do not match any of
the original rules (the extra rules have the lowest
priority). Such calls are thus replaced by data struc-
pares; this "records" that the call is in normal form.

5. Partial evaluation of Tree

Partial evaluation or, more specifically, polyvariant
program specialization [Bulyonkov 88] can be
viewed as abstract interpretation over open terms
with variables representing the unavailable dynamic
data. For each Tree function, the abstract interpreta-
tion gives a set of possible variants. A variant asso-
ciates with each function parameter an open term; a
variant represents an instance of the function, spec-
ialized according to the constant static parts in the
open terms. A residual program thus is a set of
specialized functions. In a specialized function,
operations depending only on static values have
been reduced. In particular, if the test of a conditio-
nal can be decided, only the selected branch is pre-
sent.

The residual program can be optimized by un-
folding calls to the (specialized) functions. Abstract
interpretation over open terms and unfolding is
usually intermingled. Function calls are thus also
unfolded "on the fly" during abstract interpretation,
and we refer to the process as symbolic evaluation.
Our speciatizer Treemix processes its subject pro-
gram by performing such an evaluation. [Sestoft
86] describes symbolic evaluation in detail; a com-
prehensive discussion of polyvariant program spec-
ialization is found in [Jones 88].

89

In Tree there are certain restrictions on the allo-
wed forms of the control expressions case and
equal: only variables may be tested, and all tests
must occur in the beginning of a function body.
These restrictions do not have equivalents in e.g.
LISP. The first restriction implies that some care
must be taken when processing ease and equal.
Both restrictions have consequences for call un-
folding. We address these problems in some detail.

5 . 1 Processing case and equal

We shall here give a piece of the algorithm for
symbolic evaluation of Tree expressions. Given an
expression of the form Body, the algorithm pro-
duces a residual body in which static tests have
been performed. The algorithm is given in a style
near to denotational semantics. It operates over the
syntactic domains given earlier (Body, R); we
use Body, R to denote the residual equivalents.
Some notation: this typeface is used for pieces of
the subject program being specialized and for the
pieces of the residual program being generated.

A piece of the symbolic evaluation algorithm

Semantic domains

Residual expressions:

b: Body

R

V, W: Vat

c, d: Cst

Other domains:

t, u:

bodies

right-hand sides

variables

constants

Open = Vat + Cst + Pair open terms
Pair = Open x Open pairs

O: ® = (Var x Open)* unifiers

~: ~g = (Vat x (Vat + Var x Var + Cst))*

factorized unifiers

Fall = Unit failing unification

th: 0 + Fail unifier or fail
e: Env = Var ---> Open environments

Symbolic evaluation functions

B: Body --> Env ~ Body

BE(case V (P1 --) B1) ... (Pn ---> Bn))~e =

cases e(EV]]) of

isVar(v) ---> generate test

(case v (P1 ---> BRB1]le) ... (Pn ---> BlrBn~e))

isCst(c) ~ perform test

if3i: (Pi = 'C such that c = cnc]]) v

(Pi = else) then

let j be the smallest such i in B[[Bjl]e

else (case) always produces a match error

isPair(t, u)

An-(P1 ~ B1) ... (Pn ---) Bn)]] (t, u) e

BE(equal V1 V2 B1 B2)~e =

cases e(EV1]]), e(lrV2]]) of

isCst(c), isCst(d) --~

i_f c = d then B EB 1]]e else BEB2J]e

isCst(c), isVar(v) or isVar(v), isCst(c) --~

(case v ('c ---> BI~B 1 lie) (else ---> B[f B2]e))

isVar(v), isVar(w) ---)

(equal v w B[[B1]]e BEB2]]e)

otherwise ~ compound test
let th = U(e(ffx~), e(Ey]])) in

cases th of

isFall0 --~ BEB2]]e

isO(0) ---> G(T(0), BEB1 lie, B[[B2I]e)

end

BER]qe = Rn-R]]e

A: Altez:nat±ve* ---)- Pair --> Env ---> Body

AI[('S --~ B) A*]] (t, u) e = A~A*]] (t, u) e

AE('(C1. C2) ---) B} A*~ (t, u) e =

let th = U((CEC11], CffC2]]), (t, u)) in

cases th of

isFail0 --* AlIA*I] (t, u) e

isO(0) --> G(T(0), BIrB]]e, A[rA*]] (t, u) e)

A~((V1. V2) --~ B) A*]] (t, u) e =

BIrBI] [[[V I ~ t][I]-V2]]~ u]e

AE(else ~ B) A*]] (t, u) e =BEB~e

Air ~ (t, u) e = (case)

R: R --* Env ---) R (definition omitted)

C: c s t ---> Cst (definition omitted)

U: Open x Open --~ O + Fail

unifies two open terms (definition omitted)

T: 0 - - > ~

90

factorizes a unifier (definition omitted)

G: W x Body x Body --) Body

generates a residual body (definition omitted)

The algorithm decomposes tests on compound
open terms to ensure that only variables are tested
in the residual body. This decomposition is perfor-
med by the functions U, T, and G. We shall here
explain the decomposition along with an example.

Let us consider two open terms, t o and u 0' re-
spectively a variable and a pair of a variable and a
constant: t o = p, u 0 = (q. '6). The function U uni-
fies two terms. It produces a list of variable-value
pairs rather than a function as we are interested in
its actual bindings, not its extensional behavior.
Identity bindings are not represented. For the ex-
ample, U(t 0, u0) = 00 = [(p, (q. '6)]. Every variable-
value pair represents an equality which must hold
for two unified terms t and u to be equal. Such an
equality corresponds to a test on a variable. The
function T factorizes the unifier by introducing
fresh variables for components of pair values. For
example, T(00) = ~t 0 = [(p, (r. s)), (q, r), (s, '6)].
Now every test can be expressed in Tree, either by
case or equal. For the example we get G(V0, bl,

b2) =

(case p
((r. s)

(equal q r
(case s ('6 --) b l) (else --~ b2))
bz))

(else --~ b2))

for some arbitrary bodies b 1 and b z. We observe
that since Tree has no "fail clauses" [Peyton Jones
87], code duplication of b 2 occurs. This has not
caused practical problems in our experiments.

5.2 Call unfolding

Call unfolding is the process of replacing a func-
tion call by the body of the function, with the for-
real parameters replaced by the argument expres-
sions in the call. The restrictions in Tree have some
implications for call unfolding: (1) that only vari-
ables may be tested imply that some function calls
must not be unfolded; (2) that all tests must occur
in the beginning of a function body sometimes ne-

cessitates reorganizing expressions after call un-
folding.

Problem (1) occurs if an actual parameter to a
function call is itself a call. Unfolding the outer call
may cause the inner call to be "caught" in a case or
an equal test. For instance, let us consider the pro-
gram piece ... (call f (call g y)) where f is defined by (f
(x) (case x ...)). Unfolding the call yields ... (case (call
g y) ...), which is a disallowed form as only vari-
ables may be tested. We thus cannot unfold the f
call. This problem reflects a property of pure re-
write programming: whenever a computed value
needs to be tested, a surrounding call to an auxil-
iary function handling the result is needed.

Problem (2) occurs if a non-tail call (i.e. a call
being an argument to the pairing operator) is unfol-
ded to an expression with tests. If, for instance, f is
defined by

(f (x) (case x ((a. b) --+ (case a ('1 --, 'one)))))

we might unfold the call in a pairing expression ...
(y. (call f z)) to get

... (y. (case z ((a. b) --) (case a ('1 ~'one)))))

This expression does not obey the restr ic t ion that
al l tests must occur in the beginning o f the funct ion
body, but the unfolding obviously is semantically
correct if one defines the unfolded expression in an
extended language without the restriction. An ex-
pression like the above one can, however, always
be converted into a semantically equivalent and
syntactically allowed one. This is done by chang-
ing the order of the pairing and testing operations.
For the example this yields:

... (case z ((a. b) ~ (case a ('1 ~ (y. 'one)))))

which is an allowed syntactic form. Such transfor-
mations are semantically correct due to our strict
evaluation order. With a lazy semantics, the trans-
formed version above would be less terminating
than the non-transformed one.

5.3 Finiteness

Polyvarint program specialization gives two kinds
of termination problems: (1) generation of infinitely
many function variants, also known as infinite
specialization; (2) infinite call unfolding. Infinitely
many variants may be generated since the set of sta-
tic values is infinite. Inf'mite unfolding may occur if
the unfolding strategy is too liberal; infinite unfold-

91

ing may thus happen even if there are only finitely
many variants.

Infinite specialization can be solved by generali-
zation [Turchin 88] of s t i l e values: replace static
values by variables during symbolic evaluation. In-
finite call unfolding is avoided by choosing an un-
folding strategy, which is "conservative enough".
Since some call unfolding usually is performed
during symbolic evaluation, infinite specialization
may show up at first as infinite unfolding. Choos-
ing a more conservative unfolding strategy in that
case just results ha the generation of infhaitely many
residual functions.

Detecting whether infinite specialization may oc-
cur is related to the halting problem and is ha gener-
al undecidable. Jones addresses the problem in de-
tall and develops algorithms, which ensure termina-
tion [Jones 88]. In Treemix it is up to the user to
decide when to generalize and when to unfold.
This is done by manual annotation of the subject
program: every call is annotated as either "should
always be unfolded" or "should never be unfolded"
[Sestoft 86], and an expression may be annotated
to indicate that its symbolic value should be genera-
lized to a variable (called "dynamic rhs terms" in
[Bondorf 88]).

6. Preprocessing

As argued in [Bondorf, Jones, Mogensen, &
Sestoft 89], efficient self-application requires pre-
processing in the form of binding time analysis.
The purpose is to decide specialization time tests al-
ready in preprocessing. Since this removes work
from the specializer, specialization can be perfor-
med more efficiently. More importantly, however,
this means that self-application, specialization of
the specializer, gives much better results (and thus
better compilers). The reason is, shortly explained,
that some important tests in the specializer being
specialized can be decided due to the preprocessing
of its static input, a subject program (e.g. an inter-
preter). Preprocessing adds information which was
not otherwise present.

The information collected in preproeessing can
be added to the program by annotating it. Treemix
uses four preprocessing phases, each of which
adds annotations to the subject program. Three of
these phases are abstract interpretations, which ab-

stract program specialization (symbolic evaluation)
in different ways, depending on the desired infer-
marion. Abstract interpretation gives a safe appro-
ximation to the computation it abstracts: the infor-
mation computed by abstract interpretation may not
be precise, but is always correct.

6.1 Call annotation analysis

Our f'n'st preprocessing phase abstracts call unfold-
ing. The analysis predicts whether the user sup-
plied call unfolding annotations possibly may result
in disallowed ease or equal tests (problem (1) of
section 5.2). It assigns to every program variable a
value from a three element lattice: .1_ E P ~ -]-.
The top value "]- abstracts function calls: if a vari-
able is described by this value, it may possibly be-
come bound to a call if some call to the function
containing the variable is unfolded. If the variable
is tested by case or equal, a disallowed form thus
may result. It is therefore unsafe to unfold calls to
the function containing the variable.

The bottom value 2_ abstracts values which de-
finitely never will contain function calls. It is thus
safe to test variables described by 2_. P abstracts
values which are definitely not themselves function
calls, but which may be pairs containing calls in the
components. It is never safe to test a P value with
equal, but in most cases ease is safe: testing a pair
against an atomic constant definitely gives a falling
match, whereas testing it against a variable pair or
else definitely gives a successful match. Thus, if a
ease only contains these pattern forms, it is always
safe to test a pair since the ease is guaranteed to be
reduced away. It is only unsafe to test a P value
against a non-atomic constant.

Only if all tests in a function are always safe, it
can be guaranteed that calls to the function can safe-
ly be unfolded. Notice that this analysis does not at
all deal with termination questions: there is no
guarantee against hafmite unfolding.

6.2 Binding time analysis

The abstract interpretation called binding time ana-
lysis was introduced for partial evaluation in
[Jones, Sestoft, & SOndergaard 85]. It abstracts
program specialization by abstracting away the sta-
tic values. The simplest binding time domain is a
two-point lattice: $ for "definitely static" (or K for

92

"known") and D for "possibly dynamic" (or U for
"possibly unknown"), ordered so that S f- D. A
binding time analysis for dealing with partially sta-
tic structures is developed in [Mogensen 88]. It
uses a domain with bottom value S and top value
D. The values between describe partially static va-
lues. For instance, (S, D) describes a value which is
a pair of a static and a possibly dynamic value.
Compound values are ordered componentwise. To
work with finite descriptions, grammars are intro-
duced to handle recursive data structures.

Our analysis is an extension of Mogensen's: we
distinguish between "definiteIy dynamic" (D) and
"possibly dynamic" (U, unknown), and also be-
tween "atomic and static" (A) and "static" (S). The
effect of our analysis is to assign to every variable
a value from the domain

U
p/ \
1 D
A /

\

.L

P means "partially static" (either definitely static, S,
or a pair with arbitrary subparts). It is a compound
domain described by grammars,

The binding time information is used to annotate
case and equal to avoid the "cases" tests in the
symbolic evaluation function B (section 5.1). For
instance, if the tested variable in a case has the ab-
stract value D, then the case is annotated so that the
"isVar(v)" branch is always chosen. The abstract
value U can be read as "no information"; if a tested
variable is described by that abstract value, then the
complete "cases" has to be performed.

6.3 Constructor analysis

The third abstract interpretation abstracts call un-
folding (like the f~rst one), but for a different pur-
pose. The analysis is introduced due to problem (2)
of section 5.2: call unfolding may necessitate ex-
pression restructuring to ensure that all tests occur
in the beginning.

For all argument expressions to occurrences of
the pairing operator, the analysis assigns a value _L
or -T (A. __. T) . T means that the residual version
of the argument expression (after symbolic evalua-
tion including call unfolding) may contain tests. _L

abstracts expressions which are guaranteed not to
symbolically evaluate to expressions with tests, i.e.
they evaluate to expressions of the syntactic form
R. The information is used to annotate pairing
operators. If both arguments are described with .L,
an annotation telling that post-restructuring is defi-
nitely not needed is added.

6.4 Unmodified functions analysis

This final analysis detects functions which definite-
ly will appear unmodified in the residual program
(except for renaming). Such functions need not be
specialized but can simply be copied by the partial
evaluator.

Functions for which all argument variables have
the binding time value D are candidates for this.
Other requirements are that calls to the function are
never unfolded and that the function itself only
calls other functions, which will appear unmodified
(with calls that are not unfolded). A number of
functions of this kind do appear in our partial eva-
luator itself, so the analysis is worthwhile for the
aim of self-application.

7. Resu l t s

The partial evaluator has been implemented and
successfully self-applied. The tables below sum-
marize the various results, The first table shows
run time figures; the specializer is referred to as
mix, the preprocesser as pre. The figures for pre-
processing include all 4 preprocessing phases.
Three interpreters have been used in the experi-
ments: MPint, an interpreter for a simple imperative
"while" language with list data structures (descri-
bed in [Sestoft 86]), lamint, an interpreter for a
simple functional language with higher order func-
tions (a subset of mini-ML [Kahn 87]) and finalIy
sint, a Tree self-interpreter. The corresponding
generated compilers are named MPcomp, lameomp,
and scomp respectively, scornp is a "self-compiler"
(a source to source transformer): it "compiles" a
Tree program into a Tree program. Finally, cogen
is the compiler generator.

Tree has been implemented by compilation into
Scheme. The programs have been run in Chez
Scheme version 2.0.3 on a VAX 785, Unix 4.3
BSD. All run time figures are given in CPU sec-
onds with one decimal; they exclude the time used

93

Run time fim~res
time/ms ratio

resultTree
= L sint [soumeTree, inputTree] 4.5

54.2
= L targetTree inputTree 0.1

resultMP
= L MPint [soumeMP, inputMP] 32.2

19.5
= L targetMP inputMP 1.7

resultlam
= L lamint [sourcelam, inputlam] 11.1

2.0
= L targetlam inputlam 5.5

targetTree
= L mix [sint-ann, sourceTree] 12.3

9.6
= L scomp sourceTme 1.3

targetMP
= L mix [MPint-ann, sourceMP] 1.9

3.2
= L MPcomp sourceMP 0.6

targetlam
= L mix [lamint-ann, sourcelam] 1.1

1.7
= L lamcomp sourcelam O. 6

scomp
= L mix [mix-ann, sint-ann] 36.8

9.7
= L cogen sint-ann 3.8

MPcomp
= L mix [mix-ann, MPint-ann] 42.1

6.3
= L cogen MPint-ann 6.7

lamcomp
= L mix [mix-ann, lamint-ann] 58.2

4.0
= L cogen lamint-ann 14.7

cogen
= L mix [mix-ann, mix-ann] 326.3

5.8
= L cogen mix-ann 56.7

sint-ann = L pre sint 6.1
MPint-ann = L pre MPint 7.0
lamint-ann = L pre lamint 4.7
mix-ann = Lpre mix 304.3

for garbage collection (in the worst case 40% extra
time, typically much less). The ratio numbers show
how big the partial evaluation gain is: how much
speedup we achieve by partial evaluation. More de-
cirnals than the ones given here have been used in
the computation of the ratios. All figures have the
usual uncertainty connected to CPU measures.

The figures compare well with those given in
[Mogensen 88] (to the author's knowledge the only
other existing fully self-applicable evaluator with
partially static structures). It should be noted that
no postprocessing is performed on output from
mix; all postprocessing-like work is done by mix it-
self. Since postprocessing is not speeded up by

Sizes
words ratio

sourceYrea 367
targetTree 374 1.0

sourceMP 67
targetMP 221 3.3

sourcelam 21
targetlam 52 2.5

sint 368
scomp 3308 9.0

MPint 414
MPcomp 4535 11.0

lamint 359
lamcomp 6425 17.9

mix 4298
cogen 17219 4.0

mix-ann 5123

self-application, the inclusion of postprocessing in
mix gives worse self-application ratios than if it had
been performed in a separate phase. The ratios are
still very satisfactory, though.

The best ratios by far are those for the self-
interpreter. This is not surprising: Tree as well as
Treemix were designed with particular attention to
the self-interpreter case, cf. the discussion earlier.
An interesting observation is that the figures for
lamint are significantly worse than the other figures.
The reason for this is that in lamint almost all vari-
ables get the binding time value U, thus leading to a
badly annotated version, lamint uses higher order
functions expressed indirectly in so-called named
combinator form (with an explicit "@" operator for
function application, cf. the combinator logic ex-
ample in section 4.3), and this leads to many U
binding time values. Efficient binding time analysis
for higher order programming is a subject of cur-
rent research [Mogensen 89].

The second table shows the sizes of various se-
lected programs in source form; the figures are gi-
ven as the number of words (tokens). In bytes, the
largest program (cogen) has the size 111681. As
with the run time figures, these are also comparable
to those in [Mogensen 88]. Again, notice that the
ratio for lamcomp is much worse than for the other
compilers (this time a small ratio is desired); the
figures for Tree/sin! are generally the best. It is in-
teresting that the ratios for cogen are significantly
smaller (better) than those for the compilers.

9~

8. R e l a t e d w o r k

[Bonacina 88] relates partial evaluation of term re-
writing systems to equational (Knuth-Bendix)
completion. She describes a very general partial
evaluation algorithm based on the completion pro-
cedure; the approach is less operational than ours
and does not address self-application.

[Consel 88] describes a compiler oriented partial
evahiator for a subset of first order Scheme. Pro-
grams are written with special compile time and run
time operations and are user annotated with flexible
function annotations for deciding upon unfolding
and specialization. In [Romanenko 88] a partial
evaluator for a functional LISP-like language with
REFAL data structures (strings rather than S-
expressions) is described; he basically uses the
principles from [Sestoft 86]. [Fuller & Abramsky
88] describes partial evaluation of Prolog.

[Turchin 861 describes supercompi la t i on , a

more general program transformation technique
than partial evaluation. All decisions are taken "on
the fly", including decisions on call unfolding and
generalization. There is thus no preprocessing like
our binding time analysis; the supercompiler has
not been successfully seK-applied.

[Launchbury 88] uses domain projections (re-
tracts) to describe the division of data into static
and dynamic parts.

translate a set of clauses with the same predicate
symbol in the clause heads into a decision tree with
the clause bodies at the leaves. The decision tree
branching would be decided by elementary unifica-
tion operations such as unification of variables with
constants, unification for decomposing structures,
and unification of two variables (for dealing with
repeated variables in clause heads).

Future work in partial evaluation should address
higher order programming; this is not handled effi-
ciently by present day self-applicable partial evalua-
tors. Normal order (lazy) reduction also deserves
attention; no self-applicable partial evaluator exists
for a lazy language (at least to our knowledge).
Finally, more work along the lines of [Jones 88] is
needed for handling the in general undecidable pro-
blem of termination. The aim here is to develop al-
gorithms for automatically finding safe generaliza-
tion strategies that ensure termination.

A c k n o w l e d g e m e n t s

I am most grateful to Torben Mogensen for many
fruitful discussions on partial evaluation. Olivier
Danvy has read drafts and has patiently answered
my questions concerning the Scheme implementa-
tion of the system. Thanks also go to Charles Con-
sel, Harald Ganzinger, Carsten Kehler Hoist, Neff
D. Jones, John Launchbury, and Peter Sestoft.

9. C o n c l u s i o n a n d i s s u e s

We have presented a fully self-applicable partial
evaluator for an intermediate language for term re-
writing systems. The Language is strict (innermost
reduction order), first order, and untyped. We have
overcome the problems with partial evaluation of
pattern matching by expressing it at a lower level of
abstraction: pattern matching is translated into deci-
sion (matching) trees. Decision trees have a rather
restrictive syntax to model term rewriting systems
closely. This introduces new problems in partial
evaluation, in particular in connection to call un-
folding. We have implemented the partial evaluator
and self-applied it with satisfactory results. Rea-
sonably small and efficient compilers as well as a
compiler generator have been generated.

tt is conceivable that an idea similar to decision
trees is useful for partial evaluation of Prolog:

References

[Augnstsson 85]
Lennart Augustsson: "Compiling pattern matching",
Conference on Functional Programming Languages and
Computer Architecture (ed. J.-P. Iouannaud), Nancy,
France 1985, Lecture Notes in Computer Science 201,
368-381, Springer-Verlag 1985.

[Baeten, BergsWa, & Klop 87]
J. C. M. Baeten, J. A. Bergstra, and J. W. Klop: "Term
rewriting systems with priorities", Rewriting Techniques
and Applications (ed. Pierre Lescanne), Bordeaux, France
1987, Lecture Notes in Computer Science 256, 83-94,
Springer-Verlag 1987.

[Bonacina 88]
Maria Paola Bonacina: "Partial evaluation in functional
rewrite programming", AICA Annual Conference, Ca-
gliari. Italy 1988.

[Bondorf 88]
Anders Bondorf: "Towards a self-applicable partial eva-
tuator for term rewriting systems", in [PEMC 88].

95

[Bondorf, Jones, Mogensen, & Sestoft 89]
Anders Bondorf, NeiI D. Jones, Torben ~E. Mogensen,
and Peter Sestoft: "Binding time analysis and the taming
of self-application", submitted for publication.

[Btdyonkov 88]
M. A. Bulyonkov: "A theoretical approach to polyvar-
iant mixed computation", in [PEMC 88].

[Conse188]
Charles Consel: "New insights into partial evaluation:
the SCHISM experiment", ESOP "88 (ed. Harald Gan-
zinger), Nancy, France 1988, Lecture Notes in Computer
Science 300, 236-247, Springer-Verlag 1988.

[Dershowitz 85]
Nachum Dershowitz: "Computing with rewrite
systems", Information and Control 65, 122-157, 1985.

[Ershov 82]
Andrei P. Ershov: "Mixed computation: potential appli-
cations and problems for study", Theoretical Computer
Science 18, 41-67, 1982.

[Fuller & Abramsky 88]
David A. Fuller and Samson Abmmsky: "Mixed compu-
tation of Prolog programs", in [PEMC 88].

[Futamum 71]
Yoshihiko Futamura: "Partial evaluation of computing
process - - an approach to a compiler-compiler",
Systems, Computers, Controls 2, 5, 45-50, 1971.

[Hoffmann & O'Donnel182]
Christoph M. Hoffmann and Michael J. O'Donnell:
"programming with equations", ACM Transactions on
Programming Languages and Systems 4, 1, January
1982.

[Huet & Levy 79]
G6rard Huet and Jean-Jacques Levy: "Computations in
Nonambiguous Linear Rewriting Systems", Technical
report no. 359, INRIA, Rocquencourt, France, 1979.

[Huet & Oppen 80]
G6rard Huet and Derek C. Oppen: "Equations and rewrite
rules, a survey", Formal Language Theory, Perspectives
and Open Problems (ed. Ronald V. Book), 349-405, Aca-
demic Press, 1980.

[Jones 87]
Neil D. Jones: "Flow analysis of lazy higher-order func-
tional programs", in Abstract Interpretation of Declara-
tive Languages (eds. Samson Abramsky and Chris Hank-
in), Ellis Horwood Series in Computers and their Appli-
cations, 1987.

[Jones 88]
Neil D. Jones: "Re-examination of automatic program
specialization", in [PEMC 88].

[Jones, Sestoft, & S0ndergaard 85]
Nell D. Jones, Peter Sestoft, and Harald SCndergaard:
"An experiment in partial evaluation: The generation of a
compiler generator", Rewriting Techniques and Applica-
tions (ed. J.-P. Jonannaud), Dijon, France 1985, Lecture
Notes in Computer Science 202, 124-140, Springer-
Verlag 1985.

[Jones, Sestoft, & Scmdergaard 88]
Nell D. Jones, Peter Sestoft, and Harald Scndergaard:
"Mix: a self-applicable partial evalnator for experiments
in compiler generation", LISP and Symbolic Computa-
tion 1 3/4, 1988.

[Kahn 871
Gilles Kahn: "Natural Semantics", INRIA, Centre So-
phia Antipolis, France, Rapport de Recherche No 601,
1987.

[Klop 87]
J. W. Klop: "Term rewriting systems: a tutorial", Bulle-
tin of the European Association for Theoretical Compu-
ter Science 32, 1987.

[Lannchbury 88]
John Launchbury: "Projections for specialisation', in
[PEMC 88].

[Mogensen 88]
Torben ~E. Mogensen: "Partially static structures in a
self-applicable partial evaluator", in [PEMC 88].

[Mogensen 89]
Torben JE. Mogensen: "Binding time analysis for higher
order polymorphically typed languages", this volume.

[PEMC 88]
D. BjCrner, A. P. Ershov, and N. D. Jones (eds.):
"Workshop on Partial Evaluation and Mixed Computa-
tion", G1. Avern~es, Denmark, October 1987. North-
Holland 1988.

[Peyton Jones 87]
Simon L. Peyton Jones: "The Implementation of Func-
tional Programming Languages", Prentice-Hall, 1987, in
particular ch. 5, 78-103: "Efficient compilation of
pattem-matehing" by Philip Wadler.

[Romanenko 88]
Sergei A. Romanenko: "A compiler generator produced
by a self-applicable specialiser can have a surprisingly
natural and understandable structure", in [PEMC 88].

[Sestoft 86]
Peter Sestoft: "The structure of a self-applicable partial
evaluator", Programs as Data Objects (eds. Nell D. Jones
and Harald Ganzinger), Copenhagen, Denmark 1985,
Lecture Notes in Computer Science 217, 236-256,
Springer-Verlag 1986.

[Sestoft 88]
Peter Sestoft: "Automatic call unfolding in a partial eva-
luator", in [PEMC 88].

[Turchin 86]
Valentin F. Turchin: "The concept of a supercompiler',
ACM Transactions on Programming Languages and
Systems 8, 3, July 1986.

[Turchin 88]
Valentin F. Turchin: "The algorithm of generalization",
in [PEMC 88].

