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Abstract 1. Introduction 

This paper describes a fully self-applicable partial 
evaluator developed for equational programs in the 
form of term rewriting systems. Being self- 
applicable, the partial evaluator is able to generate 
efficient compilers from interpreters as well as a 
compiler generator automatically. 

Earlier work in partial evaluation of term rewriting 
systems has not achieved self-applicability due to 
the problem of partially evaluating pattern match- 
ing. This problem is overcome by developing an in- 
termediate language for being able to express patt- 
ern matching at an appropriate level of abstraction. 

We describe the intermediate language and partial 
evaluation of it. Binding time analysis, a well- 
known preprocessing technique, is used. We intro- 
duce further preprocessing to deal efficiently with 
our intermediate language. 

The system has been implemented and compilers 
for small languages as well as a compiler generator 
have been generated with satisfactory results. 
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The potential use of partial evaluation for doing 
compilation, compiler generation, and even compi- 
ler generator generation has been known since the 
early seventies [Futamura 71]. A few years ago 
these promising ideas were carried out for the first 
time in practice in the LISP based "Mix" project in 
the Copenhagen group around Neil D. Jones 
[Jones, Sestoft, & Scmdergaard 85]. Various 
people have since then been working on partial eva- 
luation in Copenhagen and other places. The aims 
have been to understand partial evaluation better 
and to develop stronger partial evaluators: to make 
them "as automatic as possible" and to use stronger 
languages. 

Partial evaluation is a general program transfor- 
mation which, given a subject program and static 
values of some but not all of its input parameters, 
produces a so-called residual program [Ershov 82]. 
This, when applied to the rest of the inputs,, will 
yield the same result the original program would 
have yielded on all its inputs. Partial evaluation is 
thus program specialization: its effect is to yield a 
new program equivalent to the original on a certain 
subset of its input. We therefore also refer to a par- 
tial evaluator as a specializer. 

To compile by partial evaluation, an interpretive 
specification of the language is needed. By specia- 
lizing the interpreter with static input being the in- 
terpreted source program, a target program is pro- 
duced (compilation). And by self-application, spec- 
ialization of the specializer itself with static input 
being an interpreter, a stand-alone compiler is gen- 
erated. Finally, by specializing the specializer with 
the static input being the specializer itself, a compi- 
ler generator is produced. 
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Equational programming, that is programming 
with term rewriting systems [Dershowitz 85] [Huet 
& Levy 79] [Huet & Oppen 80], provides a conve- 
nient formalism for defining computations. In par- 
ticular, as described in [Hoffmann & O'Donnell 
82] and also [Turchin 86] (for the language RE- 
FAL), equational programming can be used for de- 
fining interpretive language specifications. It has 
therefore been a natural goal to realize the ideas of 
partial evaluation in the context of term rewriting 
systems: to use self-application to transform inter- 
preters written in equational style to compilers, also 
written in equational style. This transformation has 
been performed for other languages (first time: 
[Jones, Sestoft, & Sondergaard 85]), but to our 
knowledge never before for term rewriting 
systems. 

Self-application means that the specializer plays 
two roles: as specializer and as subject program. 
The specializer therefore has to be written in the 
same language as the language of the programs it 
treats. Such a specializer is called an autoprojector 
[Ershov 82]. Experience from the "Mix" project 
has shown that successful specialization of a self- 
interpreter (an interpreter written in the same langu- 
age as it interprets) is a first step towards self- 
application. This is indeed plausible as one may 
consider a specializer as being a "smart" interpreter: 
to evaluate static expressions, it contains the code 
of an interpreter. An autoprojector is a "self- 
specializer", and thus a "smart" self-interpreter. 
Therefore, ff an autoprojector performs badly when 
specializing a self-interpreter, then it cannot be ex- 
pected that it will ever be able to specialize itself 
(self-application) in a satisfactory way. 

We have already described partial evaluation of 
a subclass of term rewriting systems in [Bondorf 
88]. The partial evaluation methods described there 
gave good results in a number of cases, including 
specialization of a non-trivial interpreter (for a 
small lambda calculus based language with higher 
order functions). However, when a self-interpreter 
for the term rewriting system language was specia- 
lized, the partial evaluator did not perform well: 
enormous specialized (self-) interpreters resulted 
due the way of dealing with pattern matching. 
Since a self-interpreter could not be specialized sa- 
tisfactorily, self-application was out of question. 

In this paper we describe an approach which has 
achieved self-application: rather than directly spec- 
ializing a program in the form of a term rewriting 
system, we first translate the program into an inter- 
mediate form. This program is then specialized 
yielding a residual program, also in intermediate 
form. Finally, the residual program is translated 
back into a term rewriting system: 

rewrite residual rewrite 
rule program rule program 

, t 

Tree I t residual 
program ~ Tree program 

static input 

(Tree is the name of the intermediate language; the 
specializer is called Treernix.) In the intermediate 
language, pattern matching is expressed in the form 
of so-called decision trees (or matching trees [Huet 
& Levy 79]): pattern matching has been factorized 
into explicit primitive operations for comparing va- 
lues and decomposing data structures. But the in- 
termediate language still contains enough structure 
to make it possible to perform the translation back 
into pure rewrite rule form. LISP or, say, ass- 
embler language (!) as intermediate language would 
not suffice here. One could of course in principle 
translate a residual program written in e.g. LISP 
into rewrite rule form, but the result would hardly 
be readable. Consequently, existing LISP based 
partial evaluators [Jones, Sestoft, & SCndergaard 
88] [Mogensen 88] cannot be used for our pur- 
pose. 

Our concrete decision tree language basically is 
a functional language, but its control primitives dif- 
fer from those of for instance Mixwell [Jones, 
Sestoft, & S~ndergaard 88]. Furthermore, to 
match the intension of being an intermediate langu- 
age for term rewriting systems, there are certain re- 
strictions imposed on the allowed expression 
forms. To partially evaluate decision tree pro- 
grams, well-known techniques for partial evalua- 
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tion of  funct ional  programs [Jones, Sestoft, & 

Sondergaard 88] can be used as a start point, but 
they must be modified to deal with the new control 

primitives and restrictions. 

Of  the two hardest non-trivial problems of par- 
tial evaluat ion,  those of  termination and self- 
application, the main concern of this paper is self- 
application. We therefore address binding time ana- 
lysis, and more generally preprocessing, in some 
detail. Preprocessing is essential for efficient self- 

application [Bondorf, Jones, Mogensen, & Sestoft 

89]. 

1.1 Outline 

In section 2 we summarize definitions and termi- 

nology. In section 3 we argue for using decision 
trees; our concrete decomposit ion tree language is 
described in section 4. Section 5 describes partial 

evaluation of  decision tree programs, and it ends 
with a br ief  discussion of  finiteness. Section 6 is 
devoted to preprocessing. Section 7 contains an 
overview of  the results. In section 8 we mention re- 

lated work, and in section 9 we conclude. 

2. Definitions and terminology 

In this section we review some basic concepts of 
partial evaluation and term rewriting systems. 

2.1  Programming languages and program 
specialization 

Let V be a universal domain containing programs 
and data values, including a specific element [], and 
suppose vl : v2 is in V for any vl ,  v2 in V. An ex- 

ample is the set of  all Lisp S-expressions. As in 
ML we write Ix1, x2 ..... xn] to stand for xl : [x2 ..... 
xn] so [xl, x2 ..... xn] = xl : x2 :... : xn : [], where : 

associates to the right. 

A programming language, for instance Li, is a 
partial function that maps programs to meanings, 
which themselves are partial functions from input 

to output: 

Li: V - --> ( V  - --> V)  

An Li-prograrn p is any p e V such that L i p is defi- 

ned. Each program will take one input which,  

however, may be a list. 

Suppose p is an L2-Program expecting inputs of 

the form [vs, vd]. A residual program for p with re- 
spect to vs is an L3-program Pvs satisfying 

L3 Pvs vd = L 2 p [vs, vd] 

We also say that Pvs is p specialized with respect to 
vs, and vs is called the static (often referred to as 
"known"  or "available") input, while vd is the dy- 
namic ("unknown") input. 

A partial evaluator (or program specializer) is an 

L 1-program mix such that L 1 mix [p, vs] is a residual 

program for every p, vs. This can be re-expressed 

by the "mix equation": 

L 3 (L 1 mix [p, vs]) vd = L 2 p [vs, vd] 

p is called the subject program of partial evaluation. 

For mix to be an autoprojector, L 1 = L 2. We shall 
only be interested in the case where also L 2 = L a, so 
L 1 = L 2 = L a = L. In our case L is the decision tree 

language. 

2.2 Interpreters and compilers 

Let S: V - ---> (V - --4 V) be a programming langu- 

age, perhaps different from L. Given an S-program 

source that maps some input data to an output re- 
sult, an interpreter for S written in L is an L- 

program int such that for all source and data 

L int [source, data] = S source data = result 

An S-to-L compiler written in L is an L-program 

comp mapping source programs written in S onto 
target programs written in L: 

target = L comp source 

where target must  satisfy 

L target data = S source  d a t a  = result 

2.3 Compilation and compiler generation 

The program speeializer mix described above may 

be used to compile from S to L by specializing int 
with respect to source: 

target = L mix [int, source] = intsource 

By the mix equation it is easy to see that this target 
program satisfies the requirement: 

L target data = S source data = result 

If  L = S, then int is a self-interpreter sint. In this 

case 
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L sintsource data = L source data 

for all data. 

By self-applying the partial evaluator, we can 
generate a compiler from the interpreter: 

comp = L mix [mix, int] = mixin t 

When given a source program, this comp produces 
a target program (this follows immediately from the 
mix equation): 

L comp source = L mix [int, source] = target 

We define that 

cogen = k mix [mix, mix] = mixmi x 

and see that when given an interpreter, cogen pro- 
duces the compiler: comp = L cogen int. 

2.4  Term rewriting systems 

We assume some knowledge about term rewriting 
systems, but we shall here shortly review some 
concepts in order to set up a terminology. 

We consider a set of  variables V, and a set of 
operators E such that for all op~ Y.: arity(op)>0 (an 
arity is also called a rank). The set of terms Tz(V ) 
generated by Y. over V is defined such that: 1) 
every variable is a term; 2) every operator op~ Y. 
for which arity(op)=0 is a term; 3) if  t 1 .... .  t n are 
terms and if there exists an operator op~ E for 

which arity(op)=n, then op(t t . . . . .  t.n) is a term. 
The set of ground terms T z is defined as the set of 
terms without variables. Terms with variables are 
called open terms. 

A term rewriting system is a set rewrite rules, 
which may be ordered (in which case the system is 
a priority rewrite system [Baeten, Bergstra, & 
Klop 87]). A rewrite rule is a pair of terms (li, ri) 
with the restriction that 1 i is not a variable; it is writ- 
ten as li---~r i where 1 i is called the left-hand side and 
r i is called the right-hand side. A further restriction 
is that no variable must occur in any r i unless it 
also occurs in the corresponding 1 i. A term is linear 
if  no variable occurs more than once in it. A (left-) 
linear rewrite rule is a rewrite rule in which the left- 
hand side is linear. 

Sometimes E will be divided into two disjoint 
sets, E = A + F. A is the set of function symbols 
(or defined operators) and F is the set of construc- 
tors. The set T F is denoted as the set of ground 
constructor terms. A functional term rewriting 

system is a term rewriting system in which the left- 
hand sides are restricted to be of  the form 8(Pl ..... 
Pn) (n>0) where 5e  A and all pi e TF(V), that is, 
they do not contain function symbols. Functional 
term rewriting systems correspond to "systems 
with constructors" [Huet & Levy 79]. 

3. Mot iva t ion  for dec is ion  trees 

Successful self-application can only be expected if 
a self-interpreter can be specialized satisfactorily. 
In this section we motivate the use of decision trees 
rather than term rewriting systems by arguing that 
specialization of a rewrite system self-interpreter 
yields large residual programs, whereas good re- 
sults are achieved for decision trees. 

Recall (section 2.3) that for a self-interpreter sint 
and for an arbitrary L-program source 

L sintsource data = L source data 

f o r  a l l  data. sintsource and source are thus p rog rams  

which compute the same function, and they are 
also written in the same language, k. We may 
therefore expect that they also textually are "almost 

equal": sinlsource ~ source. In other words, if 
sintsourco is significantly bigger or runs significant- 
ly slower than source, then the self-interpreter was 
not specialized satisfactorily. In that case we cannot 
expect successful self-application of  the specializer. 

3.1 Specialization of a self-interpreter for 
term rewriting systems 

A self-interpreter for rewrite rule programs con- 
tains some code for matching a term against a patt- 
ern (a left-hand side of a rule). This code traverses 
the term and the pattern in parallel and yields either 
a substitution for the variables in the pattern (in the 
case of a successful match) or a mismatch. If a 
mismatch occurs, then the matching algorithm is re- 
applied to the term and another pattern. The proc- 
ess continues until a successful match is found (if it 
exists). The algorithm is of course inefficient; in 
addition to this, specialization of it gives undesired 
results, as we shall now see. 

Let us consider a small piece of  a (functional) 
term rewriting system source: 
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f(a, b) --~ one rule f l  
f(a, c) --~ two rule f2 

. . .  ---) ... f(X, Y). . .  

Here f is a function symbol, a, b, and c are con- 
structors, and X and Y are variables. 

Specialization is performed as a symbolic eva- 
luation over a domain of terms containing variables 
representing the dynamic unavailable values. Dur- 
ing specialization of the self-interpreter with respect 
to source, the self-interpreter is going to handle the 
term f(X, Y). The self-interpreter calls its matching 
algorithm to match f(X, Y) against the two f rules. 
But now we are specializing the self-interpreter, 
not executing it, so we (the specializer) do not 
know the values bound to X and Y (they depend on 
the unavailable input data); we only know the patt- 
erns from the two f rules in source. The specializer 
therefore produces a specialized version of the 
matching algorithm: it can match a term against the 
two f rules. The specialized matching algorithm 
will be something like this: 

match(f 1 )(X, Y) --~ 
if X = a then 

if Y = b then one successful match 
else match(f2)(X, Y) try next rule 

else match(f2)(X, Y) try next rule 

match(f2)(X, Y) --~ 
if X = a then 

if Y = c then two successful match 
else ... failing match 

else ... failing match 

The naive if-then-else structure has been inherited 
from the "trial and error" matching algorithm of the 

self-interpreter. In pure rewrite rule form, with all 
cases listed, we get the following priority rewrite 
system (ordered from top to bottom): 

match(f l)(a, b) --) one 

match(f 1 )(a, Y) --)  match(f2)(a, Y) 
match(f 1)(x, Y) ---) match(f2)(X, Y) 
match(f2)(a, c) ~> two 
match(f2)(a, Y) ---+ ... 
match(f2)(X, Y) --) ... 

successful match 
try next rule (i) 
try next rule (ii) 
successful match 
failing match 
failing match 

By unfolding the match(f2) terms in (i) and (ii) 
through instantiation (backwards substitution) of 
the variables X and Y for all relevant cases, we get: 

match(f l)(a, b) --~ one 

match(fl)(a, c) --~ two 
match(fl)(a, Y) --~ .,, 
match(fl)(a, Y) --~ ... 
match(fl)(a, c) --~ two 
match(f 1 )(a, Y) --) ... 
match(f 1)(x, Y) ---) ... 

successful match 
successful match 6) 
failing match (i) 
failing match 6) 
successful match (ii) 
failing match (ii) 
failing match (ii) 

Such instantiations correspond to Turchin's con- 
tractions [Turchin 86]. We note that overlapping 
left-hand sides make instantiation followed by un- 
folding semantically problematic. 

Now match(f1)(in sintsouree) closely corre- 
sponds to f (in source), but redundant rules have 
been generated due to the structure of  the self- 
interpreter. The number of such extra rules de- 

pends on the product of the number of rnatch(fx) 
rules for every left-hand side x of f  in source! This 
is of course completely unacceptable for realistic 

programs; we do not achieve sintsource ~ source. 
The above program may be reduced by removing 
redundant rules; however, to detect these a rather 
complex machinery is needed. Experience has 
shown that unacceptably slow partial evaluation re- 
sults. 

3 . 2  Spec ia l izat ion  of  a sel f - interpreter for 
decis ion trees 

Let us now consider a decision tree for the program 
piece in source (we omit a formal definition of de- 
cision trees; the semantics is the obvious one): 

f(X, Y) ---). 
case X of 

a: case Y of 
b: one 

c: two 

end 
end  

successful match 
successful match 

A self-interpreter for a decision tree language does 
not have to deal with mismatch cases. The decision 
tree guides the pattern matching: it is now a simple 
parallel search in the decision tree and the term. If a 
mismatch is found, then the term does not match 
any rule. We choose to consider this as an error, a 
match error, so it is semantically correct for the self- 
interpreter not to care about mismatches at all. A 
match error at the level of the interpreted program 
source will be reflected as an error at the level of 
the self-interpreter itself. 
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The specialized matching algorithm now looks 
like this: 

match(f)(X, Y) --> 
if X = a then 

if Y = b then one 
else 

if Y = c then two 
{ no "else" } 

{ no "else" } 

successful match 

successful match 

If no match is found, the absence of "else" 
branches results in an error. By converting the 
equality tests into ease dispatches, we get: 

match(f)(X, Y) --> 
case X of 

a: case Y of  
b : o n e  
c: two 

end 
e n d  

successful match 
successful match 

This exactly corresponds to the original piece of 
source. This should make it plausible that it is 
possible to achieve sintsourco -= source for decision 
trees. 

4. The decision tree language Tree 

As indicated by the previous example, the idea is to 
translate a set of left-hand sides into a decision tree 
(with the right-hand sides at the leaves) in which 
pattern matching is factorized into a series of ele- 
mentary matching operations. The choice of pattern 
matching primitives is a compromise between two 
contrasting requirements: strong primitives close to 
the rewrite rule form are desirable for the transla- 
tions to and from rewrite rule form. But simple pri- 
mitives are desirable for partial evaluation. 

4.1 Syntax and semantics 

Basically, the language Tree is a statically scoped, 
untyped and first order functional language that 
uses innermost (call-by-value, strict) deterministic 
reduction. Other reduction strategies like normal 
order reduction (lazy evaluation) could also be defi- 
ned, but this would require a complete revision of 
the partial evaluator; partial evaluation depends 
strongly on the operational properties of a langu- 
age. Innermost reduction is the simplest to deal 
with for at least two reasons: 1) there are no infinite 

data structures; 2) pattern matching operations do 
not influence redex reduction as in lazy pattern patt- 
ern matching. 

The data structures are Lisp S-expressions built 
from an in principle infinite set of O-ary construc- 
tors (like Lisp atoms and Prolog 0-ary functors) 
and one fixed binary constructor "." (like Lisp 
"cons" or Prolog "."). Arbitrary constructors could 
be introduced as syntactic sugar (together with 
some kind of type checking system), but they have 
not been included in the core language. Allowing 
arbitrary constructors would necessitate the encod- 
ing of programs when they are used as input to a 
self-interpreter or to the partial evaluator. Actually, 
when specializing a self-interpreter or the speciali- 
zer itself with respect to a program, it is necessary 
to encode this program twice. By disallowing arbi- 
trary constructors, we avoid all encoding and de- 
coding problems. Notation: as in LISP, we use (a 1 
... a n) as shorthand for (a 1 . ( .... an)), and 'a as short- 
hand for (quote a). 

The (abstract) syntax of Tree follows: 

Syntax 

P • Program programs 
F e Function functions 
B e Body bodies 
A e Alternative alternatives 
P E Pattern patterns 
R ~ R right-hand sides 
V ~E Var variables 
N e Name function names 
C E cst cons tan t s  

S ~ Symbol O-ary atomic symbols 

P : : = ( F  +) 

F ::= (N (V*) B) 

B ::= (case V A*) I (equal V 1 V 2 B 1 B2) I R 
A ::= (P ~ B) 

P ::= 'C I (V1 • V2) I else 
R ::= 'C I (R1. R2) [ V I (call N R*) I (xcall N R*) 

C : := S I (C1 • C2) 

One function corresponds to one decision tree. 

Pattern matching is performed by c a s e  and 
equal, ease is used for matching a term against a 
constructor, equal for comparing two terms for 
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equality. The case alternatives are matched in a 
strictly deterministic order from top to bottom until 
a match is found. The body corresponding to the 
matched pattern is then evaluated. If no pattern 
matches, an error occurs and the evaluation stops 
with a match error. If  more than one pattern 
matches (corresponds to overlapping left-hand 
sides in a term rewriting system), only the first one 
is considered (thus imposing a priority). A term 
matches a pattern 'C if the term is equal to the con- 
stant C. A term matches a pattern (V 1 . V2) if it is a 
pair, i.e. a term constructed with the binary con- 
slructor. The left part (the "car") of the term is then 
bound to V 1, the right part (the "cdr") to V 2. An 
else pattern is an "always match". The equal con- 
struction is a simple kind of conditional (useful for 
dealing with non-linear rewrite rules). Read it as "if 

V 1 = V 2 then B 1 ¢lse B2". 

The case construction is similar to "case expres- 
sions without default/fail clauses" [Augustsson 85] 
[Peyton Jones 87]. These have a particularly 
simple flow of control, which is desirable for par- 
tial evaluation. The drawback is that duplication of 
right-hand sides sometimes occurs when a rewrite 
rule program is translated into decision tree form. 

The (non-nested) R parts correspond to right- 
hand sides of rewrite rules; they constitute the 
leaves of the decision tree. Points to notice are that 
quote is used in the usual Lisp way to denote con- 
stants (ground constructor terms), that function 
symbols are preceded by the keyword call (so re- 
dexes, or calls, are identified syntactically), that ex- 
ternal functions are available through xcall, and fin- 
ally that the pairing operator is written as ".". Func- 
tions have fixed arity; type correctness with respect 
to this is checked statically. 

The distinction between the syntactic forms 
Body and R implies that all pattern matching tests 
must occur in the beginning of a function body. 
This reflects the intension with the language as 
being an intermediate form for rewrite rule pro- 
grams. In these, the operations of matching and 
evaluation of the right-hand side of the matched 
rule are completely separated. Also, only variables, 
not arbitrary expressions, may be tested by case 
and equal. We thus disallow the possibility of spec- 
ifying evaluation of an arbitrary expression during 
pattern matching. This reflects that pattern match- 
ing is a "passive" process, a search for a match giv- 

ing a substitution. It does not itself compute. 
(Note: lazy pattern matching is also "passive" in 
this sense, even though it may force evaluation of a 
suspended call in the term.) 

4.2 Example 

For an example, let us consider a program piece 
that tests whether a given (ground constructor) 
term t matches a given pattern p. Let the terms be S- 
expressions and let the patterns be either constants, 
pairs, or variables: 

Pat = (C. Const) [ (Pat. Pat) I Variable 

A variable is an atomic symbol different from C. 
The program piece is the following one: 

(match (p t) 
(case p 

( (p l .  p2) --) 
(case pl  

('C ---) (equal p2 t 'true 'false)) constant 
(else ----) /x~r 

(case t 
((t l .  t2) 

(call and (call match pl t l  ) (call match p2 t2))) 
(else --~ 'false))))) 

(else ---)'true))) variable 

(and (bl b2) (case bl ('false --) 'false) (else --) b2))) 

The deterministic pattern matching distinguishes 
constant from pair patterns, and equal compares a 
term and a constant pattern. 

4.3 Translation to and from Tree  

The problem of developing and discussing efficient 
algorithms for translating from rewrite rules to de- 
cision tree form and vice versa is outside the scope 
of this paper. However, we must ensure that Tree 
is strong enough to be useful as an intermediate 
language. The most severe restriction of Tree is its 
fixed innermost reduction strategy; we only addr- 
ess the problem of representing term rewriting 
systems with innermost reduction. We cannot ex- 
pect Tree to be suitable for handling normal order 
reduction (nor other reduction strategies). 

We first observe that it is possible to translate 
any functional term rewriting system based on S- 
expression data types (possibly with non-linear as 
well as prioritized rules) into Tree: group together 
all rewrite rules with left-hand sides rooted by the 
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same function symbol, while keeping the specified 
priority. Then translate each group into a Tree func- 
tion. This is always possible as one may generate 
the naive (and indeed inefficient) program, which 
just does naive pattern matching, testing one rule at 
a time. For certain restricted classes of term rewrit- 
ing systems, there exist much better algorithms 
[Augustsson 85] [Peyton Jones 87]. 

The other way around, we see that any Tree 
program can be translated into a (functional) re- 
write system: for each decision tree (fnnction), 
generate one rewrite rule for each leaf. The order of 
the re,m'ite rules must be the same as the order of 
the leaves (when considering the "flattened" deci- 
sion tree). For instance for the match program, this 
translation gives the following non-linear priority 
rewrite system (written in a syntax close to Tree): 

(match ('C. p2) p2) ----> 'true constant 
(match ('C. p2) t) --> 'false constant 
(match (p l .  !32) ( t l .  t2)) ----> pair 

(call and (call match pl t l) (call match p2 t2)) 
(match (p l .  p2) t) --~ 'false pair 
(match p t) --> 'true variable 

(and 'false b2) --> 'false 
(and bl b2) --> b2 

When decision trees contain duplicated leaves, so- 
phisticated algorithms may generate rewrite 
systems with fewer rules than leaves. 

General (non-functional) term rewriting systems 
can be mapped into functional ones, and therefore 
also into Tree. The idea is to split operator occurr- 
ences into constructor and function symbol occurr- 
ences by performing the following steps: (1) re- 
place all nested occurrences of left-hand side opera- 
tors by constructors; (2) replace all right-hand 
operators by function symbols; (3) for all function 
symbols now occurring in any right-hand side, add 
a rule, with lowest priority, that replaces the func- 
tion symbol by a constructor. For instance, let us 
consider a rewrite system for combinator logic (the 
example comes from [Klop 87]): 

@(@(@(s, f), g), x) ->  @(@(f, x), @(g, x)) 
@(@(K, x), y) --> x 
@0, x) -~ x 

Here @ is an operator for function application; S, 
K, and I are operators, f, g, x, and y are variables. 

By splitting the operator occurrences, we get a 
functional priority rewrite system (in Tree-near 
syntax): 

(@ ('@ ('@ 's 0 g) x) -> (ca, @ (call @ f ×) (ca, @ g x)) 
(@ ('@ 'K x) y) --> x 
(@'Ix) - ~x  
(@×y) ~ ( ' @ x y )  

The functional version of the rewrite system oper- 
ates on data structures with constructors rather than 
operators, but otherwise the behavior is the same. 
The systematic replacement of nested left-hand side 
operators by constructors is correct since, for in- 
nermost reduction, data structures only contain 
constructors, not function symbols. The extra rules 
replace function symbols by constructors; they are 
applied to terms (calls), which do not match any of 
the original rules (the extra rules have the lowest 
priority). Such calls are thus replaced by data struc- 
pares; this "records" that the call is in normal form. 

5. Partial evaluation of Tree 

Partial evaluation or, more specifically, polyvariant 
program specialization [Bulyonkov 88] can be 
viewed as abstract interpretation over open terms 
with variables representing the unavailable dynamic 
data. For each Tree function, the abstract interpreta- 
tion gives a set of possible variants. A variant asso- 
ciates with each function parameter an open term; a 
variant represents an instance of the function, spec- 
ialized according to the constant static parts in the 
open terms. A residual program thus is a set of 
specialized functions. In a specialized function, 
operations depending only on static values have 
been reduced. In particular, if the test of a conditio- 
nal can be decided, only the selected branch is pre- 
sent. 

The residual program can be optimized by un- 
folding calls to the (specialized) functions. Abstract 
interpretation over open terms and unfolding is 
usually intermingled. Function calls are thus also 
unfolded "on the fly" during abstract interpretation, 
and we refer to the process as symbolic evaluation. 
Our speciatizer Treemix processes its subject pro- 
gram by performing such an evaluation. [Sestoft 
86] describes symbolic evaluation in detail; a com- 
prehensive discussion of polyvariant program spec- 
ialization is found in [Jones 88]. 
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In Tree there are certain restrictions on the allo- 
wed forms of the control expressions case and 
equal: only variables may be tested, and all tests 
must occur in the beginning of a function body. 
These restrictions do not have equivalents in e.g. 
LISP. The first restriction implies that some care 
must be taken when processing ease and equal. 
Both restrictions have consequences for call un- 
folding. We address these problems in some detail. 

5 . 1  Processing case  and equal 

We shall here give a piece of the algorithm for 
symbolic evaluation of Tree expressions. Given an 
expression of the form Body, the algorithm pro- 
duces a residual body in which static tests have 
been performed. The algorithm is given in a style 
near to denotational semantics. It operates over the 
syntactic domains given earlier (Body, R .. . .  ); we 
use Body, R ... .  to denote the residual equivalents. 
Some notation: this typeface is used for pieces of 
the subject program being specialized and for the 
pieces of the residual program being generated. 

A piece of the symbolic evaluation algorithm 

Semantic domains 

Residual expressions: 

b: Body 

R 

V, W: Vat 

c, d: Cst 

Other domains: 

t, u: 

bodies 

right-hand sides 

variables 

constants 

Open = Vat + Cst + Pair open terms 
Pair = Open x Open pairs 

O: ® = (Var x Open)* unifiers 

~: ~g = (Vat x (Vat + Var x Var + Cst))* 

factorized unifiers 

Fall = Unit failing unification 

th: 0 + Fail unifier or fail 
e: Env = Var ---> Open environments 

Symbolic evaluation functions 

B: Body --> Env ~ Body 

BE(case V (P1 --) B1) ... (Pn ---> Bn))~e = 

cases e(EV]]) of 

isVar(v) ---> generate test 

(case v (P1 ---> BRB1]le) ... (Pn ---> BlrBn~e)) 

isCst(c) ~ perform test 

if3i:  (Pi = 'C such that c = cnc ] ] )  v 

(Pi = else) then 

let j  be the smallest such i in B[[Bjl]e 

else (case) always produces a match error 

isPair(t, u) 

An-(P1 ~ B1) ... (Pn ---) Bn)]] (t, u) e 

BE(equal V1 V2 B1 B2)~e = 

cases e(EV1]]), e(lrV2]]) of 

isCst(c), isCst(d) --~ 

i_f c = d then B EB 1 ]]e else BEB2J]e 

isCst(c), isVar(v) or isVar(v), isCst(c) --~ 

(case v ('c ---> BI~B 1 lie) (else ---> B[f B2]e)) 

isVar(v), isVar(w) ---) 

(equal v w B[[B1 ]]e BEB2]]e) 

otherwise ~ compound test 
let th = U(e(ffx~), e(Ey]])) in  

cases th of 

isFall0 --~ BEB2]]e 

isO(0) ---> G(T(0), BEB1 lie, B[[B2I]e) 

end 

BER]qe = Rn-R]]e 

A: Altez:nat±ve* ---)- Pair --> Env ---> Body 

AI[('S --~ B) A*]] (t, u) e = A~A*]] (t, u) e 

AE('(C1. C2) ---) B} A*~ (t, u) e = 

let th = U((CEC11], CffC2]]), (t, u)) in  

cases th of  

isFail0 --* AlIA*I] (t, u) e 

isO(0) --> G(T(0), BIrB]]e, A[rA*]] (t, u) e) 

A~((V1. V2) --~ B) A*]] (t, u) e = 

BIrBI] [ [ [ V I ~  t][I]-V2]]~ u]e 

AE(else ~ B) A*]] (t, u) e =BEB~e  

Air ~ (t, u) e = (case) 

R: R --* Env ---) R (definition omitted) 

C: c s t  ---> Cst (definition omitted) 

U: Open x Open --~ O + Fail 

unifies two open terms (definition omitted) 

T: 0 - - > ~  



90 

factorizes a unifier (definition omitted) 

G: W x Body x Body --) Body 

generates a residual body (definition omitted) 

The algorithm decomposes tests on compound 
open terms to ensure that only variables are tested 
in the residual body. This decomposition is perfor- 
med by the functions U, T, and G. We shall here 
explain the decomposition along with an example. 

Let us consider two open terms, t o and u 0' re- 
spectively a variable and a pair of a variable and a 
constant: t o = p, u 0 = (q. '6). The function U uni- 
fies two terms. It produces a list of variable-value 
pairs rather than a function as we are interested in 
its actual bindings, not its extensional behavior. 
Identity bindings are not represented. For the ex- 
ample, U(t 0, u0) = 00 = [(p, (q. '6)]. Every variable- 
value pair represents an equality which must hold 
for two unified terms t and u to be equal. Such an 
equality corresponds to a test on a variable. The 
function T factorizes the unifier by introducing 
fresh variables for components of pair values. For 
example, T(00) = ~t 0 = [(p, (r. s)), (q, r), (s, '6)]. 
Now every test can be expressed in Tree, either by 
case or equal. For the example we get G(V0, bl, 

b2) = 

(case p 
((r. s) 

(equal q r 
(case s ('6 --) b l )  (else --~ b2) ) 
bz)) 

(else --~ b2)) 

for some arbitrary bodies b 1 and b z. We observe 
that since Tree has no "fail clauses" [Peyton Jones 
87], code duplication of b 2 occurs. This has not 
caused practical problems in our experiments. 

5.2  Call unfolding 

Call unfolding is the process of replacing a func- 
tion call by the body of the function, with the for- 
real parameters replaced by the argument expres- 
sions in the call. The restrictions in Tree have some 
implications for call unfolding: (1) that only vari- 
ables may be tested imply that some function calls 
must not be unfolded; (2) that all tests must occur 
in the beginning of a function body sometimes ne- 

cessitates reorganizing expressions after call un- 
folding. 

Problem (1) occurs if an actual parameter to a 
function call is itself a call. Unfolding the outer call 
may cause the inner call to be "caught" in a case or 
an equal test. For instance, let us consider the pro- 
gram piece ... (call f (call g y)) where f is defined by (f 
(x) (case x ...)). Unfolding the call yields ... (case (call 
g y) ...), which is a disallowed form as only vari- 
ables may be tested. We thus cannot unfold the f 
call. This problem reflects a property of pure re- 
write programming: whenever a computed value 
needs to be tested, a surrounding call to an auxil- 
iary function handling the result is needed. 

Problem (2) occurs if a non-tail call (i.e. a call 
being an argument to the pairing operator) is unfol- 
ded to an expression with tests. If, for instance, f is 
defined by 

(f (x) (case x ((a. b) --+ (case a ('1 --, 'one))))) 

we might unfold the call in a pairing expression ... 
(y. (call f z)) to get 

... (y. (case z ((a. b) --) (case a ('1 ~'one))))) 

This expression does not  obey the restr ic t ion that 
al l  tests must occur in the beginning o f  the funct ion 
body, but the unfolding obviously is semantically 
correct if one defines the unfolded expression in an 
extended language without the restriction. An ex- 
pression like the above one can, however, always 
be converted into a semantically equivalent and 
syntactically allowed one. This is done by chang- 
ing the order of the pairing and testing operations. 
For the example this yields: 

... (case z ((a. b) ~ (case a ('1 ~ (y. 'one))))) 

which is an allowed syntactic form. Such transfor- 
mations are semantically correct due to our strict 
evaluation order. With a lazy semantics, the trans- 
formed version above would be less terminating 
than the non-transformed one. 

5.3 Finiteness 

Polyvarint program specialization gives two kinds 
of termination problems: (1) generation of infinitely 
many function variants, also known as infinite 
specialization; (2) infinite call unfolding. Infinitely 
many variants may be generated since the set of sta- 
tic values is infinite. Inf'mite unfolding may occur if 
the unfolding strategy is too liberal; infinite unfold- 
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ing may thus happen even if there are only finitely 
many variants. 

Infinite specialization can be solved by generali- 
zation [Turchin 88] of s t i l e  values: replace static 
values by variables during symbolic evaluation. In- 
finite call unfolding is avoided by choosing an un- 
folding strategy, which is "conservative enough". 
Since some call unfolding usually is performed 
during symbolic evaluation, infinite specialization 
may show up at first as infinite unfolding. Choos- 
ing a more conservative unfolding strategy in that 
case just results ha the generation of infhaitely many 
residual functions. 

Detecting whether infinite specialization may oc- 
cur is related to the halting problem and is ha gener- 
al undecidable. Jones addresses the problem in de- 
tall and develops algorithms, which ensure termina- 
tion [Jones 88]. In Treemix it is up to the user to 
decide when to generalize and when to unfold. 
This is done by manual annotation of the subject 
program: every call is annotated as either "should 
always be unfolded" or "should never be unfolded" 
[Sestoft 86], and an expression may be annotated 
to indicate that its symbolic value should be genera- 
lized to a variable (called "dynamic rhs terms" in 
[Bondorf 88]). 

6. Preprocessing 

As argued in [Bondorf, Jones, Mogensen, & 
Sestoft 89], efficient self-application requires pre- 
processing in the form of binding time analysis. 
The purpose is to decide specialization time tests al- 
ready in preprocessing. Since this removes work 
from the specializer, specialization can be perfor- 
med more efficiently. More importantly, however, 
this means that self-application, specialization of 
the specializer, gives much better results (and thus 
better compilers). The reason is, shortly explained, 
that some important tests in the specializer being 
specialized can be decided due to the preprocessing 
of its static input, a subject program (e.g. an inter- 
preter). Preprocessing adds information which was 
not otherwise present. 

The information collected in preproeessing can 
be added to the program by annotating it. Treemix 
uses four preprocessing phases, each of which 
adds annotations to the subject program. Three of 
these phases are abstract interpretations, which ab- 

stract program specialization (symbolic evaluation) 
in different ways, depending on the desired infer- 
marion. Abstract interpretation gives a safe appro- 
ximation to the computation it abstracts: the infor- 
mation computed by abstract interpretation may not 
be precise, but is always correct. 

6.1 Call annotation analysis 

Our f'n'st preprocessing phase abstracts call unfold- 
ing. The analysis predicts whether the user sup- 
plied call unfolding annotations possibly may result 
in disallowed ease or equal tests (problem (1) of 
section 5.2). It assigns to every program variable a 
value from a three element lattice: .1_ E P ~ -]-. 
The top value "]- abstracts function calls: if a vari- 
able is described by this value, it may possibly be- 
come bound to a call if some call to the function 
containing the variable is unfolded. If the variable 
is tested by case or equal, a disallowed form thus 
may result. It is therefore unsafe to unfold calls to 
the function containing the variable. 

The bottom value 2_ abstracts values which de- 
finitely never will contain function calls. It is thus 
safe to test variables described by 2_. P abstracts 
values which are definitely not themselves function 
calls, but which may be pairs containing calls in the 
components. It is never safe to test a P value with 
equal, but in most cases ease is safe: testing a pair 
against an atomic constant definitely gives a falling 
match, whereas testing it against a variable pair or 
else definitely gives a successful match. Thus, if a 
ease only contains these pattern forms, it is always 
safe to test a pair since the ease is guaranteed to be 
reduced away. It is only unsafe to test a P value 
against a non-atomic constant. 

Only if all tests in a function are always safe, it 
can be guaranteed that calls to the function can safe- 
ly be unfolded. Notice that this analysis does not at 
all deal with termination questions: there is no 
guarantee against hafmite unfolding. 

6.2 Binding time analysis 

The abstract interpretation called binding time ana- 
lysis was introduced for partial evaluation in 
[Jones, Sestoft, & SOndergaard 85]. It abstracts 
program specialization by abstracting away the sta- 
tic values. The simplest binding time domain is a 
two-point lattice: $ for "definitely static" (or K for 
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"known") and D for "possibly dynamic" (or U for 
"possibly unknown"), ordered so that S f- D. A 
binding time analysis for dealing with partially sta- 
tic structures is developed in [Mogensen 88]. It 
uses a domain with bottom value S and top value 
D. The values between describe partially static va- 
lues. For instance, (S, D) describes a value which is 
a pair of a static and a possibly dynamic value. 
Compound values are ordered componentwise. To 
work with finite descriptions, grammars are intro- 
duced to handle recursive data structures. 

Our analysis is an extension of Mogensen's: we 
distinguish between "definiteIy dynamic" (D) and 
"possibly dynamic" (U, unknown), and also be- 
tween "atomic and static" (A) and "static" (S). The 
effect of our analysis is to assign to every variable 
a value from the domain 

U 
p/ \ 
1 D 
A / 

\ 

.L 

P means "partially static" (either definitely static, S, 
or a pair with arbitrary subparts). It is a compound 
domain described by grammars, 

The binding time information is used to annotate 
case and equal to avoid the "cases" tests in the 
symbolic evaluation function B (section 5.1). For 
instance, if  the tested variable in a case has the ab- 
stract value D, then the case is annotated so that the 
"isVar(v)" branch is always chosen. The abstract 
value U can be read as "no information"; if a tested 
variable is described by that abstract value, then the 
complete "cases" has to be performed. 

6.3 Constructor analysis 

The third abstract interpretation abstracts call un- 
folding (like the f~rst one), but for a different pur- 
pose. The analysis is introduced due to problem (2) 
of section 5.2: call unfolding may necessitate ex- 
pression restructuring to ensure that all tests occur 
in the beginning. 

For all argument expressions to occurrences of 
the pairing operator, the analysis assigns a value _L 
or -T (A. __. T) .  T means that the residual version 
of the argument expression (after symbolic evalua- 
tion including call unfolding) may contain tests. _L 

abstracts expressions which are guaranteed not to 
symbolically evaluate to expressions with tests, i.e. 
they evaluate to expressions of the syntactic form 
R. The information is used to annotate pairing 
operators. If both arguments are described with .L, 
an annotation telling that post-restructuring is defi- 
nitely not needed is added. 

6.4 Unmodified functions analysis 

This final analysis detects functions which definite- 
ly will appear unmodified in the residual program 
(except for renaming). Such functions need not be 
specialized but can simply be copied by the partial 
evaluator. 

Functions for which all argument variables have 
the binding time value D are candidates for this. 
Other requirements are that calls to the function are 
never unfolded and that the function itself only 
calls other functions, which will appear unmodified 
(with calls that are not unfolded). A number of 
functions of this kind do appear in our partial eva- 
luator itself, so the analysis is worthwhile for the 
aim of self-application. 

7. Resu l t s  

The partial evaluator has been implemented and 
successfully self-applied. The tables below sum- 
marize the various results, The first table shows 
run time figures; the specializer is referred to as 
mix, the preprocesser as pre. The figures for pre- 
processing include all 4 preprocessing phases. 
Three interpreters have been used in the experi- 
ments: MPint, an interpreter for a simple imperative 
"while" language with list data structures (descri- 
bed in [Sestoft 86]), lamint, an interpreter for a 
simple functional language with higher order func- 
tions (a subset of mini-ML [Kahn 87]) and finalIy 
sint, a Tree self-interpreter. The corresponding 
generated compilers are named MPcomp, lameomp, 
and scomp respectively, scornp is a "self-compiler" 
(a source to source transformer): it "compiles" a 
Tree program into a Tree program. Finally, cogen 
is the compiler generator. 

Tree has been implemented by compilation into 
Scheme. The programs have been run in Chez 
Scheme version 2.0.3 on a VAX 785, Unix 4.3 
BSD. All run time figures are given in CPU sec- 
onds with one decimal; they exclude the time used 
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Run time fim~res 
time/ms ratio 

resultTree 
= L sint [soumeTree, inputTree] 4.5 

54.2 
= L targetTree inputTree 0.1 

resultMP 
= L MPint [soumeMP, inputMP] 32.2 

19.5 
= L targetMP inputMP 1.7 

resultlam 
= L lamint [sourcelam, inputlam] 11.1 

2.0 
= L targetlam inputlam 5.5 

targetTree 
= L mix [sint-ann, sourceTree] 12.3 

9.6 
= L scomp sourceTme 1.3 

targetMP 
= L mix [MPint-ann, sourceMP] 1.9 

3.2 
= L MPcomp sourceMP 0.6 

targetlam 
= L mix [lamint-ann, sourcelam] 1.1 

1.7 
= L lamcomp sourcelam O. 6 

scomp 
= L mix [mix-ann, sint-ann] 36.8 

9.7 
= L cogen sint-ann 3.8 

MPcomp 
= L mix [mix-ann, MPint-ann] 42.1 

6.3 
= L cogen MPint-ann 6.7 

lamcomp 
= L mix [mix-ann, lamint-ann] 58.2 

4.0 
= L cogen lamint-ann 14.7 

cogen 
= L mix [mix-ann, mix-ann] 326.3 

5.8 
= L cogen mix-ann 56.7 

sint-ann = L pre sint 6.1 
MPint-ann = L pre MPint 7.0 
lamint-ann = L pre lamint 4.7 
mix-ann = Lpre mix 304.3 

for garbage collection (in the worst case 40% extra 
time, typically much less). The ratio numbers show 
how big the partial evaluation gain is: how much 
speedup we achieve by partial evaluation. More de- 
cirnals than the ones given here have been used in 
the computation of the ratios. All figures have the 
usual uncertainty connected to CPU measures. 

The figures compare well with those given in 
[Mogensen 88] (to the author's knowledge the only 
other existing fully self-applicable evaluator with 
partially static structures). It should be noted that 
no postprocessing is performed on output from 
mix; all postprocessing-like work is done by mix it- 
self. Since postprocessing is not speeded up by 

Sizes 
words ratio 

sourceYrea  367 
targetTree 374 1.0 

sourceMP 67 
targetMP 221 3.3 

sourcelam 21 
targetlam 52 2.5 

sint 368 
scomp 3308 9.0 

MPint 414 
MPcomp 4535 11.0 

lamint 359 
lamcomp 6425 17.9 

mix 4298 
cogen 17219 4.0 

mix-ann 5123 

self-application, the inclusion of postprocessing in 
mix gives worse self-application ratios than if it had 
been performed in a separate phase. The ratios are 
still very satisfactory, though. 

The best ratios by far are those for the self- 
interpreter. This is not surprising: Tree as well as 
Treemix were designed with particular attention to 
the self-interpreter case, cf. the discussion earlier. 
An interesting observation is that the figures for 
lamint are significantly worse than the other figures. 
The reason for this is that in lamint almost all vari- 
ables get the binding time value U, thus leading to a 
badly annotated version, lamint uses higher order 
functions expressed indirectly in so-called named 
combinator form (with an explicit "@" operator for 
function application, cf. the combinator logic ex- 
ample in section 4.3), and this leads to many U 
binding time values. Efficient binding time analysis 
for higher order programming is a subject of cur- 
rent research [Mogensen 89]. 

The second table shows the sizes of various se- 
lected programs in source form; the figures are gi- 
ven as the number of words (tokens). In bytes, the 
largest program (cogen) has the size 111681. As 
with the run time figures, these are also comparable 
to those in [Mogensen 88]. Again, notice that the 
ratio for lamcomp is much worse than for the other 
compilers (this time a small ratio is desired); the 
figures for Tree/sin! are generally the best. It is in- 
teresting that the ratios for cogen are significantly 
smaller (better) than those for the compilers. 
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8. R e l a t e d  w o r k  

[Bonacina 88] relates partial evaluation of term re- 
writing systems to equational (Knuth-Bendix) 
completion. She describes a very general partial 
evaluation algorithm based on the completion pro- 
cedure; the approach is less operational than ours 
and does not address self-application. 

[Consel 88] describes a compiler oriented partial 
evahiator for a subset of first order Scheme. Pro- 
grams are written with special compile time and run 
time operations and are user annotated with flexible 
function annotations for deciding upon unfolding 
and specialization. In [Romanenko 88] a partial 
evaluator for a functional LISP-like language with 
REFAL data structures (strings rather than S- 
expressions) is described; he basically uses the 
principles from [Sestoft 86]. [Fuller & Abramsky 
88] describes partial evaluation of Prolog. 

[Turchin 861 describes supercompi la t i on ,  a 

more general program transformation technique 
than partial evaluation. All decisions are taken "on 
the fly", including decisions on call unfolding and 
generalization. There is thus no preprocessing like 
our binding time analysis; the supercompiler has 
not been successfully seK-applied. 

[Launchbury 88] uses domain projections (re- 
tracts) to describe the division of data into static 
and dynamic parts. 

translate a set of clauses with the same predicate 
symbol in the clause heads into a decision tree with 
the clause bodies at the leaves. The decision tree 
branching would be decided by elementary unifica- 
tion operations such as unification of variables with 
constants, unification for decomposing structures, 
and unification of two variables (for dealing with 
repeated variables in clause heads). 

Future work in partial evaluation should address 
higher order programming; this is not handled effi- 
ciently by present day self-applicable partial evalua- 
tors. Normal order (lazy) reduction also deserves 
attention; no self-applicable partial evaluator exists 
for a lazy language (at least to our knowledge). 
Finally, more work along the lines of [Jones 88] is 
needed for handling the in general undecidable pro- 
blem of termination. The aim here is to develop al- 
gorithms for automatically finding safe generaliza- 
tion strategies that ensure termination. 
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9. C o n c l u s i o n  a n d  i s s u e s  

We have presented a fully self-applicable partial 
evaluator for an intermediate language for term re- 
writing systems. The Language is strict (innermost 
reduction order), first order, and untyped. We have 
overcome the problems with partial evaluation of 
pattern matching by expressing it at a lower level of 
abstraction: pattern matching is translated into deci- 
sion (matching) trees. Decision trees have a rather 
restrictive syntax to model term rewriting systems 
closely. This introduces new problems in partial 
evaluation, in particular in connection to call un- 
folding. We have implemented the partial evaluator 
and self-applied it with satisfactory results. Rea- 
sonably small and efficient compilers as well as a 
compiler generator have been generated. 

tt is conceivable that an idea similar to decision 
trees is useful for partial evaluation of Prolog: 
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