
Verifying correctness of logic programs

A. Bossi, N. Cocco

Dip. di Matematica Pura ed Applicata - Univ. di Padova - Italy.

Abstract

We are convinced that logic programming needs specifications as much as traditional programming. For

this reason, it is necessary to study also for logic programs how correctness with respect to a given

specification can be asserted. Starting from Hogger's considerations on this topic, we supply a sufficient

condition for completeness. Modularity and pre/post specifications of program modules are then discussed.

We propose a sufficient condition for partial correctness with respect to a pre/post specification. Some small

examples illustrate our technique.

1. Introduction

One reason of the superiority of logic programming over traditional programming, would be that the

program coincides with its specification. This claim is based on the fact that the Horn-clause notation,

which is a subset of first-order predicate calculus, is used as a programming language. One simple objection

to this assertion is that extra-logical features (like cut, fail, etc.) are normally used in order to obtain an

efficient implementation. But even considering logic programming, independent from the implementation

and without extra-logical features, we believe that the claim is exaggerated. In fact definite Hom clauses are

a rather limited notation. Their major weakness consists in the lack of negation, which leads to very

complicated descriptions. A common solution to overcome the absence of the not operator is to explicitly

define another predicate for the negated one, as in the following simple example:

1) dominate([], []).

dominate([als], [blv]) :- (~ b) , dominate(s, v).

2) nondom([als], []).

nondom([], [blv]).

nondom([als], [blv]) :- (a<b).

nondom([als], [btv]) :- (a~>b), nondom(s, v).

where dominate(x, y) clearly means that the two lists x and y have the same length and that all the

elements in x are greater or equal to the corresponding ones in y. Less clear is the fact that nondom(x, y) -

- , dominate(x, y) !

Moreover, since efficiency has to be taken into consideration, often simplicity is sacrificed to it. An

example is the very common use of the accumulation technique. Consider the following simple program:

97

reverse (X, Y) :- rev(X, [], Y).

rev([], Y,Y).

rev([AlX], Y, Z) :- rev(X, [AIY], Z).

where the reverse of a list is computed by using the accumulation technique. The implementation choice is

embodied into the declarative semantics of the program, thus making it more obscure.

All this leads to complicated and unnatural predicate definitions. In order to understand the meaning of a

predicate, it is often necessary to read many Horn clauses and to understand the meaning of many other

predicates used in the definition. The relation between such predicates and clauses is often not a natural one.

For these reasons often the declarative semantics of a oro~ram is not a satisfactory_ ~pecification. This is

particularly true for larger programs which require a modular design; then clean interfaces are needed to hide

particular implementation choices. As it happened in procedural programming, more abstract specifications

would help in a modular approach to programming, top-down design, proving general properties and

software reusability.

A specification is often used to express the intended meaning of the program, so that the correctness with

respect to it, just means correctness with respect to such an intended meaning. Clearly this requires that the

specification language allows for a natural formalization of the intended meaning. With regard to this, we

believe that a vent important reouirement is the ease in ~xpr~ing data and their manipulations. Although a

logic program actually handles terms of the Herbrand basis, these correspond to objects in structured

domains, such as natural numbers or lists. Hence we think it is much clearer to use their standard operators

and properties in the specification.

In the field of imperative languages, the importance of a formal and precise description of what a

program is to do and the need for a methodology in order to insure that it actually behaves, have been

discussed and studied since long time and they are presently widely recognized. Up to now, in the logic

programming field, the use of specifications has been proposed mainly for program synthesis. The

analogies with functional languages are evident. On the functional side [Bur77], programs are synthesized

starting from the descriptions of mathematical functions. On the logic side [Hog81, Sato84], the

specification, in a first order language, is transformed into an executable logic program. This produces an

initial program, while efficiency requirements force further optimizations. These can be achieved by

transformation techniques which preserve correctness while improving efficiency, see for example [Bos87,

Fut87, Tam 84, Ga186]. The development of practical and theoretically well-founded methodologies to help

the programmer in synthesizing correct and efficient programs from their specifications, is undoubtedly to

be wished. Nevertheless, methods and tools for program verification are still necessary, since a more

practical approach in program design is, in our opinion, a skilful blend of synthesizing and assembling

already produced and verified modules.

In this paper we intend to examine the problem of verifvin~ the correctness of a logic program with

respect to a ~iven specificafign. This topic has been studied by Clark and Tarnlund [Cia77], Balogh

[Ba178], Hogger [Hog81, Hog84] and, more recently, by Drabent and Maluszynski [Dra87]. In [Cia77] a

first order logic theory is developed for axiomatizing data structures and computable relations on them.

Logic programs are then derived from such relations and their partial correctness and termination can be

stated in the theory. [Ba178] defines partial correctness of a logic program with respect to pre- and post-

assertions. Post-assertions are of two kinds: either necessary or sufficient to the fulfillment of the relation

corresponding to the program. Rules for partial correctness are also defined for Prolog programs. Hogger

98

[Hog81, Hog84] distinguishes between partial correctness and completeness of a logic program with

respect to a given specification. He gives also a sufficient criterion for partial correctness. His work

developed from the area of program synthesis. In [DraB7] a method is presented which is directly inspired

by the results of Floyd [Flo671 and Hoare [Hoa69] for imperative programming. Each program predicate is

annotated with a couple of assertAons, the pre- and the post-condition, which specify properties which the

program has to satisfy. The authors do not consider general specifications, they are rather interested in

proving run-time properties, such as binding of parameters or modes.

In the following we consider only logic programs, that is sets of definite Horn clauses with complete

resolution. In section 2 we introduce program specifications as extensions of the theory of data domains.

Starting from the definitions given by Hogger in [Hog81, Hog84], we show how total correctness of a

logic program with respect to a given specification can be proved by means of sufficient conditions. The

sufficient condition for partial correctness was given by Hogger, while we supply another one for

completeness. In section 3 we consider also weaker specifications, like general properties of program

modules, which are the ones usually interesting for modular design and program transformation. They can

be expressed in terms of pre/post conditions of program modules. We supply a sufficient condition for

partial correctness with respect to a pre/post specification. All this is illustrated by simple examples.

2 . Correctness of lo~ic o roe rams

We consider purely logic programs, which means that a program is defined to be just a set of definite

Horn clauses

V Yl Yh.(A ~-- AI^ ... ^ Am) , m~>0,

where A, A i , with 1 <- i -< m, are atomic formulas of the form p(t l , . . . , tk) , k>0, consisting of a k-ary

predicate symbol p and k terms tl t k built up in the standard way. The terminology adopted will be the

standard one for logic programming.

A program specification is generally used for describing the intended meaning of a program, that is what

the programmer intended to define, without caring of hqw it has been realized. Both data and operations on

them, should be described as abstractly as possible, while pointing out their typical properties. In particular,

it is not useful to represent the data handled by the program as terms of the Herbrand universe. In the

programmer's mind they have a type, a structure and they obey laws which are evident to him. Actually it is

often in virtue of these properties of data that the programmer convinces himself of a program correctness.

Therefore in our opinion, a specification, in order to be a self convincing description of the intended

meaning of the program, should be based on the intended data domain.

Let P be a program, S0 the theory which describes the data domains and/,SO the associated language.

Then the language Lp associated to the program P is/-sO plus the predicate symbols in P. Let us assume

that for each predicate symbol p in P there is a corresponding new predicate symbol PS defined in the

specification. A specification language LS for P is LS0 augmented with such predicate symbols

corresponding to the ones appearing in P. A specification for ~. consists of a set of definitions

V Xl Xk. (pS(Xl Xk) e-~ Sp(Xl Xk)) (i)

where p is a k-ary predicate symbol appearing in I ~ and Sp(Xl xk) is a first order formula of Ls.

We denote by S the first order theory which extends the domain theory S 0 with the axioms (i), which define

the intended meaning of P.

99

The meaning of p in S is defined as the specified relation associated to !~ in S:

M(P)s =def {(tl tk) l ti ground terms and S I- ps(tl tk)}

where S I- means provability in fast-order predicate logic (for example by natural deduction).

On the other hand for each k-ary predicate symbol, p, the meaning of D in P is defined as the computed

relation associated to D in p :

M(p)p =def {(tl tk) I t i ground terms and P I- p(tl tl0}.

Following the definitions given by Hogger in [Hog81, Hog84], we distinguish partial correctness,

completeness and total correctness of P with respect to S.

P is partiallv correct with respect tO ~ iff the relations defined by P (computed relations) are included in

those defined by S (specified relations):

Vp. M(p) S _ M(p)p.

P is comnlete with respect tO $ iff the relations defined by S (specified relations) are included in those

defined by P (computed relations):

Vp. M(p)p _D M(p)s.

P is totally correct with respect to $ iff it is both partially correct and complete with respect to S. This means

that the relations defined by P are exactly the same relations defined by S:

Vp. M(p)t, = M(P)s .

2.1. Par t ia l correctness

The proof of partial correctness of a program P with respect to a specification S can be given, clause by

clause, using the following sufficient condition:

P is partially correct with respect to S if for any clause c in P : S I- cs (1)

where cs indicates the clause c in which the predicates in P are replaced by the corresponding ones in 8.

This corresponds to proving, for each definite Horn clause c in P, that cs is a theorem in the theory defined

by S, that is the theory containing the definitions of the specified predicates, based on the theories for the

data types. Thus, since we assumed that each predicate symbol in P has a corresponding specification in
S, proving S I- cS, with

c: V y 1 Yh. (A ~ ' - - A 1 A . . . ^ Am) , 0 < m ,

actually means to prove:

SI-(A S<-- A1SA. . .AAmS) , 0 < m ,

where if P = p(x 1 ,Xk)X, with x substituting terms for variables, then PS =def ps(xl Xk)X.

This sufficient criterion was given by Hogger in [HogS1, Hog84], we just stressed the fact that each

clause can be proved separately. This obviously simplifies the proof of partial correctness.

Example 1

The following program P defines the sorting, in increasing order, of a list by straight insertion:

1. SORT([], []).

2. SORT([aly], x) :- SORT(y, z), INS(a, z, x).

3. INS(a, [], [a]).

4. INS(a, [blt], Ibis]) :- (a>b), INS(a, t, s).

5. INS(a, [blt], [al[blt]]) :- (~<b).

100

A simple specification for 1 a is:

SORTg(x, y) ~ 8SORT(X , y)

where SSORT(X, y) =def nlist(x) A nlist(y) A perm(x, y) A incr(y)

INSs(a, z, x) <--> SINS(a, z, x)

where giNS(a, z, x) =def nat(a) A nlist(z) A nlist(x) A

3Xl, X2. (X = Xl'[alx2]) A (z = Xl"X2) A greater(a, Xl) A minor(a, x2)

In SO the following predicates are defined:

nlist(x) =def x=H v (3a, y. nat(a) A nlist(y) A x=[aly]) ;

nat(a) =def x=0 v (3y. nat(y) A (x=y+l)) ;

perm(x, y) =def Va. occ(a, x) = occ(a, y) ,

with occ(e, t) integer function which counts the occurrences of the element e in the list t ;

incr(y) =def (Y = []) v (3b. y = [b]) v (Vb, c. precede(b, c, y) ---> (b < c)) ,

with precede(b, c, y) =def 3Xl, x2, x3. y = Xl'[blx2]'[clx3] ;

greater(a, x) =def Vb. member(b, x) ~ (a>b) ;

smaller-eq(a, x) =def Vb. member(b, x) ---> (a<b) ;

minor(a, x2) =def (x2 ~ []) ---r (a < car(x2)),

where car, • (append) and member are the usual operators on lists.

Thus $ extends a theory of natural numbers and lists of natural numbers, $0, with the two axioms:

SORTs(x, y) <---> SSORT(X, Y)

INSs(a, z, x) ~ gINS(a, z, x).

In order to prove partial correctness of I a with respect to $, it is sufficient to prove that for each clause

the corresponding formula in S is a theorem:

1. S [- SORTs([], [])

2. S [- (SORTs(y, z) A INSs(a, z, x)) --> SORTs([aly], x)

3. S I- INSs(a, [], [a])

4. $ I- ((a>b) A INSs(a, t, s)) --4 INSs(a , [bit], [bls])

5. S 1- (a < b) --~ INSs(a, [bit], [al[blt]])

The proofs depend on some properties which hold in S0 such as:

Va,z,x,y. (perm([alz], x) A perm(y, z)) ---> perm([aly], x)

and on the following lernmas which hold in 8:

Va,z,x. INSs(a, z, x) --~ perm([alz], x)

Va,z,x. (incr(z) A INSs(a, z, x)) --~ incr(x).

For details see [Bos88].

2.2. C o m o l e t e n e s s

In order to deal with completeness of a program, we find it convenient to compare the theory $, which

describes the intended meaning of 1 a, with the theory Comp(P), the completion of P. Let us recall how the

completion of P [Llo84] is obtained.

The first step is to transform each clause c

c: V Yl Yh. (p(tl tk) ~-- A1 A ... A Am) , rn_~>0 ,

into the general form

101

p(xl Xl0 6- 3 Yl Yh (Xl=tl A ... A Xk=tk ̂ A1 ^ . . . A Am)

where Xl Xk are new variables,

Let

p (x] Xk) 6- E1

p(Xl Xk) 6- Ej

be the general form of the finitely many clauses about p in P.

Th~ complet~t ~l~finition of p in P is

p(x 1 Xk) ~ ElV ... vEj .

The completion of P. Comp(P), contains all the completed definitions of the predicate symbols of P,

together with an axiomatization of the equality theory.

It is a well known result [Llo84] that the positive facts deducible from Comp(P) are exactly the ones

deducible from P, that is

Vp. M(p)p = M(P)Comp(P).

Hence the completeness of P with respect to a specification S can be expressed as:

~/p. M(P)Comp(P) _D M(P)s

which means to prove:

for any k-ary predicate symbol p in P and any tuple (tl tk),

if S I- PS(tl tt0 then Comp(P) 1- p(tl tk) .

Let Pl of arity kl Pn of arity kn be the predicate symbols in P , then in order to prove the completeness

of P with respect to S it is sufficient to prove, in (Comp(P)+S) ; that:

(V Xl, 1 Xl ,kl . P lS(Xl ,1 Xl ,kl) ----) p l (Xl ,1 Xl ,k l)) ^ . . . ^ (2)

(~' Xn,1 Xn,kn. PnS(Xn,1 Xn,kn) --) pn(Xn,1 Xn,kn)).

Note that the correctness of this condition depends on the way the specification has been defined:

i) the languages of P and S have in common onIy predicate symbols in the theory of data domains:

LS n L p = L s 0 ;

ii) S is a conservative extension of SO since only the definitions of the new predicate symbols associated

to the ones in P have been added.

Example 2
LetP be

greater_equal(x,0).

greater_equal(x+l,y+l) :- greater_equal(x,y).

Let $ be a theory of naturat numbers augmented with the definition:

$greater_equal(x,Y) =def nat(x) ^ nat(y) ^ 3z. (nat(z) ^ x=y+z)

and the axiom:

greater_equals(x,y) ¢-~ Sgreater._equal(x,Y)-

(Comp(P)+S) contains both the previous axiom and

greater_equal(x,y) ~ (y=0) v (3xl,Yl. X=Xl+l ^ y=yl+l A greater_equal(xl,Yl))

plus the theory of natural numbers SO.

Then, for the completeness of P with respect to S, it is sufficient to prove that

~'x,y. greater_equals(x,y) --~ greater_equal(x,y)

is a theorem in (Comp(P)+S).

102

Note that the completed definition o fp l , ..., Pn in Comp(P) may be (possibly mutually) recursive:

Pl(N1) <-'> CI(Pl pn)(_Xl)

:

pn x(.~) <---> Cn(Pl pn) X(~n),

where _x i is an abbreviation for xi,1 Xi,ki and Ci(Pl Pn)(N) is a disjunction of existential

quantifications of conjunctions: E lv . . . vEh i , with El, l:fl-<hi, in the form 3 v. (B1 ^ ... A Bm), where B1,

. . . . Bm are equalities or atomic predicates Pi(O, l~i_<n.

Let us consider a simple case, when there exists an ordering of the predicate symbols in P such that, for

any i, 1_< i -<n, the definition o fp i does not depend on Pi+l , Pn

pl(_Xl) <--> CI(Pl)(~1)

pi(x_i)

pn(X_a)

~-~ Ci(Pl pi)(x_i)

Cn(Pl pn) x(.~n) •

Then we can separately prove each implication by following the order on the predicate symbols

V x_i. PiS(X_i) ~ Pi(N) , 1< i < n ,

that is

V x_i. Pi$(_N) --~ Ci(Pl pi)(x_i) , t< i < n . (3)

In order to prove the i-th implication in (3), we can use the fact that the j-th implications ho!d for any j < i.

This, for the structure of the formula Ci, guarantees that

V x.Ki. Ci(PlS Pi-lg,Pi)(.~i) -'~ Ci(Pl pi)(x_i).

Then, in order to prove (3), it is sufficient to prove, in (Comp(P)+S)

V x_i. PiS(~i) ~ Ci(PlS Pi-lS, Pi)(x-i) , 1< i _< n . (4)

Since we assumed that each variable xio is typed, whenever we have well-ordering relations on the types

associated to the universally quantified variables (i.e. we are dealing with well-founded sets), we can use

structural induction in the proof of (4), by defining an extension of these orderings onto n-tuples. Note that,

in proving the inductive step

PiS(~) ~ Ci(PlS Pi-lS, Pi)(!),

we can use the inductive hypothesis Pis(_w.) ~ Ci(PlS Pi-IS, Pi)(w---), for w<t .

Since, as we said before,

V x_i. Ci(PlS Pi-18, Pi)(x-.i) "-~ Ci(Pl Pi)(_N) and V x i. Ci(Pl Pi)~i) ~ Pi(.~i),

this means that Pisf.~) "-* Pi(_W.) holds for any w<_t. Then again, for the structure of the formula Ci, it might

be sufficient to prove in (Comp(P)+S):

Pis(~.) ~ C'i(PlS Pi-IS, Pis, pi)(!)

where C'i(PlS, . . . , Pi-lS,PiS,Pi)(!) is obtained by substituting PiS(-~-) to pi(w_), for all w<_t, in Ci(PlS

Pi-lS,Pi)~). This is particularly useful whenever S does not contain recursive definitions as shown in the

examples.

Example 3
In the second example, for the completeness of P with respect to S, we have to prove:

103

V x,y. ((nat(x) ^ nat(y) ^ 3z. (nat(z) ^ x=y+z))

(y=0 v (3xl,Yl,Z. X=Xl+l ^ y = y l + l ^ greater_equaI(xl,Yl))).

The proof is very simple: it can be given by induction on the couples (x, y) with the ordering

(x,y) < (x',y') iff x+y < x'+y'.

For details see [Bos88].

E xam ple 4

In order to prove the completeness of the sorting program, P , of the first example, with respect to the
specification $, we show, for any Pi in P ,

(Comp(P)+$) I- V x . Pis x(~) --~ Pi(-~)-

In Comp(P) there are the definitions:

SORT(u,v) ~ CSORT(U,V)

with CSORT(U,V) =def (u=[l ^ v=[]) v (3 a,y,z, u=[aly] ^ SORT(y, z) ^ INS(a, z, v))

INS(a,z,x) ~ C INS(a,z,x)

with C INS(a,z,x) =def (z=[] ^ x=[a])

v (3 b,t,s, z=[blt] ^ x=[bls] ^ a>b ^ INS(a,t, s))

v (3 b,t. z=[blt] ^ x=[al[blt]] ^ a<b)

Since the axioms defining SORT and INS are not mutually recursive, we can In:st prove the completeness

of INS, which does not depend on SORT.

1 . V a,z ,x. INSg(a ,z ,x) ~ INS(a,z ,x)

We have to prove that

V a,z,x, nat(a) ^ nlist(z) ^ nlist(x)

^ (3 Xl, x2. (x = Xl.[alx2]) ^ (z = xl.x2) ^ greater(a, Xl) ^ minor(a, x2))

---> (z=l] ^ x=[a])

v (3 b,t,s, z=[blt] ^ x=[bls] ^ a>b ^ INS(a,t, s))

v (3 b,t. z=[blt] ^ x=[al[blt]] ^ a~.<b).

The proof can be done by structural induction on z, for details see [Bos88].

2 . V u,v. S O R T s (u , v) ~ SORT(u,v)

Since we already proved V a,z,x. INSg(a,z,x) ~ INS(a,z,x), we have to prove that

Vu,v (nlist(u) ^ nlist(v) A perm(u, v) ^ incr(v))

(u=[] ^ v=[]) v (3 a,y,z, u=[aly] ^ SORT(y, z) ^ INSs(a, z, v))

The proof can be by structural induction on the pair of lists (u,v) with the lexicographic ordering:

(u, v) < (u', v') iff length(u) < length(if) or

length(u) = tength(u')and length(v)< length(v').

For details see [Bos88].

When the completed definitions in Comp(P) are strictly mutually recursive, we can transform (2) into

V X_l X-k. (Plg(.~l) "~ PI(~I) ^ - . . A pk$(X_k) ~ pk x(_xk)) (5)

by a suitable renaming of variables.

Then we can prove (5) by a global structural induction, i.e., when the tuple tl t& is considered, in

proving

(plg(_tl) ~ pl(.tl)) ^ . . . ^ (,Pk8 t(!k) ~ pk t(!k))

104

we are allowed to assume (inductive hypothesis)

(PlS(-~-I) -'> Pl(.W-1)) ^ . . . ^ (PkS(W---k) ~ Pk w(.v-10) , for any

In order to illustrate this case, we add a further simple example.

(.w_1 w_k) < (_q t_k).

Example 5

Let the program P contain the following clauses, which can be used to determine if the length of a list is

even or odd:

1. PAIRL([]).

2. PAIRL([alx]) :- ODDL(x).

3. ODDL([alx]) :- PAIRL(x).

Comp(P) contains:

PAIRL(y) <--+ (y = [] v (3 a,x. y = [alx] ^ ODDL(x)))

ODDL(y) <--+ (3 a,x. y = [alx] A PAIRL(x)).

We want to prove the completeness of P with respect to the specification:

SpAIRL(Y) =def length(y) - 0rood 2

SODDL(Y) =def length(y) -= lmod 2

where length([]) = 0

length([alx]) = length(x) +1.

In order to prove completeness it is sufficient to prove that:

V x,y. ((PAIRLs(x) --~ PAIRL(x)) ,,, (ODDLs(y) ~ ODDL(y)))

holds in (Comp(P)+$). This can be proved by induction on (x,y) by choosing the lexicographic ordering,

see [Bos88] for a detailed proof.

3. Ver i fvin~ n roner t i e s of o r o e r a m modules

In this section we will generalize our discussion on the correctness of logic programs with respect to

their specification by considering also module specifications.

Modularity of pro~ams comes very natural in top-down design since modularization is the first step in

stepwise refinement. Modularity contributes to increase correctness and moreover allows for reusability of

programs. In fact program modules correspond to abstract data types and operations and can be used in

different applications. In order to exploit the advantages of modularization, ea¢h module has a specification

associated to it. This is necessary both for describing the decomposition of the problem at design level and

for reusing the software. Thus, once more, verifying the correct implementation of a module with respect to

its specification becomes necessary. Often the specification describes only some properties of the program

module, the ones we are actually interested in. This is also true when we want to characterize the module's

behavior for a particular data domain, as it happens in program specialization and optimization where one is

interested in the equivalence of program modules on a restricted domain. Therefore, modul, ~p~ification

allQw~ for both correctne~ and efficiency improvement.

In general a module specification has the following form

{Pre(z)} M(_~) {Post~)}

where x is a tuple of variables, Pre(x_) is a precondition , that is a predicate describing the context of

execution of the module M~) , and Post(z) is a postcondition, that is a predicate describing the context after

105

the execution of M(x). In procedural programming pre- and post-conditions describe the state of

computation before and after the execution of the module.

In logic programming modularity is forced by the programming style. A module is given by the set of

definite clauses defining a predicate symbol. This intrinsic modularity can be, in our opinion, an advantage

of logic programming over conventional programming but, in order to achieve all the advantageous

consequences of it (clarity, correctness, reusability, possibility of program transformations), it is necessary

to associate specifications to modules. This is obviously not necessary (and rather unrealistic) for small

modules as the ones def'ming base predicates. The modular structure of logic programs is an advantage only

for high level programming, when we can control it. It would be rather unpractical to have to specify all the

predicates in the program! In top-down design the problem is decomposed into subproblems. Each

subspecification is implemented by a program module. The process is repeated until useful, that is until

specifications of subproblems are necessary in order to abstract from implementation details. When this is

not the case, that is for simple predicates, the declarative semantics can be used as specification for the

module. Then what is the meaning of

{Pre~)} Mx(x) {Post(.~)}

where M(~) (1) is defined by a set of clauses in a logic program P ?

In the declarative semantics relations are associated to predicates. Hence Pre(x) describes the relation to

which M(.~) is applied, the world from which the tuples satisfying M~) are taken, we could call it the initial

relation. Analogously Post(.~) indicates the final relation, that is the one produced from Pre(x_) by M(x_).

Thus a logic oroeram module M(x) is oartiallv correct with respect to a pre/post specification if and only if it

defines a subrelation of the precondition which is included in the postcondition:

{Pre(.x) } M~) {Post(~)} is partially correct iff

Post(x_.) _D (P r e ~) ~ M(.x)).

In order to prove partial correctness of M(.~.) with respect to Pre~)/Post(.~, we will have to prove in ($0 +

Comp(P)):

Vx. (Pre(~ A M(.x)) ~ Post x(_x). (1)

Thus a program module M~), partially correct with respect to a pre/post specification, could be thought of

as a filter which, when correctly used, that is when Pre(.~ is satisfied, selects only tuples which satisfy

Post(x_3.

If the precondition is true, there is no initial restriction on the world. Thus M(x) is partially correct with

respect to the specification given from a postcondition if and only if the relation defined by M(_~) is included

in the postcondition:

M(.~) {Post~)} is partially correct iff

Post x(.~) D Mx(~)

that is, in order to prove partial correctness of M(~) with respect to Post(~), we will have to prove in ($0 +

Comp(P)):

Vx. M(x_) -4 Post(x) . (2)

Obviously any program module is partially correct with respect to the postcondition true.

(1) Note that in the following we will indicate with M x(.~) both the set of clauses defining the predicate symbol and the

predicate itself.

106

A logic p rogam module M(x) is totallv correct with respect to a pr~/post specification, if and only if the

relation filtered by the module is the final one:

{Pro(a)} M(a) {Post(a)} is totally correct iff

Post(a) = (P re (a)n M x(a))

that is, in order to prove total correctness of M(x_) with respect to Pre(a)/Post(.x_), we will have to prove in

(80 + Comp(P)):

Vx. (Pre(a) ^ M(a)) ~ Post(a) . (3)

Note that a logic program module can be partially (totally) correct with respect to many different pre/post

specifications. These correspond to different ways of using the module, for example to different

input/output functionalities. Moreover a program module M(a), with precondition Pre(a), can be partially

correct with respect to a postcondition, Post 1 (a), and at the same time totally correct with respect to another

postcondition, Post2(a). This means that the second postcondition is included in the first:

if

{Pre(a)} M(a) {Postl(a)} is partially correct and

{Pre(a)} M(a) {Post2x(~)} is totally correct

then

Postl(a) _ Post2(x).

If there is no precondition (Pre(.~.) = true), we will call Post2(a) strongest snecification of M(x) and

Post l (x) weak ~p~cificati0n of M(x). Strongest specifications determine a unique relation, the one

associated to the declarative semantics of the program module M(a).

The assertion

M(a) {Post(a)}

interpreted as a strongest specification of the module, uniquely individuates the class of equivalent program

modules for which

M(a) = Post(a),

that is the class of programs which are totally correct with respect to the specification Post x(x(x(~.

On the other hand, as we already pointed out, a given module M(a) can be partially correct with respect to

many different weak specifications. The strongest specification of a program module M(.~.) is in fact the

intersection of all the weak specifications of the module. Weak specifications can be used for describing

program properties,

If a module M(~) is partially correct with respect to a pre/post specification

{De(a)} M(a) {Postx(a)}

we know that any use of it which satisfies the precondition, will satisfy the postcondition too. In other

terms, given a query

? M(I) , with t tuple of terms,

if Pre(!) is satisfied, then for any successful answer substitution (r, the postcondition Post(t ~5) holds:

if Pre(I) then

for any substitution ~ , M(kg) --+ Post(!_q).

Hence if a module M x(x(x(~ is partially correct with respect to a pre/post specification with precondition true,

this means that any use of it, that is any query ? M(t), with I tuple of terms, is correct and allowed. For

each tuple which satisfies the query, the postcondition is guaranteed to hold.

107

To sum up, the pre/post specification of a logic module, which is partially correct with respect to it, gives us

information about properties of successful computations for queries which satisfy the precondition. When

the query does not satisfy the precondition, we can not infer anything from the specification of the module.

This is exactly analogous to what happens in procedural programming. There in fact a pre/post specification

describes the behavior of a program if it starts the execution in a state which satisfies the precondition.

Compared with procedural or functional programs, a logic program is much more general since it allows for

multiple input/output readings and generic uninstantiated answers. This is the reason why many pre/post

specifications are associated to a logic program module.

Proving properties of programs generally consists in proving their partial correctness with respect to

some pre/post specification. We give now a sufficient criterion for verifying partial correctness of a program

module with respect to a pre/post specification. We assume the program module to be asserted, which

means that all the predicates in it have an associated pre/post specification. For simple predicates we

consider their declarative semantics as the associated specification. In fact, as we said before, each

predicate, p(.~), is totally correct with respect to the specification

px(~) {Compp(~}

where Compp(~) is the completed definition of p in the program P and it supplies the declarative semantics

of p.

The intuitive idea behind the sufficient criterion is to consider separately each clause in the module definition

in analogy to the sufficient criterion for partial correctness in section 2. We assume that the precondition is

satisfied and we prove that, in this hypothesis, also the postcondition is satisfied. We use an induction on

the number of derivation steps of the predicate M(~), while predicates invoked inside the module definition,

that is in the antecedent of the clause, are assumed to be partially correct with respect to their pre/post

specifications.

Sufficient C'rito'iQn (4)

Let Mf~) be an asserted module

{Pre~)} M x(_~) {Postf~)}

in a program P and 80 the theory which describes the data domains, then Mx~ is partially correct with

respect to its pre/post specification if the following conditions hold in (So + Comp(P)):

a) each module invoked by M x(.~), that is each module corresponding to predicate symbols in the body of

M x(.~) clauses, is partially correct with respect to its specification;

b) for each fact, M(I.),

VXl Xn. Pre(0 ---> Post(D , Xl Xn variables in t ;

c) for each clause, M(.0 :- Al(_tl) Ant(In)., in M x(.x),

if {Pi(Y.i)} Ai(Y.i) {Qi(.Y.i)} are the specifications of the predicates in the body of the clause, then
~tX1,...,X n.

V X I , . . . , X n.

VX1,...,X n.

VXI,...,X n.

VXI,...,X n.

Pre(t) ~ Pl (t l)

Pre(!.) A Ql(t l) ~ P2 t(!2)

Pre(!) A Ql(t l) A Q2 t(!2) -'-> P3 t(L3)

Pre(!) ^ Ql(t l) ^ . . . ^ Qn-I t(Ln-1) -+ Pn t(/n)

Pre t(L) A Ql(t l) A . . . A Qn t(tn) --+ Post(t_).

108

The advantage of this sufficient criterion consists in its modularity since, by considering separately each

logic module and each clause in a module definition, it partitions the proof of M(x) into many small ones.

Theorem (soundness of the sufficient criterion for partial correctness (4)).

Let M ~) be an asserted logic module, { Pre~)} M(.~) {Post(~)}, in a program P, if the conditions (a),

(b) and (c) in (4) hold, then M(~) is partially correct with respect to its pre/post specification, that is"
V x . (Pre(x) ^ M(.~)) -* Post(_&).

We omit the proof, which can be found in [Bos88].

In the following we give a very simple example of property verification on a logic program module.

Example 6

The program module is taken from the f'n'st example in the previous section:

1: ins(a, [], [a]).

2: ins(a, [blu], [blv]) :- (a>b), ins(a, u, v).

3: ins(a, [blu], [al[blu]]) :- (a_<b).

We recall that SO is a theory of natural numbers and lists of natural numbers and that the meaning of ins(r, z,

x) is that r is a natural number, z and x are lists of natural numbers and x is equal to the ordered insertion of

r in to z.

The property we are interested in, is the fact that, if z is in increasing order, then also x is in increasing

order. This can be represented by partial correcmess with respect to the specification

{incr(z)} ins(r, z, x) {incr(x) ^ perm([rlz], x)}

where the definitions

incr(z) =def (z = []) v ~ b , z = [b]) v (Vb, c. precede(b, c, z) ---> (b < c))

precede(b, c, z) =def 3x l , x2, x3. z = Xl*[blx2].[clx3] ;

perm(x, y) =clef Va. occ(a, x) = occ(a, y)

are in SO. We have omitted the obvious typing of parameters.

The specifications of the predicates in the body of the clauses are the obvious ones:

{true} (x>y) {x>y}

{true} (x<y) {x<y},

then the sufficient criterion (4) tells us that in order to prove partial correctness of the program module with

respect to its pre/post specification it is sufficient to prove in SO:

a) each submodule is partially correct with respect to its specification: this is trivially true since the

predicates in the body of the clauses are base predicates specified with their declarative semantics;

b) I) incr([]) ---> (iner([a]) ^ perm([a] , [a]));

c) 2) iner([blu]) ---> t rue;

(iner([blu]) ^ (a>b)) ---> iner(u);

(iner([blu]) A (a>b) ^ incr(v) ^ perm([a lu] , v))

--> ((iner([blv]) ^ perm([a l [b lu]] , [blv]));

3) iner([blu]) --+ true;

(incr([blu]) ^ t rue ^ (a<b)) --+ (incr([al[blu]]) ^ perm([a l [b lu]] , [a][blu]])).

The proofs, which as usual depend on properties which hold in SO, can be found in [Bos88].

109

In this way we prove that any query with the second parameter in increasing order will produce a third

parameter also in increasing order. Nothing can be said for the following queries:

? ins(3, [1,5,2,4], y)

? ins(2, x, y)

? ins(10, y, [1,2,5,10])

? ins(x, y, [1,7,5]) .

In this example the precondition implicitly defines a mode: only queries with the second parameter ground

and in increasing order are described by this pre/post specification. This does not always happen, for

example the pre/post specification

{x=y} P(x,y) {Post(x,y)}

does not imply any mode, it only imposes that the query has two equal parameters. All the following

queries satisfy the precondition

? P(100, 100)

? P([1,4,3,5], [1,4,3,5])

? P([llx], [llx])

? P(z, z)

? P([slt], [sit]).

Our sufficient criterion for partial correctness of a logic program module with respect to a pre/post

specification is similar to Drabent and Maluszynski's inductive assertion method [Dra87]. Such a method

was proposed for verifying run-time properties of logic programs, but it could be modified in order to use it

for general properties of declarative semantics. In fact it is a translation of the procedural verification method

"a'la Hoare" into the logic programming framework. For declarative semantics it becomes just a sequential,

left-to-right, composition of procedure calls without side-effects. In [Bos88] we show how to modify their

method in order to make it applicable exactly to the same context.

4. Conc lus ion~

The major contribution of this paper consists in showing modular techniques for proving properties of

logic programs. We gave a sufficient criterion for the completeness of a logic program with respect to a

given specification and one for partial correctness with respect to more general properties expressed in terms

of pre/post specifications. Verifying program correctness is not always an easy task, namely for large,

complicated programs. But we believe that, as it happens in more traditional programming, the insight one

gets from this detailed analysis is surely worth the effort.

References

[Apt82]

[Ba178]

[Bos87]

[Bos88]

K.R. Apt, M.H. van Emden, Contributions to the theory of Logic Programming, JACM 29,
N.23 (1982) pp. 841-862.
K. Balogh, On an Interactive Program Verifier for Prolog Programs, Colloquia Mathematica
Societafis J. Bolyal 26 - Mathematical Logic in Computer Science - Hungary (1978).
A. Bossi, N. Cocco, S. Dulli, A Method for Specializing Logic Programs, (1987) submitted
for pubblication.
A. Bossi, N. Cocco, On the correctness of Logic Programs, Rapporto Interno del Dip.
Matematica Pura ed Applicata, Universith di Padova (1988).

I10

[Bur77]

[Cla77]

[Dra87]

[vanE76]

[Fio67]

[Fra85]

[Fut87]

[Ga186]

[Hoa69]

[Hog81]
[Hog84]
[Llo84]
[Pra65]

[Sato84]

[Tam84]

R. M. Burstall, J. Darlington, A Transformation System for developing Recursive Programs,
JACM 24, N.1 (1977) pp. 44-67.
K.L. Clark, S. Tarnlund, Afirst order theory of data and programs, Proc. IFIP 77, (t977) pp
939-944.
W. Drabent, J. Maluszynski, Inductive assertion Method for logic programs, TAPSOFT 87,
LNCS 250, (1987) pp. 167-181.
M.H. van Emden, R.A. Kowalski, The Semantics of Predicate Logic as a Programming
Language, JACM 23, N.4 (t976) pp.733-742.
R. W. Floyd, Assigning meanings to programs, Proc. A.M.S. Symp. in Applied Mathematics,
Amer. Math. Soc. (1967) pp. 19-31.
N. Francez, O. Grumberg, S. Katz and A. Pnueli, Proving Termination of Protog Programs,
Proc. Logics of Programs, LNCS 193, (1985) pp. 89-105.
Y. Futamura, K. Nogi, Generalized Partial Computation, IFIP TC2 Work. Conf. on Partial and
Mixed Computation, Denmark (1987).
J. Gallagher, Transforming Logic Programs by Specializing Interpreters, Proc. ECAI 86
(1986).
C. A. R. Hoare, An axiomatic basis for computer programming, CACM 12, (1969) pp. 576-
583.
C.J. Hogger, Derivation of Logic Programs, JACM 29, N.2 (1981) pp. 372-392.
C.J. Hogger, Introduction to Logic Programming, Academic Press 1984.
J.W. Lloyd, Foundations of Logic Programming, Springer-Verlag 1984.
D. Prawitz, Natural Deduction: A Proof-Theoretical Study, Almqvist & Wiksell, Stockholm,
1965.
T.Sato, H. Tamaki, Transformational Logic program Synthesis, Proc. of the Int. Conf. on
Fifth Generation Computer Systems 1984, ICOT 1984.
H. Tamaki, T. Sato, Unfold~fold transformation of logic programs, Proc. II International Logic
Programming Conference, Upssala (1984) pp. 127-138.

