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This paper presents a Horn clanse logic where functions and predicates are declared with 
polymorphic types. Types are parameterized with type variables. This leads to an ML-like 
polymorphic type system. A type declaration of a function or predicate restricts the possible 
use of this function or predicate so that only certain terms are allowed to be arguments for this 
function or predicate. The semantic models for polymorphic Horn clause programs are defined 
and a resolution method for this kind of logic programs is given. It will be shown that several 
optimizations in the resolution method are possible for specific kinds of programs. Moreover, it 
is shown that higher-order programming techniques can be applied in our framework. 

1 Introduct ion  

The theoretical foundation of the logic programming language Prolog is Horn clause logic. In this logic the 

basic objects (terms) are not classified: Each function and predicate may have any term as an argument 

[Llo87]. This point of view is not justified for the logic programming language Prolog: Several predefined 

predicates have restrictions on their arguments (e.g., is or name). Additionally, programs are frequently 

constructed from data types. In application programs only certain terms are allowed to be arguments for a 

function or predicate. It is impossible to express these restrictions in a natural way in Prolog. Types for logic 

programming can help to close the gap between theory and programming practice. Moreover, programming 

errors in Prolog are frequently type errors; in many typed languages such programming errors can be found 

at compile time. 

In addition, programs of typed logic programming languages may be more efficient than programs of 

an untyped language. For instance, we want to define the predicate append that is satisfied iff the three 

arguments are lists and the third list is the concatenation of the first and the second. The following classical 

solution is wrong from a typing point of view: 

append([] ,L,L) *-- 
append([E[R] ,L, [E]RL1 ) ~-- append(R,L,RL) 

By this definition, the goal append( [1,3,3)  is provable in contrast to our intuition. A correct definition is: 

append( [3,0, [3 ) ~- 
append([1,[E[R1,[EIK]) ~- append([],R,R) 
append([EiR] ,L, [E]RL]) ~- append(R,i,RL) 

If the first and second argument of an append-literal are non-empty lists~ a proof with the second definition 

needs more steps than a proof with the first one. In a typed logic language the first definition could be 

already correct. 

Many authors have investigated types in logic programming languages. There are two principal starting 
points in research: 
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The declarative approach: The programmer has to declare all types he wants to use and the types of all 

functions and predicates in the program. These proposals have a formal semantics of the notion of type, e.g., 

types represent subsets of carrier sets of interpretations. Goguen, Meseguer [GM86] and Smolka [Smo86] have 

proposed ordered sorted type systems for Horn clause logic (with equality). Each type represents a subset 

of the carrier set in the interpretation, and the order of types implies a subset relation on the corresponding 

sets. AYt-Kaci and Nasr [AN86] have proposed a logic language with subtypes and inheritence based on a 

similar semantics. From an operational point of view, these approaches require a unification procedure that  

takes account of types, i.e., types are present at run-time. 

The operational approach: The aim of these type systems is to ensure that  predicates are only called 

with appropriate arguments at run time. This should be achieved by a static analysis of the program° A lot 

of these approaches do not require any type declarations but the types will be inferred by a type checker. 

These approaches have only a syntactic notion of type. Mishra [MisS4] and Zobel [Zob87] have  presented 

type inference systems for detecting programming errors in a given Prolog program. Kanamori, Horiuchi 

[KH85]and Kluluiak [Klu87] have developed algorithms for inferring types of variables in a Prolog program. 

Yardeni and Shapiro [YS87] have presented a type-checking algorithm where types are regular sets of ground 

atoms. 

We are interested in a polymorphic type system where type declarations may contain type variables 

tha t  are universally quantified over all types [DM82]. Mycroft and O'Keefe [MO84] have investigated such 

a type system for Prolog. In their proposal, the programmer has to declare the types of functions and 

predicates, but  it is not a declarative approach because they have no semantic notion of a type. They have 

put restrictions on the use of polymorphic types in function declarations and clauses. Their programs can 

be executed without dynamic type checking. Dietrich and Hagi [DH88] have extended this type system to 

subtypes on the basis of mode declarations for the predicates. They have also only a syntactic notion of 

a type. TEL [Smo88] is a logic language with functions and a polymorphic type system with subtypes. 

Since subtypes are included, there are several restrictions on the use of polymorphic types which prevents 

in particular the application of higher-order programming techniques. 

This paper presents a declarative approach to a generalized polymorphic type system for Horn clause 

logic. The topics of this paper are: 

• We present a rather general polymorphic type system: We do not restrict the use of types. In contrast 

to [M084], any polymorphic type expression may be argument or result type of a function or predicate. 

No difference will be made in the typing of the head and the body of a clause. 

® Our approach is declarative: The semantics of types is defined in a model-theoretic way in contrast to 

other type systems for Prolog where types are viewed as sets of ground terms. 

• We present sound and complete deduction and resolution methods for our logic programs. 

• Several optimizations of the resolution procedure are presented for specific subclasses of programs. We 

show that  it is possible to translate polymorphic logic programs in our sense into untyped Horn clause 

programs. The type system and results of [M084] will be a special case of our type system. 

® Higher-order programming techniques can be applied in our framework. We present an interesting 

class of logic programs that  are ill-typed in the sense of other polymorphic type systems for logic 

programming but  are well-typed in our framework. 

Let us start  by looking at an example of a polymorphically typed Horn clause program in our sense. 

First the programmer has to specify the types that  he wants to use in the clauses. There are basic types 

like int or bool~ and type constructors that  create new types from given types. E.g., the type constructor 

list with arity 1 creates from the type int the type of integer lists list(int). Type expressions mac contain 
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type variables which are universally quantified over all types. In the following we use a, ~ for type variables. 

The type expression list(a) represents the types 

list(int) list(boot) list(list(int)) . . .  

or, in general, a list of any type. Two functions are defined on any fist: The constant function I"} that 

represents the empty fist, and the function • that concatenates an element with a list of the sarae type 

(throughout this paper we use the Prolog notation for lists [CM87]). The type declarations for these two 

functions axe: 

func  [ ] :  --* l ist(a) 
fu~c .: a, lis~(a) ~ list(a) 

The predicate append has three arguments and is defined on lists of the same type. Therefore append has 

the following type declaration: 

p r e d  append: list(~), list(~), l ist(a) 

The following clauses define the semantics of append and are well-typed in our sense, if the variables L, R 

and RL are of type list(a) and the variable E is of type a: 

append( [] ,L,L) ~-- 
append ( [E I R] ,L, [EIRL]) ~ append(R,L,RL) 

In our type system it is also possible to add the specialized clause 

append( [1 ,2] ,  [3 ,4 ] ,  [1 ,2 ,3 ,4]  ) ~-- 

to the program. Note that the arguments of the head of this clause have types int and list(int). Hence it is 

not a well-typed clause in the sense of [1V[084] since the head of the clause has not the most genera/type. 

The application of this feature in order to use higher-order programming techniques and more examples are 

given in the rest of this paper. Detailed definitions and proofs of results can be found in [Han88b] and the 

author's dissertation. 

2 P o l y m o r p h i c  l o g i c  p r o g r a m s  

We use notions from algebraic specifications [GTW78] for the specification of types. A s igna tu re  E is a pair 

(S,O), where S is a set of so r t s  and 0 is a family of o p e r a t o r  sets of the form O = (O,~,slw 6 S*,s 6 S). 

We write o: s l , . . .  ,s~ --+ s e 0 instead of o 60(~a,..,s,),s. An operator of the form o: ~ s is also called a 

cons tan t  of sort s. A signature E = (S,O) is interpreted by a E-a lgebra  A = (SA, OA) which consists 

of an S-sorted domain SA = (SA,~Is e S) and an operation OA:SA,,~,...,SA,s, -+ SA,~ C OA for any 

o:sl , . . . ,S~ ~ s C O. A set of E-var iables  is an S-sorted set V = (Vsls E S). The set of E - t e r m s  of sort 

s with variables from V, denoted T~,,(V), is inductively defined by x E T~,,(V) for all x E V,, c e T~,,(V) 

for all c: -~ s E O, and o(tx . . . .  ,t~) 6 T~,~(V) for all o: s l , . . .  ,s,~ ~ s e O (n > 0) and all t~ E Tz,~,(Y). We 

write T~(V) for all ~-terms with variables from V and T~ for the set of g ro u n d  t e r m s  Tz(~). By Ts(V) 
we also denote the term algebra. 

A var iable  a s s i g n m e n t  is a mapping a: V --* SA with a(x) E SA,s for all variables z • Vs (more precisely, 

iris a family of mappings (a,:P~ --+ SA,~Is • S)). A E - h o m o m o r p h i s m  from a E-algebra A = (SA, OA)into 

a E-algebra B = (SB,OB) is a mapping (family of mappings) h: SA -~ SB with the properties h~(cA) = CB 
for all c : ~  s • O and h~(oA(al , . . . ,a,))  = oB(hs~(al) . . . . .  hs,(a,~)) for all o : s l , . . .  ,s~ -~ s • O (n > 0) 

and all ai • SA,sl. 
Polymorphie types are represented by single-sorted signatures: H = (Ty, Hi) is a s i gna tu re  of  t y p e s  if 

H is a signature with one sort Ty = {type}. Operators of the form h: --~ type are called basic t y p e s  (with 

arity 0), whereas operators of the form h: type = -~ type are called t y p e  c o n s t r u c t o r s  with arity n > 0. By 

X we denote a set of t y p e  variables.  A t y p e  express ion  or (polymorphic) t y p e  is a term from TH(X), 
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a m o n o m o r p h i c  t y p e  is a term from TH. Since we have only one sort in the signature of types, we will 

also use H to denote the set of type constructors Ht. 

A t y p e  s u b s t i t u t i o n  (r is an H-homomorphism cr:TH(X) --* Tn(X) .  T S ( H ,  X )  denotes the class 

of all type substitutions. Two types r,71 C TH(X ) are called equ iva l en t  if there exists a bijective type 

substitution ¢ with a(7) = r'. 

A p o l y m o r p h i c  s i g n a t u r e  ~ for logic programs is a triple (H ,  Func~ Pved)  with: 

* H is a signature of types with TH # 

* F u n c  is a set of f u n c t i o n  d e c l a r a t i o n s  of the form f : r l , . . .  ,rn ~ r with ri~r E TH(X), n > O, 

where, in addition, T S = r~ whenever f : r / ,  f : r} e Rune. 

, Pred is a set of p r e d i c a t e  dec l a r a t i ons  of the form p:71,... ,rn with ri E Ttt(X) (n _> 0), where, in 

addition, rp = r~ whenever p:rp,p:r~ E Pred. 

The additional restrictions exclude overloading. With these restrictions it is possible to compute the most 

general type of a term. Therefore the user need not annotate terms in a clause with type expressions. 

Note that  there are no restrictions on the use of type variables in function declarations in contrast to other 

polymorphic type systems for logic programming, e.g., [M084], [Smo88]. 

The following specification of a polymorpbic signature will be used in later examples. Declarations of 

basic types and type constructors, functions, and predicates are preceded by the keywords "type", "rune" 

and "pred', respectively. 

t y p e  nat/O, l i s t / l ,  pred2/2 
rune  z :  --+ nat 
func  s :  nat --* nat 
func  [J : ~ list(a) 
f u n c .  : a, list(a) -* list(a) 
rune  pred_inc :  -+ pred2(nat, nat) 
p r e d  inc  : nat, nat 
p r e d  map : pred2(a,fl), list(a), list(fl) 
p r e d  apply2:  pred2(a,~), a, fl 

The predicate apply2 will be interpreted like c u l t  in Prolog: If the first argument has type pred2(a,fl) 

and the next arguments have types a and /~, then it is equivalent to the application of the first argu- 

ment to the other two arguments, pred_inc is a consta~lt of type pred2(nat, nat). The equivalence .of 

apply2(pred_in¢ . . . .  ) and i n c ( . . . )  wilt be stated in a specific clause (see below). 

In the rest of this paper we will assume that  ~ = (H, Func~Pred) is a polymorphie signature. The 

variables in a polymorphic logic program are not quantified over all objects, but vary only over objects 

of a particular type. Thus each variable is annotated with a type expression: If VaT is an infinite set of 

variable names that  are distinguishable from symbols in polymorphic signatures and type variables, the set 

of  t y p e d  va r i ab le s  Var~,x is defined as Var~,x := {x:r ] x E Var, v E TH(X)}, V is a set  of t y p e d  

var iab les  w i t h  u n i q u e  types ,  written VCvVar~,x ,  if V C Varz,x and r = v p whenever x:r~ x:~ -~ E V. 
The notion of "typed variables with unique types" is not necessary for the definition of the semantics 

and the resolution procedur% but it is useful for optimization and detection of type errors at compile time. 

Hence we define the semantics for arbitrary sets of typed variables, whereas in polymorphic logic programs 

the clauses must have variables with unique types so tha t  optimizations and type-checking are possible. 

According to [Chu40], we embed types in teiTas~ i.e., each symbol in a term is annotated with a type 

expression: Let V C_ Var~,x. A ( ~ , X , V ) - t e r m  of  t y p e  rE TH(X) is either a v a r i a b l e  x:~" E V, a 

c o n s t a n t  c:v with c:--+ vc E Func so that  there exists a a E T S ( H , X )  with or(re) = r ,  or a c o m p o s i t e  

t e r m  of the form f ( t V r l , . . .  ,tn:rn):r (n > 0) with f : r  S E Func so that  there exists a type substitution cr E 
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TS(H, X) with a( r f )  = rl . . . .  , r~ -~ r and ti:n is a (~,, X, V)-term of type "q (i = 1,.. . ,  n). T e r m s ( X ,  V) 
denotes the TH(X)-sorted set of all (Z,X,  V)-terms. A g rou n d  t e r m  is a term from the set Termr.(X, 0). 

Each occurrence of a variable in a term has the same type, whereas different occurrences of a function 

may have different types (polymorphism). We call terms from Term~(X,V) wel l - typed  t e rms ,  whereas 

terms that have the same structure as well-typed terms but violate the type conditions are called i l l - typed 

t e rms .  

Examples: If we have the declarations 

func f : int, bool -* bool 
t a r  x :~  

then the term f (x:a,  x:a):bool is ill-typed. If we have the additional declaration 

func ±d: a - - * a  

then the term f (id(2:int):int, id(true:bool):bool):bool E Tetmz,booZ(O, 0) is a well-typed ground term. 

The definition of the other syntactic constructs of polymorphic logic programs is straightforward: A 

(~ . ,X,V)-a tom has the form p(tl:Vl,...,tn:rn), where p:vp 6 Pred and there exists a type substitution 

a e TS(H,X)  with a(rp) = rl . . . . .  r~ and ti:ri 6 Termr~(X,Y) (i = 1,. . . ,n).  A (~.,X,Y)-goal is a 

finite set of (~ ,Z,Y)-a toms.  A (~ ,X,Y)-c lause  is a pair (P,G),  where P is a (~,,X,Y)-atom and G is a 

(2,X,Y)-goal.  If G = {A1,.. .  ,A~}, we also write 

P ~ A 1 , . . . , A n .  

P is called head  and G b o d y  of the clause. Note that again there are no restrictions on the use of types in 

clauses. A E - t e r m  (atom, goal, clause) is a (Y,,X,V)-term (atom, goal, clause) for some V C_ Varz,x. In 

the following, if s is a syntactic construction (type, term, a tom, . . . ) ,  tvar(s) and vat(s) will denote the set of 

type variables and typed variables that occur in s, respectively. Furthermore, we define uvar(s) := {x I 3r 6 

TH(X): x:r 6 vat(s)) as the set of variable names that occur in s. 

A p o l y m o r p h i c  logic p r o g r a m  or p o l y m o r p h i c  H o r n  clause p r o g r a m  P = (~, C) consists of a 

polymorphic signature ~ and a set C of Z-clauses, where vat(c) C u Varr.,x for all c 6 C. We require 

vat(c) C U Varr.,z rather than vat(c) C Var~,x because the user may omit the type annotations in the 

clauses of a polymophic logic program and the most general type of a term can be automatically computed 

under this assumption. Therefore we will omit the type annotations in the clauses of subsequent examples. 

We assume that the above polymorphic signature with predicate map is given. Then the following clauses 

define the semantics of the predicate map: 

map(P, [], []) ~-- 
map(P,[El~Ll],[E2~L2]) e- apply2(P,EI,E2), map(P,LI,L2) 
ine(N,s(N)) e- 
apply2 (pred_inc,NI,N2) ~-- inc(NI,N2) 

Note that the last clause is not well-typed in the sense of [M084] since apply2 has the declared type 

"pred2(a, fl), a, fl" but is used in the clause head with the specialized type "pred2(nat, nat), nat, nat". This 

example illustrates the possibility of higher-order programming in our framework. That will be further 

investigated in section 8. 

The next example is a program for the evaluation of Boolean terms. A Boolean term contains the 

constants t r u e  or f a l s e ,  the Boolean functions and and or, and the function equal to compare arbitrary 

terms of the same type. The evaluator is a predicate isTrue which is satisfied if such a term can be simplified 

to t r u e  by the common interpretation: 

t y p e  bool/O 
func t r u e  : --~ bool 
rune false: --* bool 
func and: bool, bool --* bool 
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func  o r :  bool, bool --* bool 
func  equa l :  a, a --* bool 
p r e d  i sTrue :  bool 
clauses:  
i sTrue  ( t r u e )  ~-- 
i sT rue (and (B i ,B2) )  ~ - i s T r u e ( B 1 ) ,  isTrue(B2) 
i s T r u e ( o r ( B I , B 2 ) )  ~- isTrue(B1)  
i sTrue (o r (B1 ,B2) )  e-- i sTrue(B2)  
i sTrue  (equal  (T,T)) ~- 

Note that  this program is well-typed in our sense but not a well-typed program in the sense of [M084] 

because of the type of the function equal.  

3 Semantics of polymorphic logic p r o g r a m s  

We use algebraic structures for the interpretation of polymorphic logic programs [Poi86]. Variables in 

untyped logic vary over the carrier set of the interpretation. Consequently, type variables in polymorphic 

specifications vary over all types of the interpretation and typed variables vary over appropriate carrier sets. 

Hence an interpretation of a polymorphic logic program consists of an algebra for the signature of types 

and a structure for the derived polymorphic signature. A structure is an interpretation of types (elements 

of sort type) as sets, function symbols as operations on these sets and predicate symbols as predicates on 

these sets. We give an outline of the necessary notions. 

If H = (Ty, IIt)  is a signature of types, an H-algebra A = (TyA, HtA) is also called H - t y p e  a lgebra .  

The p o l y m o r p h l c  s i g n a t u r e  E(A) -- (TyA, FuncA, FredA) der ived  f r o m  I] a n d  A is defined by 

FuncA : :  {f:a(~-f) I f:r] E Func, cr:X --. TyA is a type variable assignment) 

PredA := {p:a(vp) ] p:r~ E Fred, a: X --* TyA is a type variable assignment} 

An i n t e r p r e t a t i o n  of a polymorphic signature E is an H-type algebra A = (TyA,HtA) together with 

a E(A)-structure(S, 6), which consists of a TyA-sorted set S (the ca r r i e r  of the interpretation) and a 

denotation 6 with: 

1. If f : r l , . . . , r n  --+ r E FuncA, then ~]:n,...,~,~r: S~1 x . . .  × S~, --* S~ is a function. 

2. I fp:rl ,  . . . , rn  6 PredA, then 6p:~l,...,r . C S~1 × . . .  × St,  is a relation. 

If A and A' are H-type algebras, then every H-homomorphism a: A --* A' induces a s i g n a t u r e  m o r p h i s m  

a: ~(A) --* E(A') and a fo rge t fu l  f u n c t o r  Us: CarE(A,) --+ Catr.(A} from the category of E(A')-structures 

into the category of ~,(A)-structures (for details, see [EM85]). Therefore we can define a ~ . - h o m o m o r p h i s m  

from a E-interpretation (A, S, 6) into another E-interpretation (A', S ' ,6 ')  as a pair (a, h), where a: A --* 

A' is an H-homomorphism and h:(S,6)  --* U~((S',6')) is a E(A)-homomorphism. The class of all E- 

interpretations with the composition (a',h') o (a,h) := (a '  o a,U~(h') o h) of two E-homomorphisms is a 

category. Thus we call a E-interpretation (A, S, 6) in i t ia l  iff for all E-interpretations (A', S', 6') there exists 

a unique Y,-homomorphism from (A, S, 6) into (A', S', 6'). 

The notion of "term interpretation" can be defined as usual (in the following, we assume that  V C_ VarE,x 
is a set of typed variables). By Tn(X ,V)  we denote the free term interpretation over X and V where the 

carrier is the TH(X)-sorted set T e r m s ( X ,  V). A homomorphism in the polymorphic framework consists of 

a mapping between type algebras and a mapping between appropriate structures. Consequently, a variable 

assignment in the polymorphic framework maps type variables into types and typed variables into objects of 

appropriate types: If I = ((TyA, HtA),S,  6) is a E-interpretation, then a va r i ab l e  a s s i g n m e n t  for (X, V) 

in I is a pair of mappings (#,val) with # : X  --* TyA and val:V ~ S', where (S ' ,6 ' )  := U~,((S,6)) and 
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val(x:r) E S~ (= S~(~)) for all x:r e V. It can be shown that  any variable assignment can be uniquely 

extended to a ~,-homomorphism. In the following we denote this Z-homomorphism again by (#, vaI). 
We are not interested in all interpretations of a polymorphic signature but only in those interpretations 

that  satisfies the clauses of a given polymorphic logic program. In order to formalize that  we define the 

validity of atoms, goals and clauses relative to a given Z-interpretation I = (A, S, 6): 

. Let v = (/~, val) be an assignment for (X, Y) in I. 

! I , v  ~ I, i fL  = p(t l :r l , . . .  ,t~:r~) is a (E ,X,V)-a tom with (val~l(tl:rl), . . .  ,val~,(t~:r~)) E 6p:rl ....... 

where U~((S, 6)) = (S',  ~') 

I , v  ~ G if G is a (~ ,X,Y)-goal  with I , v  ~ L for all L E G 

I~v ~ L *-- G if L ~ G is a (~,X,V)-clause where I , v  ~ G implies I , v  [= L 

• I , V  ~ L i fL  is a (~. ,X,V)-atom with I , v  [=- L for all variable assignments v for (X ,V)  in I 

I , V  ~ G i f G  is a (~.,X, V)-goal with I , v  ~ G for all variable assignments v for (X ,V)  in I 

I , V  ~ L *-- G if L *-- G is a (~ ,X,V)-clause  with I , v  ]= L ~ G for all variable assignments v for 

(X, V ) i n  I 

We say "L is val id  in  I"  if I is a ~]-interpretation with I ,  var(L) I = L (analogously for goals and clauses). 

A Z-interpretation I is called mode l  for a polymorphic logic program (~.,C) if I, var(L ~ G) ~ L ~ G 
for all clauses L *- G E C. A (~.,X, V)-goal G is called val id  in (~.,C) relative to V i f I ,  V [=- G for every 

model I of (~ ,C) .  We shall write: ( ,~ ,C ,  V)  ]= G. 

This notion of validity is the extension of validity in untyped Horn clause logic to the polymorphic case: 

In untyped Horn clause logic an atom, goal or clause is said to be true iffit is true for all variable assignments. 

In the polymorphic case an atom, goal or clause is said to be true iff it is true for all assignments of type 

variables and typed variables. The reason for the definition of validity relative to a set of variables is that  

carrier sets in our interpretations may be empty in contrast to untyped Horn logic. This is also the case in 

many-sorted logic [GM84]. Validity relative to variables is different from validity in the sense of untyped 

logic. The following example shows such a difference. 

Example: Let TH = {void, zero}, Func = {0: --+ zero}, Pred = {p:void, q:zero} and x E Vat.  If C consists 

of the clauses 

p (x: void) 
q(O:zero) *-- p(x:void) 

then M := (({void, zero}, Ht), S, 6) with Ht~oid = void, Ht  . . . .  = zero, S, oid = 0, S~,o = {0}, ~0 . . . . . .  = 0 
and 6p = 6q = $ is a model for (~., C). It can be shown that  

(~,,C,{x:void}) ~ q(O:zero) 

Hence q(O:zero) is valid in M relative to {x:void}, but q(O:zero) is not valid in M. 

Validity in our sense is equivalent to validity in the sense of untyped logic if the types of the variables 

denotes non-empty sets in all interpretations. But a requirement for non-empty carrier sets is not reasonable. 

For a more detailed discussion of this subject compare [GM84]. 

"Typed substitutions" are a combination of type substitutions and substitutions on well-typed terms: If 

V, V'  C_ Var~.,x be sets of typed variables, then a t y p e d  s u b s t i t u t i o n  a is a Z-homomorphism a = (ax,  ay)  
from T~.(X,V) into T~.(X, V'). Since ax and av are only applied to type expressions and typed terms, 

respectively, we omit the indices X and V and write a for both ~r x and av.  We extend typed substitutions 

on E-atoms by: a(p( t l , . . .  , tn)) = p(a(tl) . . . .  ,a(tn) ). S u b ( . ~ , X ,  Y , Y ' )  denotes the class of all typed 

substitution from T~(X ,V)  into T~(X, V'). A term t' E Term~.(X, Y') is called an i n s t a n c e  of a term 
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t E T e r m ~ ( X , V )  if a typed substitution a E Sub(E,X,V ,V ' )  exists with t' = a(t). The definition of 

instances can be extended on atoms, goals and clauses. We omit the simple definitions here. The next 

lemma shows the relationship between the validity of a clause and the validity of all its instances: 

L e m m a  1 Let I = (A,S,5)  be a E-interpretation and L ~- G be a (E,X,V)-clause. Then: 

I , V ~ L ~ G  ~ I , V ' ~ a ( L ) ~ - - a ( G ) f o r a l l a E S u b ( E , X , V , V ' )  

A H e r b r a n d  m o d e l  for a polymorphic logic program (E, C) is a model where the carrier sets are ground 

terms with monomorphic types. Similarly to the untyped case it can be shown that  the intersection of all 

Herbrand models is an initial model. 

4 D e d u c t i o n  

This section presents an inference system for proving validity in polymorphic logic programs. In contrast to 

the untyped Horn clause calculus it is necessary to collect all variables used in a derivation of the inference 

system since validity depends on the types of variables. Let C be a set of E-clauses. The p o l y m o r p h i c  

H o r n  clause ca lculus  contains the following inference rules: 

1. Ax ioms :  If V C_ Varz ,x  is a set of typed variables and L ~ G E C is a (~.,X,V)-clause, then 

(~,,C,V) ~- L ,-- G. 

2. S u b s t i t u t i o n  rule :  If (~.,C, V) b L *- G and a E Sub(E,X,  V, V'), 

then (E, C, V') ~- a(L) ~- a(G). 

3. C u t  ru le :  If (E ,C ,V)  b L ~ G U {L') and (E ,C ,V)  ~- L' +-- a ' ,  

then (E ,C ,V)  ~- L ~- G U G  J. 

K the example program in section 3 on the previous page is given, then the following sequence is a deduction 

for (E,C,{x:void))  f- q(O:zero) ~ :  

(Z,C,{x:void})  S p(x:void) 
(Z,C,{x:void})  ~- q(O:zero) ~- p(x:void) 
(~.,C,{x:void}) ~- q(O:zero) 

This example shows the need for the explicit mentioning of the variables in the deduction since (E, C, 0) ]= 

q(O:zero) is not true. 

The following theorem states soundness and completeness of the polymorphic Horn clause calculus: 

T h e o r e m  2 Let C be a set of ~.-dauses, V C VarE,x and L be a (E ,X ,  V)-atom. Then: 

(~,C,V)~ L~- .=~ (S,C,V) I=L 

5 Uni f i ca t ion  

We are interested in a systematic method for proving validity of goals. The Horn clause calculus is one 

possibility, but in general it is far from being efficient. In untyped Horn clause logic the resolution principle 

[l~ob65] with SLD-refutation [AVE82] is the basic proof method. The basic operation in a resolution step 

is the computation of a most general unifier of two terms. We need a similar operation for the resolution 

method in the polymorphic case. This section defines the unification in the polymorphic case and presents 

an algorithm for computing the most general unifier that  is based on the method in [Lan86]. 

Example: The polymorphic signature contains the declarations p:a E Pred, q:int E Pred and r : a  E Pred 
(~ is a type variable). X,Y,Z E Vat  are variable names and assume the following two clauses to be given: 
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p(X:int)  ~ q(X:int) 
p(Y:a) ¢-- r (Y:a)  

The first clause is not allowed for proving the goal p(Z:bool). We can use the second clause and have to 

prove in the  next  s tep the  goal r(Z:bool).  

For proving the goal p(Z: in t )  the first clause can be used. In this case we are left with the goal q(Z:int) 
for the next resolution step. 

As we see, unification of two atoms has to consider the types of the terms. Untyped unification cannot 

be applied in our case. 

In section 3 typed substitutions were defined. The composition of two typed substi tut ions is again a 

typed substi tut ion.  Therefore we define the usual relations on typed substitutions: 

* Let V1,V2 C Var2,x and a C Sub(E,X,V~V1) and a' E Sub(E,X,V,  V2) be typed substitutions, a is 

m o r e  g e n e r a l  than  a r, denoted a < a ~, iff there exists ¢ E Sub(E,X,  V1, V2) with ¢ 0 a = a J. 

. Let t and t '  be (E ,X~V)- te rms .  t and t '  are un i f i ab l e  if there exists a typed subst i tut ion a 6 

Sub(E ,X ,V ,V ' )  with a(t) = a(t ~) for a set V ~ C_ Var~.z.  In this case c~ is called a un i f i e r  for t and 

t ~. a is a m o s t  g e n e r a l  un i f i e r  ( m g u )  for t and t '  if a _< a ~ for all unifiers a ~ for t and t ~. 

The well-known algorithms for the unification of two terms in a term algebra (without equality) can be 

applied for the unification in the polymorphic case if we use a particular term algebra: The u n t y p e d  

s i g n a t u r e  c o r r e s p o n d i n g  to  E, denoted E u = (Term, Op), is defined as follows: 

• Term = {term} 

• h:terra, . . .  , t e rm ~ term e Op for all h 6 H with axity u (n > 0) 

n 

• f : t e r m , . . .  , term ~ term 6 0 p  for all f : r l , . .  • rn --* 7 6 Func (n > O) 
n 

• ': ':term, term --* term 6 0 p  

The signature ~u has ont-y one sort term. If V C Vat  is a set of variable names and X is a set of type 

variables, we interpret  V and X also as variables of sort term and denote by T2~(X U V) the algebra of 

E~-terms with variables from X U V. 

T ~ ( X  U V) is a single-sorted free term algebra over X U V, where the operation symbols are type 

constructors from H,  function symbols from Func and the symbol ~:' with axity 2. It is Terms(X ,  V') C_ 

T ~ ( X  U V) if V = uvar(V'),  i.e., we can treat  typed terms as terms over the signature E ~. For instance, 

the typed term []:list(a) is also a te rm over E ~ (actually, ' : ' ( [ ]  , l i s t (a ) )  is a term over E ~, but  we use 

the infix notat ion for the operator  ' : ') .  The converse is not  true, because equal(l:int,true:bool):bool is a 

E~-term~ but  not a Z- term if equa l : a ,  a ~ bool E Func. 

The notions of "substi tut ion" and "unifier" for the algebra Tz~ (X  U V) are defined as usual (e.g., [Llo87]) 

and we omit the  details here. [1~ob65] has found an algorithm for computing a most general unifier in a single- 

sorted free term algebra. For instance,  a most general unifier in Tz~(X U {v}) for the Z- terms []:Iist(a) 

and v:tist(int) is a(a) = int, a(v)  = [ ] .  It is an interesting fact that  ~' • Sub(E,Z,{v:li~t(int)),O) 

with a'(a) -- int and a'(v:list(int)) = [] :list(int) is a most genera[ unifier for [] :list(a) aud v:list(int) in 

Terms(X ,  {v:list(int)}). Generally, we can compute a most general unifier from a m.ost genera] unifier in 

T2~(X [J V). The following theorem shows that  the polymorphic unification problem can be reduced to the 

unification problem in T ~ (  X U V). 

T h e o r e m  3 ( U n i f i c a t i o n )  Let V C_ v Var~,x and Vo := uvar(V). 

Two (E ,X ,  V)-terms are unifiable iff  they are unifiable in T2~(X U Vo). A most general unil~er can be 
computed from a most general unifier in T ~ ( X  U Vo). 
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Proof." If a is a most general unifier in Tn~(XU Vo), then we define a typed substitution a' C Sub(E, X,  V, V') 

by cr'(a) = a for all a E X and a ' (x : r )  = a(x):a(r) for all x:r C Y.  It can be proved by induction on the 

computation steps of the mgu-algorithm in [Rob65] that  a (x ) :a ( r )  E Term~.(X, V). [] 

The unification problem in the polymorphic case is solved by this theorem. There exist more efficient 

unification algorithms [MM82] [BC83] [PW78] that  can also be used instead of the algorithm from [1~ob65]. 

6 R e s o l u t i o n  

The SLD-resolntion in untyped Horn logic (see [Llo87]) can be used for polymorphic Horn clause programs 

if we replace the untyped unification by the polymorphic unification with typed substitutions as defined in 

the last section. "(Z, C, V) ~ cr G" denotes a successful resolution ((Z, C, V) - r e fu t a t i on )  of the start goal 

G with the typed substitution a as the computed answer, where (Z ,C)  is the polymorphic logic program 

and V is the set of all typed variables used in the derivation. The soundness of resolution can be shown by 

simulating a resolution sequence by a derivation in the polymorphic Horn clause calculus: 

T h e o r e m  4 ( S o u n d n e s s  of  r e so lu t ion )  Let ( ~ , C )  be a polymorphic logic program, V C_v Varz,x and 

G be a (Z ,X ,  V)-goah I f  there exists a successful resolution (Z, C, V ) h a  G with computed answer a C 

Sub(~, X, V, Y'), then (Z, C, V') # ~( C). 

Conversely, the completeness of resolution for polymorphic Horn clause logic can be shown by simulating 

each deduction in the polymorphic Horn clause calculus by resolution. 

T h e o r e m  5 ( C o m p l e t e n e s s  of  r e so lu t ion )  Let (Z,C) be a polymorphic logic program, V C_u Var~.x 

be finite and G be a (Z ,X ,  V)-goal. Ira  E Sub(Z,X, V,V') is a typed substitution with (~,, C, V') ~ a(G), 

then there exist a set Vo C_u Varr.,x and a typed substitution ao E Sub(~, X,  V0, V1) with (Z, C, Vo)~ ~ro G 

and there is a typed substitution ¢ E Sub(E,X, V1, Y') with ¢(a0(G)) = a(G). 

The last two theorems are the justification for implementing the (Z, C, V)-resolution as a proof method 

for polymorphic logic programs. For a complete resolution method, all possible derivations must be computed 

in parallel. If we use a backtracking method like Prolog, the resolution method becomes incomplete because 

of infinite derivations. If we accept this drawback, we ca~ implement the resolution like Prolog with the 

difference that  the unification includes the unification of type expressions. 

7 O p t i m i z a t i o n  

In the last two sections we have seen that  the unification process in a resolution step has to unify the type 

expressions in every subterm. Thus the resolution is in any case more complex than the resolution in the 

untyped case. Mycroft and O'Keefe [M084] have defined a specific class of polymorphic logic programs for 

which type checking is unnecessary at run-time. Therefore it is possible to disregard the type annotations 

in subterms at run-time if the polymorphic logic program has specific restrictions. 

A first optimization for the resolution of polymorphic logic programs can be applied to a large class of 

functions: We call a function symbol f t y p e  p r e s e r v i n g  if f : r l ,  . . .  ,~'n --* ~" E Func and tvar(vl) C_ ~var('r) 

for i = 1 , . . . ,  n. In the declaration of a type preserving function all type variables occurring in the argument 

types a~so occur in the result type. For instance, 

f u n c  []  : --* list(a) 
r u n e . :  a, l~s~(~) -~ lisa(a) 

axe type preserving functions, whereas 

rune  equa l :  a, a ---* bool 
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is not a type preserving function. We shall see that  in the case of type preserving functions the type 

annotations in the arguments are unnecessary. If t E Terms(X,  V), we denote by ~( t )  the term obtained 

from I by deleting the type annotations in the arguments of type preserving functions. For instance, 

¢( .( l :int, N:l ist( int ) ):list( int ) ) = o(1,[]):list(int) and O( equal( l :int, 2:int ):bool ) = equal( l:int, 2:int ):bool. 

Formally, ~ can be defined as a mapping O:Tr.,(X U Vo) ~ T~ , (X  U Vo). 
The mapping • is injective on Termr.(X, V), i.e., for each t' E ~(Termr.(X, V)) there exists a unique 

t E Terms(X ,  V) with O(t) = t'. Therefore it is sufficient to compute a unifier for O(to) and ¢( t l )  in 

T~u(X U V0) instead of computing a unifier for to and tl:  

T h e o r e m  6 ( O p t i m i z e d  un i f i ca t ion  for t y p e  p r e s e r v i n g  fune t lons )  

Let V C u Vary,x,  Vo := uvar(V) and to,t1 E Term~(X,V) .  

to and tl are unifiable i f f~(to)  and ~( t l )  are unitiable in T~.~(X U Vo). A most genera/unifier for to and tl 

can be computed from a most general unifier in T ~ ( X  U Vo). 

The optimized unification can be extended on atoms if we interpret each predicate p:'rl,... , r,~ E Pred 

as a function symbol with declaration p : r l , . . . ,  rn --+ bool and delete the result type bool in the unifica- 

tion. Therefore the optimized unification can be integrated in the resolution method defined in section 6. 

The theorem shows that  type annotations are unnecessary for the unification of atoms if the signature is 

monomorphic, i.e., if all function and predicate declarations do not contain any type variables. 

There is another possibility for optimization if a predicate is defined with most general types. For 

instance, if there is a declaration g:a,fl  --* bool, then g(X:a,Y:fl):bool is a term with most general type, 

but neither g(X:a, I:int):bool nor g(X:a,  Z:a):bool is a term with most general type. We omit the precise 

definitions here but  call a predicate t y p e - g e n e r a l l y  def ined if in each clause for the predicate the head 

has a most general type and the predicates in the body are also type-generally defined. In a resolution of 

a type-generally defined predicate only other type-generaily defined predicates occur. It can be shown that  

the unification of an atom with most general type and another atom with arbitrary types does not depend 

on the types (for details, see [Han88b]). Thus we obtain the following theorem: 

T h e o r e m  7 ( O p t i m i z e d  un i f i ca t ion  for  t y p e - g e n e r a l l y  def ined  p r e d i c a t e s )  Let (E,C)  be a poly- 

morphic logic program and the predicate p be type-genera/ly defined in (~, C). Then type annotations are 

unnecessary during the resolution of a P.-atom p(tl, .  . . ,t~). 

We may use the following algorithm to decide the property "most general type". The 'function' skolemize 

replaces all type variables in a type expression by 'new' type constants. With the use of skolemize equiv- 

alence of type expressions can be decided by unification of type expressions. In the algorithm, each type 

substitution a is extended to a typed substitution by a(x : r )  := x:a(r) .  The algorithm must be called by 

type_general(t:r, r) .  

A l g o r i t h m  t ype_general  

Input: Term t, type p 

Output: A type substition, if t is a term with most general type, and fail, otherwise. 

1. pl := skolemize(p) 

2. I f t  = x:v E Var~,x then stop with mgu(T,p') 

3. I f  t = c:~" with c: ~ I"¢ E Fune then stop with mgu(r,p I) 

4. I f t  = f ( t l : r l , . . .  , t~:r~):r  and f : ¢ l , . . .  ,¢~ --* ¢ E Fune and a = mgu(¢,p') ~ fai l  then: 

¢~ . . . .  , ¢ -  --, ¢ '  := s ~ o l e m i ~ e ( ~ ( ¢ ~ , . . . , ¢ ~  -~ ¢))  

I f  mgu(¢',r) = cr o ~ fai l  and 

type_general(¢o(t~:~), ¢~) = ~ g fail and 
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type.general(a=_l(... (ao(t,~:vn))...), ¢~) = a= # fai l  
then stop with (rn o • -. o al ocr 0 

e/se stop with fai l  

5. stop with fai l  

The next proposition shows that the polymorphic logic programs in the paper of [MO84] can be executed 

without dynamic type checking since their result holds only if each function is type preserving [Myc87]. 

P ropos i t ion  8 ( M y c r o f t / O ' K e e f e - p o l y m o r p h i s m )  Let (E,C) be a polymorphic logic program and 

V C_u Vary,x,  where ~ contains only type preserving functions. 

I lL  = p(tl:vl , . . .  ,tn:vn) is a (~, X,  V)-atom with p:'rp 6 Pred and vp and T1, ..., rn are equivalent, then 

L is an atom with most general type. 

By this proposition, all predicates in a polymorphic logic program with the restrictions of [MO84] are 

type-generally defined, i.e., type annotations axe unnecessary during the resolution of a E-goal by theorem 7. 

Therefore the type system of Mycroft/O'Keefe is a special case of our work because: 

1. Every well-typed logic program in the sense of Mycroft/O'Keefe is a polymorphic logic program in our 

sense. 

2. If we use the optimization techniques developed in this section, polymorphic logic programs in the 

sense of Mycroft/O'Keefe can be executed with the same efficiency as untyped Prolog programs. 

On the other ha~d, our work is a proper extension of Mycroft/O'Keefe's type system because we have no 

restrictions on the use of polymorphic predicates in the heads of clauses, and we have no restrictions on the 

use of type variables in function types (compare examples in section 2). For instance s the predicate isTrue 

in the evaluator of Boolean terms is type-generally defined and therefore resolution can be done with the 

same efficiency as in an untyped program, but it is not a well-typed program in the sense of [M084]. 

Mycroft and O'Keefe have proposed to extend polymorphic Horn clause programs by a family of prede- 

fined apply predicates to permit higher-order programming. But this extension is only necessary because of 

the restrictions in their type system. I~ our framework it is possible to simulate higher-order programming 

techniques without any conceptual extensions. This will be shown in the next section. 

8 Higher-order programming 

Many logic programming languages permit higher-order programming techniques, i.e., it is possible to treat 

predicates as first-class objects. For example, in Prolog the predicate c a l l  interprets the input term as a 

predicate call. Mycroft and O'Keefe [MO84] argue that for most practical purposes it is sufficient to have a 

predicate apply that takes something like a predicate name and a list of argument terms as input and that 

is satisfied if the corresponding predicate applied to the argument terms is provable. Hence they introduce 

a family of predefined predicates apply (one predicate for each axity) and a lambda notation for terms of 

predicate type, but they give only an informal definition of the meaning of apply. 

Generally, a semanticaJ]y clean amalgamation of higher-order predicates with logic programming tech- 

niques like unification is not trivial because the unification of higher-order terms is undecidable in general 

[Go181]. Miller and Nadathur [MN86] have defined an extension of first-order Horn clause logic to include 

predicate and function variables based on the typed lambda calculus. For the operational semantics it 

is necessary to unify typed tambda expressions, which yields in a complex and semi-decidable unification 

[Hue75]. Hence they have a system with a clearly defined underlying logic, their proof procedure is sound 

and complete for goals without type variables, but the proof procedure is costly because of the unification 
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of typed lambda expressions. Warren [War82] argues that no extension to Prolog or to the underlying 

first-order logic is necessary because the usual higher-order programming techniques can be simulated in 

first-order logic. Since he is concerned with Prolog and its untyped logic, he does not have a clear distinction 

between first-order and higher-order objects. 

We suggest a 'middle road' approach to higher-order programming: To have an efficient operational 

semantics, we keep first-order logic as our theoretical framework. But we want to deal with higher-order 

objects in the sense of computing and distinguish between higher-order and first-order objects. Since we 

have an unrestricted mechanism of polymorphic types, we may integrate these higher-order programming 

techniques without any extensions to our concept of polymorphic logic programs (in contrast to [M084]). 

This is demonstrated by the example of the map predicate in section 2. The predicate map takes a predicate 

of arity 2 and two lists as arguments and applies the argument predicate to corresponding elements of the 

lists. In order to specify the type of map it is necessary to introduce a type constructor pred2 of arity 2 that 

denotes the types of predicate expressions with two arguments. Hence the type of map is 

p red  map: pred2(a,fl), list(a), list(fl) 

For each binary predicate p of type rl, r2 we introduce a corresponding constant pred_p of type pred2(rl, r:). 
The relation between each predicate p and the constant pred_p is defined by clauses for the predicate apply2. 

Hence we get the example program of section 2. If we prove the goal 

map (pred_inc, [z, s (s (z)) ], L) 

by resolution, we get the answer substitution 

L = [s(z),s(s(s(z)))] 

(we omit the type annotations). The polymorphic logic program does not ensure that the constant pred_inc 

is interpreted as a relation in every model since we require only first-order structures as interpretations for 

polymorphic logic programs. But the clause for apply2 with pred_in¢ as first argument ensures that in any 

model the constant pred_inc and the predicate inc are related together. 

The map example has shown the possibility to deal wit]] higher-order objects in our framework. It is 

also possible to permit lambda expressions, which can be translated into new identifiers and apply clauses 

for these identifiers (see [War82] for more discussion). If the underlying system implements indexing on the 

first arguments of predicates (as done in most compilers for Prolog, cf. [War83] and [Han88a]), then there is 

no essential loss of efficiency in our translation scheme for higher-order objects in comparison to a specific 

implementation of higher-order objects [War82]. 

The compilation of higher-order functions into first-order logic was also proposed by Bosco and Giov~n- 

netti [BG86], but they perform type-checking only for the source program and not for the target program. 

Clearly, the target program is not well-typed in the sense of [MO84] because of the clauses for the apply 

predicate (see above). Since we have translated higher-order objects into polymorphic logic programs, the 

use of higher-order objects is type secure in our framework. We have similar typing rules as in functional 

languages [DM82], and therefore functions and predicates have always appropriate arguments at run-time. 

9 Implementation 

The SLD-resolution in untyped Horn logic can be applied to polymorphic Horn clause programs if we use 

polymorphic unification to compute the most general unifier in a resolution step. Polymorphic unification 

can be reduced to untyped unification if we treat type expressions as terms and annotate each subterm with 

the corresponding type by the functor ':'. Hence we have implemented the resolution of polymorphic logic 

programs as a precompiler to a Prolog system: It takes a polymorphic logic program as input and produces 

a Prolog program as output. The clauses of the input program need not be annotated with types, because 

the precompiler computes the most general type of each danse by the type inference algorithm of [DM82]. 
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Furthermore, the precompiler omits type annotations in the output program whenever it is possible by the 

techniques of section 7. For example, the precompiler translates the polymorphic logic program 

t y p e  l i s t / l ,  pred2]2 
func  [] : -~ list(a) 
func  . :  a,  list(a) ~ list(a) 
p r e d  append" list(a), list(a), list(a) 

clauses: 
append( [I ,2], 
append( [], L, 
append( [E ~R], 

[ 3 , 4 ] ,  [ 1 , 2 , 3 , 4 ] )  e-- 
L) ~- 
L, [E]RL]) *- append(R, L, RL) 

(the type int of integer numbers is predefined) into the Prolog program 

append(':'5[1,2],list(int)), ':'([3,4],list(int)), ':'([1,2,3,4],list(int))). 

append(':'([],list(A)), ':'(L,list(A)), ':'(L,list(A))). 

append(':'([EIR],list(A)), ':'(L,list(A)), ':'([EIRL],list(A))) :- 

append(':'(R,list(A)), ':'(L,list(A)), ':'(RL,list(A))) 

The program for the evaluation of Boolean terms (section 2) would be translated into a Prolog program 

where all type annotations are omitted. If there are type-generally defined predicates as well as other 

predicates in a polymorphic logic program, then type annotations must be deleted in argument terms before 

calling a type-generally defined predicate. After the predicate call type annotations must be added to the 

argument terms. Hence it may be more efficient not to omit type annotations in type-generally defined 

predicates in the presence of other predicates. 

10 C o n c l u s i o n s  

We have presented a polymorphic type system for Horn clause programs. Since we have a semantic notion 

of a type, this can help to close the gap between programming practice with Prolog and the underlying 

theory. The typing rules are quite simple: Each variable has a fixed type and each type instantiation of a 

polymorphic function or predicate can be used inside a clause if the result types of the argument terms are 

equal to the argument types. The semantics of polymorphic types is defined as a universal quantification 

over all possible types. We have shown that  this semantics leads to similar results as in the untyped case: 

The Horn clause calculus can be extended to polymorphic logic progranas, and the well-known resolution 

method for untyped Horn logic can also be used in the polymorphic case if the unification considers the 

types of terms. Hence our polymorphic logic programs are a/so related to "constraint logic programming" 

[JL87], where the consideration of types corresponds to constraints. We have also shown that  the unification 

can disregard types if declarations and clauses have a particular form. In this case the proof method has 

the same efficiency as in the untyped case and we have shown that  our type system is a proper extension 

of the type system in [MO84]. On the other hand, type information is useful to reduce the search space in 

the resolution process [SS85] [HV87]. Thus there are examples where the unification with types leads to a 

more efficient resolution than in the untyped case (see [Han88b]). In our type system it is allowed to have 

clauses where the left-hand side is not of the most genera/type.  We have shown that  this feature permits 

the use of higher-order programming techniques without breaking our type system. 

Further work remains to be done. If the resolution process uses the standard Prolog left-to-right strategy, 

then further optimizations could be done to reduce the cases where type information is required for correct 

unification. If the modes of predicates are known, then there are further possibilities to omit type annotations 

[DH88]. The extension of our polymorphic type system to subtyping and inheritance would be useful. For 

practical applications the type system has to be extended to the meta-logical facilities of Prolog. 
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