Type Checking, Universe Polymorphism,
and Typical Ambiguity in the
Calculus of Constructions®
DRAFT

Robert Harper' Robert Pollack?

Abstract

The Generalized Calculus of Constructions (CC*) of Coquand and Huet is a system for
formalizing constructive mathematics. CC¥includes a cumulative hierarchy of universes, with
each universe closed under the type forming operations. Universe hierarchies are tedious to use
in practice. Russell and Whitehead introduced a convention for dealing with stratification, called
“typical ambiguity”, in which universe levels are not explicitly mentioned, but it is tactily asserted
that some correctly stratified level assignment exists. Using an “operational semantics” for type
synthesis, we study type checking and typical ambiguity for CC¥. We show type synthesis is
effective in CC¥. Even if explicit universe levels are erased from a term it is possible to compute
a “schematic type” for that term, and a set of constraints, that characterize all types of all well-
typed instances of the term. We also consider the extension with §-reductions, which introduces
a form of “universe polymorphism” induced by the failure of type unicity in CC¥.

1 Introduction

The Calculus of Constructions (CC) was introduced by Coquand and Huet [CH85, Coq85] as a system
for formalizing constructive mathematics. The system may be viewed as the A-calculus associated
with natural deduction proofs in an extension of Church’s higher-order logic [Chu40]. It’s proof-
theoretic strength, measured by the set of number-theoretic functions representable in the theory, is
enormous, encompassing at least higher-order arithmetic. The system has been proved both proof-
theoretically [Cog85] and model-theoretically [Luo88a, Erh88, HP88] consistent, and the type checking
problem has been proved decidable [Coq85, CHS85].

In the course of formalizing a body of mathernatics, it is often necessary to consider structures such
as algebras (groups, rings, efc.), automata, and ordered sets. It is by now widely recognized [Mar82,
Con86, Mac86, MH88] that the appropriate type-theoretic representation of mathematical structures
is as elements of “strong sum” types! introduced by Martin-Lof [Mar73, Mar82, Mar84].

Strong sums are incompatible with impredicativity [Coq86, HH86, MH88]: one may not intro-
duce a strong sum type at the level of propositions in CC. In response to this, Coquand introduced
the “generalized” Calculus of Constructions [Coq86] (CC¥) which includes a cumulative hierarchy

*Work done at the Laboratory for Foundations of Computer Science, University of Edinburgh; supported by the UK.
Science and Engineering Research Council, GR/D 64612 and GR/F 78487

TDept. of Computer Science, Carnegie-Mellon University

tLaboratory for Foundations of Computer Science, University of Edinburgh

tAlso known in the literature as “dependent products” and “generalized sums.” These are not to be confused with
the “weak sums” (or “existential types”) introduced in connection with data abstraction [MP85].

242

of universes. A universe is a type that is closed under the type-forming operations of the calculus,
the formation of products indexed by any type, and the formation of strong sums indexed by a type
of that universe level. Cumulative hierarchies of this kind are endemic to predicative systems; they
arise in various guises in Principia Mathematica [Rus08, WR25] and in many contemporary type
theories [Mar73, Mar82, Mar84, CZ82, CZ84, Con86].

Universe hierarchies are tedious to use in practice. Many workers have attempted to avoid the
complications of such a hierarchy by assuming that there is a type of all types [Mar, BL84, MR86,
Car86]. Whether or not this is advisable in the context of programming languages is the subject of
current research [Car]. Such a choice is known, however, to be incompatible with the propositions-as-
types principle [Mar73, MR86, How87], and hence is an unsuitable choice for CC¥,

An alternative approach to dealing with stratification in formal systems was introduced by Russell
and Whitehead in Principie Mathematice. They observed that in most situations it is not the exact
universe level that matters, but only the relationships between the universe levels occurring within a
given proof. They introduced an informal convention, called “typical ambiguity,” in which universe
levels are not explicitly mentioned, and in which it is tacitly asserted that there exists an assignment
of levels such that the resulting proof is correct with respect to the predicativity requirements of the
logic of Principia Mothematica.

From the modern perspective, typical ambiguity can be described as a way to achieve the flexibility
of having a type of all types without sacrificing the logical consistency of the theory. At the level of
the concrete syntax, the user can work without explicit mention of universe levels, leaving it to the
proof checker to ensure that there is always a choice of levels that yields a type-correct term in the
underlying calculus with explicitly stratified universes. That this can be done in CC“ was suggested
by Huet, and worked out independently in [Hue87].

The purpose of this paper is to study type checking and typical ambiguity in the context of CC*. In
Section 2 we define the system CC®, and state some of its important properties. Following [HMTS87,
HMT88], we introduce in Section 3 an “operational semantics” for type checking. The operational
semantics provides a normal form for typing derivations that is useful for establishing properties of
typing in CC¥. (Similar methods are used in [Mit84, GARS88]). In Section 4 we consider the type
checking problem for CC¥. The problem is reduced to the computation of a form of schematic type
involving constraints on universe levels. The algorithm is presented in the style of the operational
semantics, following [CDDKS86]. In Section 5 we consider é-reductions and LET. Since type unicity
fails for CC¥, definitions induce a form of polymorphisim, called “universe polymorphism,” into the
system. The operational semantics and basic type synthesis algorithm are extended to account for
this. In Section 6 we consider the problem of typical ambiguity. This involves defining two algorithms,
one for conversion, the other for type synthesis, that keep track of the internal constraints between
universe levels induced by the predicativity requirements of CC*. The problem is reduced to checking
satisfiability of a finite set of inequalities over the natural numbers. An algorithm based on Chan’s
ARITH algorithm [Cha77] is sketched. Finally, the algorithm for type synthesis with typical ambiguity
is extended to handle §-reductions.

2 The Generalized Calculus of Constructions

The Generalized Calculus of Constructions [Cog86] (CC“) is obtained by extending the basic Calculus
of Constructions with a full cumulative hierarchy of type universes. Let z, y, z range over some
countable set of variables, and i, j, k range over the natural numbers. We use syntax given by the
following grammar:

& u= Prop| Type; kinds
M = zlxl[mMM|{{czMM|MM terms
T u= (=M contexts

The metavariables 4, B, C, K, L, M, and N range over terms; « and ¢ range over kinds. The terms
Type; are called universes. The pair 2:M in a context I' is a declaration. We only consider contexts in

243

F'FA:« z¢dom(T)

() valid T[z-A] valid
T valid T valid T valid z:AeTl
T I Prop : Type, T+ Type; : Type; 4 Tkz: A
I[z:A] F B : Prop
'k {z:A}B : Prop
' A:Prop T[z:AlF B: Type, '+ A:Type; T[z:A]+ B: Type;
T+ {z:A}B : Type; T+ {z:A}B : Type;
Iaz:AlFM: B PFM:{z:A}B TFN:A
't [z:AM : {z:A}B ' MN:[N/z)B
'rM:A I'FB:x A~B (B-coNV)
TFM:B i
T'F M : Type,
YPSi (B-cUM)

't M: Type,,

Table 1: Typing Rules for CC¥

which no variable is declared more than once.

The relation — is one-step #-reduction, defined as usual. Reduction, the reflexive, transitive closure
of —, is denoted by —», and conversion, the induced equivalence relation, is denoted by . One-step
head and weak head reduction are denoted by < and irh, and their reflexive, transitive closures are
denoted by 5 and %. Reduction satisfies the Church-Rosser property [vD80, Coq85, Luo88b], so
M~ Niff M » P and N - P for some P. We do not consider 5 reduction in this paper?.

CC¥ is a formal system for deriving assertions of the form I' - M : A. The axioms and rules of
derivation for CC¥ are given in Table 1. We tend to write I' - M : A to mean that the indicated
assertion is derivable in the formal system.

All well-typed terms in CC” are strongly normalizing, and CC* has the subject reduction property.
It is an immediate consequence of the normalization theorem and the Church-Rosser theorem that the
conversion relation is decidable for well-typed terms.

3 Operational Semantics for CC¥

The inference rules defining the typing relation for CC¥ are not completely syntax-directed: the
structure of M does not determine when the rules B-CONV and B-CUM may be applied. In order to
define a type checking algorithm, it is helpful to characterize exactly those points in a derivation at
which these rules may be needed. We shall define an “operational semantics” for typing in CC* that

2For one thing, subject reduction fails for CC¥ with 7, and with it our proof of soundness for the operational semantics
in Section 3. Also, untyped terms fail to have the Church-Rosser property [vD80], and we don’t know if well typed
terms have this property, or the normalization property.

244

cum(4,7) = { Type;; if A 1_“)}; Type;
A otherwise
Prop if k3 = Prop
w1y Tikg = { TYPej+i if 1= Prop,r, = TYPej
Typemax(j,k)+i if k1= TYPGj, k2 = Typey

I'+ Prop = Type; (¢ > 0)
T+ Type; = Type; (1>
I'kz=cum(A,i) (mA€eT,:>0)

TFA=K K%k TwAlFB=1L L%k, i>0

Tk {z:A}B = &y Ti &2 — (z & dom(I"))

TFA=>K K%k TwAlFM=B
TF @AM = {z:A} B (z & dom(I))

TFM=A A% {z:4)4, THFN=B BoA i>0
' MN = cum([N/z]As,7)

Table 2: Operational Semantics for CC¥

(s-PROP)
(s-TYPE)

(s-VAR)

(s-GEN)

(s-ABS)

(s-apP)

245

has the property that at most one rule applies to any given term. The operational semantics is a
formal system for deriving assertions of the form I' - M = A. It is defined by the axioms and rules of
derivation given in Table 2. The intended meaning of I' F M = A is that A is a type for M in context
T.

The rules s-VAR and S-APP use an auxiliary function, cum, to check whether or not the type
ascribed in the conclusion is convertible to a universe, and if so, to account for any potential use of
cumulativity at that point. To illustrate, let T = [z:{f:Type, — Type, }(f Prop)], M = [y:Type,] Type,,
and observe that '+ z M : Type, since M Prop ~ Type,, and cumulativity applies. The rule s-GEN
uses a similar auxiliary function T to encode both the closure rules for products in CC* and possible
uses of cumulativity.

Note that the operational semantics does not include rules for checking the validity of the con-
text. It does, however, preserve context validity by ensuring that every extension to the context is
by a well-formed binding. The operational semantics is closer than the basic system to a practical
implementation since it avoids the redundancy associated with repeatedly verifying the validity of the
context.

The relation between the operational semantics and CC* is made precise by the following theorem:

Theorem 3.1
Soundness If T valid andT - M = A, then T+ M : A.

Completeness If '+ M : A, then there exists B such that B~ A and I' + M = B. Furthermore,
if A~ Type,, then T = M = Type;, for all j > i.

The operational semantics is “syntax directed” in the sense that the structure of a derivation of
I'F M = A is determined by the structure of M. However, the relation I' F M = A is not a partial
function of I' and M; for example I' |- [z:Prop]Prop = {z:Prop}Type, is derivable for every 7 > 0. The
only source of indeterminacy in the operational semantics is in the choice of the parameters i governing
universe levels. Let us call the occurrences of these parameters in a derivation “springs” and call the
value of such a parameter a “setting” of that spring. In a derivation certain spring settings are forced
by context, while others are arbitrary. For example, in the term ([z:Type,)x) Prop, the spring setting
corresponding to the occurrence of Prop is forced to be 2, whereas in the term Prop, the spring setting
is arbitrary. Since the operational semantics is syntax-directed, the set of types derivable for I' and M
is determined entirely by the settings of the unforced springs.

The following lemma provides a useful characterization of the variability in the types of a term
derivable in the operational semantics:

Lemma 3.2
L IfTHFM= AandT+ M = B with A # B, then for some Ay, ..., A, (n > 0) and some i >0,
FTFM=A if A={zpvA:} - {zxA.1Type; (5 2 9).

2. IfTFz=>Aand &z = B with A # B, then A = Type; and B = Type;.

Although there may be many unforced springs in a derivation (consider the term [z:Prop]Prop, which
has two unforced springs), the lemma shows that the indeterminacy so induced is of a very limited
kind. In fact, the result shows that at most one unforced spring matters; the rest may be safely
ignored.

4 Type Checking

In this section we consider three problems related to type checking in CC¥. The type checking problem
(TCP) is to decide, given a valid context I, and terms M and A, whether or not I' - M : A. The

246

well-typedness problem (WTP) is to decide, given a valid context I and term M, whether or not the
set Typesp(M):={A|TF M : A} is empty. The type synthesis problem (TSP) is to compute the
characteristic function of Typesp(M). We state these problems for valid contexts since, in practice,
we shall maintain the validity of the context and do not expect to check this property on each use,
Since TCP is reducible to TSP, we restrict our attention to the latter two problems. The main result
of this section is the decidability of TSP and WTP.

Our strategy for solving these problems is to work with the operational semantics; for by the
soundness and completeness theorems, M is well-typed in a valid context I iff there exists an A such
that I' - M = A, and A is a valid type for M in valid context I' iff A is convertible to some A’ such
that I' + M = A’. We noted in the previous section that all possible derivations are structurally
isomorphic, being determined by the syntax of M. To solve WTP, then, we need only decide whether
there is an appropriate setting of the springs so that some such derivation may be constructed. To
solve TSP, we must characterize all admissible spring settings. We adapt the idea of Damas and
Milner [DM82] and introduce an analog of their type schemes to serve as a “local summary” of the
variability in the settings of the springs, using a simple form of constrained matching to infer forced
settings. Both for this, and later, purposes, we introduce the machinery of schematic terms.

Let «, B8, and 4 range over some set of level variables, and let A and p range over the level
expressions, consisting of level variables and natural numbers. The schematic terms, ranged over by
X,Y, and Z, are terms that may involve universe schemes of the form Type,. The set LV(X) is the
set of level variables occurring in X, and X is level closed if this set is empty. Universe schemes are
regarded as kinds; we use £ to range over this extended set of kinds.

In general a schematic term stands for the set of all of its instances obtained by substituting natural
numbers for level variables. A level assignment is a finite function mapping level variables to natural
numbers; ¢ and 7 range over level assignments. We write X for the instance of X obtained by
replacing all occurrences of a by o(a). (The result need not be level closed.) Level assignments are
explicitly indicated by writing [i1/ay, ..., tx/ag].

Since reduction is defined without regard to typability, the reduction relations immediately extend
to schematic terms. Moreover, the presence of level variables does not effect reduction. For example:

Lemma 4.1

1. Ifz =% {z: 21}Z,, then o Z % {z:0Z,}02,.
2 IfoZ “ {z : A1}A,, then Z % {z: Z,}Z,, with cZ, = Ay and 0Zy = A,.

Thus if a schematic term has any well-typed instance, it is normalizable.

Usually we are interested only in certain instances of a schematic term X. A constraint setis a finite
set of inequalities of the form A > g or A > p. The variables C, D, £, and F range over constraint sets.
The set LV(C) is the set of level variables occurring in C. A level assignment o satisfies a constraint set
C, written ¢ = C, iff dom(s) C LV(C) and each of the inequalities in C is true under the assignment o.
A constrained term is a pair (X,C) where LV(X) C LV(C). (We may always extend C by inequalities
of the form o > 0 to satisfy this condition.) A term A is an instance of (X,C), written (X,C) > A, iff
there exists ¢ |= C such that o X = A.

Returning to the type synthesis problem, note that by Lemma 3.2 the set of possible distinct types
for a term in a context is quite restricted, and may be easily decscribed by a constrained term. We
define a pre-type scheme to be a constrained term (X,C) such that either

1. X is level closed and C = @, or

2. X = {zp:A1} - - {2n:4,} Type,,, where o is a level variable, and C = {a > i} for some natural
number :.

For pre-type schemes, the relation (X,C) > A is readily seen to be decidable. A pre-type scheme is a
type scheme with respect to a context I' iff whenever (X,C) > A, T+ A = « for some k. The relation

247

b(\,C) = i ifA=iorr=aandC={a2i}
_ [(Type,, {a21(A,C)}) if X = Type,)
CUM(X,C) { (X,0) otherwise

(%,C) 1t (Prop,0)
(Prop, @) ﬂ (Type)‘, C)
(Typey,C) 1t (Type,,C)

(Prop,)
(Type,, { @ = 1b(X,C) })
(Type,, { @ = max(Ib(A,C),1b(k,C)) })

T F Prop = Type,,{a >0} (T-PROP)
T+ Type; = Type,{a>i+1} (T-TYPE)
['Fz= CUM(4,8) (n:A€T) (T-VAR)
TFA= X,C X%k TAlFB=Y,D Y3k,
dom(T -
TF {e:A}B = (#1,C) 1 (k2, D) (z & dom(I')) (7-GEX)
H 3 A F D
TFA= X, Xk TDzmAlbEM=Y, (z ¢ dom(T)) (1-BS)

Tk [2:AlM = {z:A}Y, D

TFM=X,C X%{z:A}X; THFN=Y,D (V,D)z 4
TF MN = CUM([N/2]X,C)

(T-APP)

Table 3: Type Synthesis Algorithm

(X,C) = A holds iff there exists B such that (X,C) 2 B and B ~ A. This relation is decidable
provided that (X,C) is a type scheme, and A is a type, with respect to I'. A pair (X,C) is a principal
type scheme (p.t.s.) for T and M iff T - M = A exactly when (X ,C) = A. Principal type schemes
are unique up to choice of level variable names. If (X,C) is a p.t.s. for I and M, then T FM:Aif
(X,C) = A, and M is well-typed in T iff C is satisfiable. Our goal, then, is to give an algorithm to
compute the principal type scheme of a term in a context, failing iff none exists.

Following [CDD*85, Des84, HMT87, HMT88], we present the type synthesis algorithm as a formal
system for deriving assertions of the form I' - M => (X, C). This form of presentation is advantageous
because it makes clear the close relationship between the algorithm and the operational semantics.
In particular, one can easily see that the type checking algorithm is essentially a “determinization”
of the operational semantics. This system is defined by the axioms and derivations rules given in
Table 3. This system makes use of two auxiliary functions CUM and f} corresponding to cum and T in
the operational semantics.

The relationship between the inference system and the operational semantics is made precise by
the following theorem:

Theorem 4.2
Soundness IfI'F M = (X,C), and (X,C) > A, then T - M = A.

Completeness IfT'F M = A, then there exists o pre-type scheme (X,C) such that '+ M = (X,(C)
and (X,C) 2 A.

248

It follows from the soundness of the operational semantics that if I' valid and T'F M = (X, C) , then
(X,C) is a type scheme.

It is easy to see that I' b M = (X,C) is a partial function of I' and M. The following theorem
establishes that this relation defines an algorithm for computing principal type schemes:

Theorem 4.3 Given I' and M, with I valid, it is decidable whether or not there exists (X,C) such
that T+ M = (X,C).

5 6-Reductions

In practical applications it is useful to bind terms to identifiers so that a term may be referred to by
name, rather than repeated at each occurrence. Definitions may be formalized using a simple form of
é-reductions [Bar84]. In order to avoid complicating the delicate proof-theory of the basic calculus, we
extend only the operational semantics to support é-reductions.

A definition is a pair of the form z=M; the variable z is defined by the definition. A é-contezt is
a finite sequence of declarations and definitions such that no variable is bound more than once, and
such that if A = A [z=M]A?, then FV(M) C dom(A,). The metavariable A ranges over §-contexts.

Reduction is extended to account for defined identifiers by defining the relation A - M — N to be
the compatible closure of the axiom schemes

ArM—N if M- N and AFz—-N if z=Ne€A

The one-step head and weak-head reduction relations are defined similarly, and reduction and con-
version are defined in terms of one-step reduction as before. The relation A v M — N is Church-
Rosser [Bar84].

The type synthesis problem for the system with é-reductions is to compute the characteristic
function of the set Types (M) ={A|A+ M = B and A+ B~ A}, and the well-typedness problem
is to decide whether or not this set is empty.

The operational semantics of Table 2 is modified to account for é-reductions by replacing all uses of
reduction and conversion with the corresponding relation relativized to A, and by adding the following
rule of inference:

A, FM= A

Abz=A
The rule s-DEF reflects the principle of eliminability of definitions: a defined variable has whatever

types its definition has. Since types are not unique, this implies that distinct occurrences of a defined
variable may be assigned distinct types. For example, it is easy to see that

(A = A lz=M]A") (S-DEF)

[z=[y:Prop] Typey] I ([#:Prop — Type,][w:Prop — Type,]Prop) z z = Type,

where the occurrances of x take distinct types, namely Prop — Type; and Prop — Type,.

Definitions do not add to the strength of the operational semantics. To express this, we define
“expansion maps”: A(M), which replaces all defined variables in M by their definitions, and A, which
expands a §-context to a context:

A(Prop) = Prop
A(Type;) = Type; _
AWM fr=MeA 0 =40
Ae) = z otherwise Alz: A] = Alz: A(A)]
A(flz : A]JM) = [z: A(A)A(M) Alz=M] = A
A({z: A}B) = {z:A(A)}A(B)

AMN) = A(M)A(N)

249

Theorem 5.1 (Eliminability of definitions)
I AF M~ N iff AM) ~ A(N).
2. IfAF M= A, then A+ A(M) = A(A).
8 IfAF A(M)= A, then A+ M = B for some B such that A(B) = A.

It follows that the type synthesis problem for the system with é-reductions is decidable: to check
A F M = A, check whether A F A(M) => A(A). This approach is not particularly practical since
the elimination of definitions can result in an exponential (in the number of definitions) increase in
the size of the term to be type checked. However, we can avoid re-computing the type of a defined
variable on each use by storing its principal type scheme with the definition.

Lemma 3.2(1) may be proved for the operational semantics extended with §-reductions. We there-
fore choose the same definition of type scheme as given in Section 4. A generic §-contert is a finite
sequence of declarations and generic definitions of the form z=M:(X,C). Let ® range over generic
§-contexts, and define [®] to be the ordinary é-context obtained from & by replacing each generic
definition z=M:(X,C) by the simple definition z=M.

The type synthesis algorithm for the language with é-reductions is defined by replacing uses of
reduction and conversion in Table 3 with their analogues for definitions, and by adding the rule:

dFz=(X,0) (®=0,[z=M:(X,C)]®") (T-DEF)

A generic é-context @ is principal ff whenever ® = @,[c=M:(X,C)]®%, then (X,C) is a principal
type scheme for M in |®,|. The soundness and completeness of the algorithm is expressed by:

Theorem 5.2 Let ® be a principal generic context.
Soundness If® F M = (X,C) and (X,C) 2 A, then || F M = A
Completeness If |®| - M => A, then there exists (X,C) such that ® - M = (X,C) and (X,C) 2 A.

Define ||®|| to be the ordinary context obtained from ® by removing all definitions. Notice that if
® is principal and ||®|| valid, then every definition in ® is in fact well-typed.

Theorem 5.3 If @ is principal, and ||®|| valid, it is decidable whether or not there ewists (X,C) such
that ® - M = (X,C).

In short, given ® and M, with ® principal, then the type synthesis algorithm computes a principal
type scheme for M, failing if none exists.

Local definitions may be introduced by extending the syntax to include terms of the form
LET z=M IN N. We may extend the algorithm and prove decidability and principal typing as
above.

6 Typical Ambiguity

It is tedious in practice to assign specific levels to universes, particularly since it is usually only the
relationship between the universe levels in a given term that matters, not the specific values. Therefore
we want to extend the calculus to admit the “anonymous” universe Type, leaving it to the type checker
to determine the range of possible universes that may appear in that position. For example, in the
term [z:Type|z, the anonymous universe Type may be replaced by any universe Type; to obtain a
well-typed term. But in the term ([z:Type,]z) Type, the anonymous universe may only be replaced by
Type, to be typeable in the basic calculus. Even if absolute (natural number) universe levels do not
occur, non-trivial constraints are needed to ensure that all instances are typeable. For example, the
second instance of Type in ([z:Type]z) Type may only be assigned a level less than the first instance.

250

We see from these examples that we cannot simply extend the basic calculus with the anonymous
universe Type, since we must somehow keep track of the relationships between occurrences of Type to
ensure that all instances are sensible. Although the concrete syntax we want to use allows occurrences
of Type, we formalize an extension of the calculus that admits universe schemes as part of the “input
language” (in contrast to the situation considered above in which universe schemes occur only as
part of the generated type scheme of a level closed term, i.e. in a metatheoretic description of the
possible types of a basic term). Then anonymous universes are explained by implicitly replacing each
occurrence of Type with a schematic universe, Type,, where « is a fresh level variable unique to that
occurrence®, Of course, absolute universe levels may still appear.

We first give an algorithm for type synthesis that doesn’t handle §—reductions, and then show how
{o implement eliminable §—reductions analogous to Section 5.

6.1 Schematic Type Synthesis

A schematic contert is a context containing schematic declarations of the form z:(X,C), where (X,C)
is a constrained term. Let © range over schematic contexts. We will refer to the global consiraint
set of a schematic context, defined by o :={C | z:(X,C) € B}, and write 7 = © for 7 = Ge.
Also, define the application of an assignment to a schematic context by r(0{z:{X,C)]) := (70)[z:r X].
Define © valid iff for all 7 = O, 70 valid.

Given © and X such that © valid, the schematic type synthesis problem is the characteristic function
of Typesg(X):={A|Jo .ok 0 and 0Ot 60X : A}. The schematic well-typedness problem is to
decide whether or not Typesg(X) = 0. In this section we present an algorithm that solves the schematic
type synthesis problem and the schematic well-typedness problem. The idea of this algorithm is
identical to that for the type synthesis algorithm described above: transform the operational semantics
for the basic language (Table 2) into an algorithm by replacing explicit level numbers with schematic
level variables and appropriate constraints. Now we must do this uniformly throughout the operational
semantics, for all terms appearing in a derivation may be schematic. Nonetheless it is possible to
generalize the definition of principal type scheme to this case, and there is an algorithm for computing
principal type schemes that is sound and complete.

6.1.1 Schematic Conversion Algorithm

The schematic type synthesis algorithm makes use of an algorithm to decide schematic conversion:
given X and Y, find D such that all and only those level assignments satisfying D make X and ¥
convertible. The relation + X = Y, D is defined by the rules of Table 4. It is easy to see that this
relation is a partial function of X and Y. If X and Y each have a well typed instance, then X and Y’
are normalizable, and the relation is decideable. The interesting rule is CNV-TYPE, saying that any two
schematic universes convert, under the constraint that their levels are equal. The essential properties
of this algorithm are summarized in the following lemma:

Lemma 6.1
1. Suppose F X ~Y,D and o =D. Then 0 X 2 aY.
2. Suppose 0 X = o¥ . Then there exists D such that F X =Y, D, and o = D.

6.1.2 A Schematic Type Synthesis Algorithm

We introduce a notion of principal type scheme for the schematic language.

Definition 6.2 A constrained term (Y, D) is a principal type scheme for X in O iff

3The assumption that each level variable occurrence is unique is never used in Section 6.1; in fact we solve the problem
of type synthesis for the full language of schematic terms. In Section 6.2, on é-reductions, we use this assumption to
make sense of definitions with typical ambiguity.

251

bel;Type” Yﬂ;Type,\
FX Y {AZpn2A}

(CNV-TYPE)

X’—"»’:Prop YﬂiProp X%z Y%z
FX~Y,{} FX~Y,{}

X3 {x:X}X, Y3 {H:NY, FXiaoY,D FXonYi€
FX~Y,DUE

X%[e:X)X; Y3y W, FXioVeD kXY €
FX~Y,DUE

X%zX' YByY bzoyD FXxYE
FX~Y,DUE

(z and y variables)

Table 4: Schematic Conversion Algorithm

1. for every T such that 7 |= D and dom(7) 2 LV(O)ULV(X), 70 F 7X = 1Y

2. for every T, A, such that dom(r) = LV(O)U LV(X) and 7O F 7X = A, there exists a witness,
T4, such that: (i) v4 extends T and 74 |= D, and (i) 74Y = A (hence 74O F 14X = 7,4Y).

Remark The requirements on dom(7} in Definition 6.2 are purely technical. In both parts of the defi-
nition we require dom(7) 2 LV(0) U LV(X) so that 70 and 7.X, which occur in assertions about the op-
erational semantics, are level closed. In part 2 of the Definition, we require dom(r) € LV(©) U LV(X)
so that 7 contains no “junk” which might prevent it being extended to 7.

The relation © - X = Y, D is defined by the rules of Table 5. It is easy to see that this relation
is a partial function of © and X (up to the choice of level variables in Y, D), hence can be viewed
as an algorithm for the type synthesis problem. Notice that the algorithm doesn’t check satisfiability
of constraints, so sucessful termination does not depend on the actual level expressions or constraints
in © and X. Also, if @F X = Y, D, then (Y,D) is a constrained term; In fact D contains all the
constraints upon which any instance of the the schematic derivation actually depends. The soundness
and completeness of the schematic type synthesis algorithm is established by:

Theorem 6.3

Soundness If OF X = Y,C, dom(r) 2 LV(O)ULV(X), and 7 =C, then TOF X = 7Y .

Completeness Given © and X, if there exist o, A such that cOF ocX = A | then the algorithm
succeeds and returns a principal type scheme for X in ©.

Theorem 6.4 Given © and X, with © valid, it is decidable whether or not there exists (Y,C) such
that O F X = (Y,C).

The schematic type synthesis and well-typedness problems are thus reduced to checking satisfiability
of a constraint set: given © valid, and X, Typesg(X) is non-empty iff @ F X = Y, D (the algorithm
succeeds) with Ge U D satisfiable. In particular A € Typese(X)iff OF X =VY,D and FY ~ A €
with Ge U D U £ satisfiable.

252

Type,,CU{a>)A}) i X “% Type, (o new)
Q) otherwise

CUM(X,C) E
(Prop,C) if &2 =% Prop
(
(

{

&1 fic k2 = Type,,CU{a>X}) if &1 “ Prop, s 4 Type, (o new)

Type,,CU{aZ X \a2u}) if x u Type,, &2 “ Type, (o new)

O Prop = Type,,{a >0} (a new) (1-PROP)
O Type, = Type,, {a > A} (o new) (1-TYPE)

Ot z= CUM(Y,C) (z:(Y,C)€0O) (1-vAR)

OFX=>XD X %r OX,DIFY=Y,6 Y %k,

O F (m:X}Y = r1 floue A2 (v ¢ dom(®) (1-GEN)
@}'X:X',D X’B&K Q[w(X,D)]FY¢Y’7£
OF [z:X]Y = {z:X}Y' ,DUE (z ¢ dom(O) (1-ABS)

OFX=X\D X% {aX]}X, OrY=Y,f F+Y' ~X,F
OF XY = CUM([Y/z]X,,DUEU F)

(1-APP)

Table 5: Schematic Type Synthesis Algorithm

253

Satisfiability of the constraint sets generated by the type synthesis algorithm can be checked in
polynomial time using the methods developed by Chan [ChaT77] to decide a larger theory of arithmetic
inequalities. A constraint set C is represented by a weighted, directed graph with integer edge weights,
and the graph is checked for positive-weight cycles. The graph associated to C is definded by first
transforming all constraints into the form o > m or a > § + m, where m is a (positive or negative)
integer. (This transformation does not change the size of C.) The transformed set of constraints
determines a graph defined by taking as nodes the level variables occurring in C, together with a
distinguished node for 0, and as edges A p, one per constraint of the form A > g +m. Chan then
proves that the original constraint set C is satisfiable iff the resulting graph has no positive-weight
cycle, a condition that can be tested in time O(m,n®), where m is the number of constraints and n
is the number of level variables. It is worth remarking that the integer edge weights are necessary in
order to express the fact that the natural numbers form a discrete linear order: a simple check for
cyclicity would not account for the fact that the constraint set {a > 2,8 < 3,8 > a} is unsatisfiable.
Such constraint sets can arise in our situation because we admit both schematic and specific universes
in the input language.

6.2 4-Reductions with Typical Ambiguity

We would like to make sense of the the notion “definition” in the system with typical ambiguity. In
analogy with Section 5, define a schematic §-context to be a schematic context possibly containing
schematic definitions of the form z=X, such that no variable is bound more than once, and such
that if A = A,Je=M]AZ, then FV(M) C dom(A,). Let A range over schematic 6-contexts. We could
naively add the rule:
A FX=2Y,C
Arbz=Y,C

to the rules of Table 5 (suitably modified with A in place of ©). This is sensible, but not exactly
what we mean by “definition” in this system. Remember, the level variables in a term X input to the
type synthesis algorithm are fresh, inserted by “pre-processing” a concrete term possibly containing
instances of Type. Thus, thinking of definition as abbreviation for concrete syntax, we intend each
instance of a definition to be expanded with fresh level variables. With this in mind, define level variable
renaming to be an injective function from level variables to level variables, extended to schematic
terms and contexts as usual. For ¥ ranging over finite sets of level variables, let vy be a level variable
renaming that assigns a fresh level variable to each level variable occuring in . Extend the system of
Table 5 with a rules for definitions:

A,‘. F VLV(X)X = Y,C
AFz=Y,C

(A = A s=X]A") (NAIVE)

(A = Afz=X]A") (I-DEFN)

Defining expansion maps as in Section 5, we see that definitions are eliminable from this system®*.
Notice that the system with I-DEFN succeeds on strictly more terms than the system with NAIVE. For
example, with A = [id=[t : Type,][z : t]z], (id Type, id) is typable using I-DEFN, but not using NAIVE.

This extended system is an algorithm in the same sense as before, so is an implementation of
definitions in the system with typical ambiguity. It is not, however, an efficient implementation in the
sense the algorithm of Section 5 is efficient, typing the value of a definition only once, and looking its
type up in the context when needed. In order to express such an efficient algorithm, define a schematic
generic §-context to be a finite sequence of schematic declarations and schematic generic definitions
of the form z=X:(Y,C). Let ® range over schematic generic contexts. Extend the system of Table 5
(but without I-DEFN) with the rule (where \ is set difference):

dFz=> VLV(C)\LV(@,)(Y,C) (® = ®,[z2=X:(Y,C)]9") (I-DEFN')

40f course definitions would be eliminable with NAIVE as well; it’s just that the expansion functions are different.

254

Let |@] be the schematic delta context obtained from @ by replacing each schematic generic definition
z=X:(Y,C) by the schematic definition =X, and call & principal iff whenever ® = &,[z=X:(¥,C)|®"
then |®z|F vy(x)X = Y,C. Rule I-DEFN’ says that the level variables that should be considered
generic in a schematic generic definition z=X:(Y,C) are precisely those whose first occurrence in the
context is in that definition. If ® is principal, these are precisely the level variables of X plus those
freshly generated by the algorithm in a derivation of |®;| F vv(x)X = Y,C . We want to claim that
every use of I-DEFN’ returns the same pair (Y, C) as would a use of I-DEFN (up to the names of new level
variables). But if ® is principal, then Y,C is exactly what a use of I-DEFN (i.e |®|F viyyX = Y,C)
did return (up to the names of new level variables). We have argued for:

Conjecture 6.5 Suppose ® is principal.

Soundness If ®F X = Y,C, there is a level variable remaming, £, that is identity on
LV(®) ULV(X), such that |®|F X = £(Y,C) .

Completeness If |®|F X = Y,C, there is a level variable renaming, &, that is identity on
LV(®) ULV(X), such that @ F X = £(Y,C) .

6.3 An Implementation

The schematic type synthesis algorithm, extended for strong sums, is implemented as part of LEGO,
a refinement style proof checker for the Calculus of Constructions [Pol88]. The algorithm we have
described is very liberal. That self application of the polymorphic identity is typable was mentioned
in Section 6.2. A related exarmnple (from [Hue87]) shows that this system is really not Type : Type: the
algorithm returns an unsatisfiable set of constraints when applied to © = [U={¢ : Type}{z : t}t]lu: U]
and X = (uU u). We have used the algorithm to typecheck Coquand’s proof of Girard’s Para-
dox [Coq86, Coq88]. The algorithm succeeds (showing the proof correct in a system with Type : Type)
with an unsatisfiable set of constraints (showing the proof is not correct in CC¥).

Acknowledgements We are grateful to Thierry Coquand, Gérard Huet, and Joélle Despeyroux for
their helpful comments on this paper. The second author especially thanks Gérard Huet, who has en-
couraged his interest in the Calculus of Constructions, and suggested that the problems addressed here
could be solved by manipulating the integer arguments to the Type constant as symbolic expressions.

References

[Bar84] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies
in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, revised edition,
1984.

[BL84] R. Burstall and Butler Lampson. A kernel language for abstract data types and modules.
In G. Kahn, D. MacQueen, and G. Plotkin, editors, Semantics of Data Types, volume 173
of Lecture Notes in Computer Science, pages 1-50. Springer-Verlag, 1984.

[Car] Luca Cardelli. Phase distinctions in type theory. unpublished manuscript.

[Car86) Luca Cardelli. A polymorphic A-calculus with Type:Type. Technical report, DEC SRC,
1986.

[CDD*85] D. Clément, J. Despeyroux, T. Despeyroux, L. Hascoet, and G. Kahn. Natural semantics
on the computer. Technical Report RR 416, INRIA, Sophia—Antipolis, France, June 1985.

[CDDK86] D. Clément, J. Despeyroux, T. Despeyroux, and G. Kahn. A simple applicative language:
Mini-ML. In Proceedings of the Conference on Lisp and Functional Programming, 1986.

[CHS85)

[Cha77]
[Chudo]
[Cons6]
[Coq85)
(Cogs6]
[Coqs8]
[CZ82)

(C784]

[Des84]

[DM82]

[Erh8s)

[GdRsS]

[HHSS6]

[HMT87]

[HMTSsS]

[How8T]

255

Thierry Coquand and Gérard Huet. Constructions: a higher-order proof system for mech-
anizing mathematics. In B. Buchberger, editor, EUROCAL ’85: European Conference
on Computer Algebra, volume 203 of Lecture Notes in Computer Science, pages 151-184.
Springer-Verlag, 1985.

Tat-Hung Chan. An algorithm for checking PL/CV arithmetical inferences. Technical
Report 77-236, Computer Science Department, Cornell University, Ithaca, New York, 1977,

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

Robert L. Constable, . al. Implementing Mathematics with the NuPRL Proof Develop-
ment System. Prentice-Hall, Englewood Cliffs, NJ, 1986.

Thierry Coquand. Une théorie des constructions. PhD thesis, Université Paris VII, January
1985,

Thierry Coquand. An analysis of Girard’s paradox. In Proc. of the Symposium on Logic
in Computer Science, pages 227-236, Boston, June 1986.

Thierry Coquand. Private communication.

Robert L. Constable and Daniel R. Zlatin. Report on the type theory (V3) of the pro-
gramming logic PL/CV3. In Logics of Programs, volume 131 of Lecture Notes in Computer
Science. Springer-Verlag, 1982.

Robert L. Constable and Daniel R. Zlatin. The type theory of PL/CV3. ACM Transactions
on Programming Languages and Systems, 7(1):72-93, January 1984.

T. Despeyroux. Executable specifications of static semantics. In G. Kahn, D. MacQueen,
and G. Plotkin, editors, Semantics of Data Types, volume 173 of Lecture Notes in Computer
Science. Springer-Verlag, June 1984.

Luis Damas and Robin Milner. Principal type schemes for functional programs. In Pro-
ceedings of the 9th ACM Symposium on the Principles of Programming Languages, pages
207-212, 1982.

Thomas Erhard. A categorical semantics of Constructions. In Proceedings of the Third
Annual Symposium on Logic in Computer Science, pages 264-273, Edinburgh, July 1988,

Paola Giannini and Simona Ronchi della Rocca. Characterization of typings in polymorphic
type discipline. In Proceedings of the Third Annual Symposium on Logic in Computer
Science, pages 61-71, July 1988.

James G. Hook and Douglas Howe. Impredicative strong existential equivalent to
Type:Type. Technical Report TR 86-760, Cornell University, Ithaca, New York, 1986.

Robert Harper, Robin Milner, and Mads Tofte. A type discipline for program modules. In
TAPSOFT 87, volume 250 of Lecture Notes in Computer Science. Springer-Verlag, March
1987.

Robert Harper, Robin Milner, and Mads Tofte. The definition of Standard ML (version 2).
Technical Report ECS-LF(S-88-62, Laboratory for the Foundations of Computer Science,
Edinburgh University, August 1988.

Douglas Howe. The computational behavior of Girard’s paradox. In Proceedings of the
Second Symposium on Logic in Computer Science, pages 205-214, Ithaca, New York, June
1987.

[HP8S]

[Hue87]

{Luo88a)

[Luo83b]

[Mac86]

[Mar]

[Mar73]

[Mar82]

[Mar84]
[MHS88]

[Mit84]

[MP85]
[MR86)]
[Pol8s]
[Rus08]
[vD80]

[WR25)

256

J. Martin E. Hyland and Andrew M. Pitts. The Theory of Constructions: categorical
semantics and topos-theoretic models. In Proceedings of the Boulder Conference on Cate-
gories in Computer Science, 1988. To appear.

Gérard Huet. Extending the Calculus of Constructions with Type:Type. unpublished
manuscript, April 1987.

Zhaolui Luo. A higher-order calculus and theory abstraction. Technical Report ECS-
LFCS-88-57, Laboratory for the Foundations of Computer Science, Edinburgh University,
July 1988.

Zhaolui Luo. CCY and its metatheory. Technical Report ECS-LFCS-88-58, Laboratory
for the Foundations of Computer Science, Edinburgh University, July 1988.

David MacQueen. Using dependent types to express modular structure. In Proceedings of
the 13th ACM Symposium on the Principles of Programming Languages, 1986.

Per Martin-Lof. A theory of types. Unpublished manuscript.

Per Martin-Lof. An intuitionistic theory of types: predicative part. In H. E. Rose and
J. C. Shepherdson, editors, Logic Colloquium, 78, pages 73-118, Amsterdam, 1973. North-
Holland.

Per Martin-Lof, Constructive mathematics and computer programming. In Sizth In-
ternational Congress for Logic, Methodology, and Philosophy of Science, pages 153-175,
Amsterdam, 1982. North-Holland.

Per Martin-Lof. Intuitionistic Type Theory, volume 1 of Studies in Proof Theory. Bib-
liopolis, Naples, 1984.

John Mitchell and Robert Harper. The essence of ML. In Proceedings of the Fifteenth ACM
Symposium on Principles of Programming Languages, San Diego, California, January 1988.

John C. Mitchell. Type inference and type containment. In G. Kahn, D. MacQueen, and
Q. Plotkin, editors, Semantics of Data Types, volume 173 of Lecture Notes in Computer
Science, pages 257-278. Springer-Verlag, 1984.

John C. Mitchell and Gordon Plotkin. Abstract types have existential type. In Proceedings
of the 12th ACM Symposium on the Principles of Programming Languages, 1985,

Albert Meyer and Mark Reinhold. ‘Type’ is not a type: preliminary report. In Proceedings
of the 13th ACM Symposium on the Principles of Programming Languages, 1986.

Robert Pollack. The theory of lego. Technical report, Laboratory for the Foundations of
Computer Science, Edinburgh University, 1988. To appear.

Bertrand Russell. Mathematical logic as based on a theory of types. American Journal of
Mathematics, 30:222-262, 1908.

Diedrik T. van Daalen. The Language Theory of AUTOMATH. PhD thesis, Technical
University of Eindhoven, Eindhoven, Netherlands, 1980.

Alfred North Whitehead and Bertrand Russell. Principic Mathematica, Volume 1. Cam-
bridge University Press, Cambridge, 1925.

