
An Introduction to PSFd

S. Mauw & G.J. Veltink

university of Amsterdam
Programming Research Group

P.O. Box 41882
1009 DB Amsterdam

abstract: PSFd (Process Specification Formalism - Draft) is a Formal Description
Technique developed for specifying concurrent systems. PSFd supports the modular
construction of specifications and parameterization of modules. As semantics for PSFd a
combination of initial algebra semantics and operational semantics for concurrent
processes is used. This report is intended to give a brief introduction to the use of
PSF d.

Note: This work was sponsored in part by ESPRIT contract hr. 432, Meteor.

1. INTRODUCTION

PSFd (Process Specification Formalism - Draft) has been designed as the base for a set of tools

to support ACP (Algebra of Communicating Processes) [BK86b] and its formal definition San

be found in [MV88]. ACP is a member of the family of concurrency theories, informally

known as process algebras, and has already been applied to a large domain of problems,

including: communicat ion protocols [BK86a,Vaa86], algorithms for systolic systems

[Weij87], electronic circuits [BV88] and CIM architectures [Mau87]. The size of these

specifications is rather small such that manual verification can be achieved, but for

industrially relevant problems we feel the need for a set of computer tools to help with the

specification, simulation, verification and implementation.

Specifications in ACP, however, are written in an informal syntax and the treatment of data

types is unspecified. The main goal in the design of PSFd was to provide a specification

language with a formal syntax, that would yet resemble ACP as much as possible, and to use

a formal notion of data types. We have incorporated ASF (Algebraic Specification

Formalism) [BHK87], which is based on the formal theory of abstract data types, in PSFd to

be able to specify data types by means of equational specifications. In order to meet the

modern requirements of software engineering, like reusability of software, PSFd provides

the modular construction of specifications and parameterization of modules. This paper is

meant to be an informal introduction to PSFd. Please refer to [MV88] for more details.

The layout of this paper is as follows. In section 2 we show how data types are specified.

Section 3 deals with the introduction

processes. Along with the syntax the

example we will give the specification

of all operators used in defining the behaviour of

semantics of each operator is given. As a running

of a vending machine. This specification is adopted

each time new language constructs are introduced. Modularization is the subject of section

4, in which import and export of data types and processes is treated. Section 5 gives the

273

specification of a Universal Vending Machine to i l lustrate the use of parameter iza t ion. An

ove rv i ew of the semant ica l issues is g iven in sect ion 6. The las t two sect ions give a

comparison be tween PSFd and LOTOS and a survey of the tools based on PSFd.

2. DATA TYPES

A PSF specification consists of series of modules . There are two kinds of modules viz. data

modules and process modules. In this section we deal with the data modules .

The first step in defining a data type is to define some sorts and some functions that operate

on these sorts. The declarat ion of each function includes its input-type consist ing of a list of

zero or more sorts and its output-type consist ing of exactly one sort. Funct ions that do not

have an input - type , l ike the first two functions in the example , are called constants. The

combinat ion of sorts and functions is called the signature of a data type. Next we give an

example of a s imple definit ion and point out its constituents.

data module Booleans
begin

sorts
BOOLEAN

functions
true :
false :
and :
or
not :

-> BOOLEAN
-> BOOLEAN

BOOLEAN # BOOLEAN -> BOOLEAN
BOOLEAN # BOOLEAN -> BOOLEAN
BOOLEAN -> BOOLEAN

variables
x,y : -> BOOLEAN

equations
[BI] and(true,x) = x
[B2] and(false, x) = false
[B3] or(true,x) = true
[B4] or(false,x) = x
[B5] not(true) = false
[B6] not(false) = true

end Booleans

This is an example of the defini t ion of the data type booleans. The modu le is enclosed by

two lines that state that the name of this data module is Booleans. There is one sort declared

in this modu le called BOOLEAN and five functions among which two constants.

The s igna ture of a da ta type gives all the informat ion needed to construct well formed

terms, which represent da ta values of that par t icular da ta type. Terms are constructed by

app ly ing an n-ary function to n terms of the correct type. This means that a constant, being a

0-ary funct ion, is a term in itself. An example of a term genera ted by the s ignature of

booleans is: and{not(true}, or(false, false)). We are able to construct a lot of syntact ical ly

different terms, some of which might denote the same value. To state that two terms

274

deno te the same value we use equations. An example of such an equat ion is:

and{true, false) = false. More generally we could say that for every boolean term x, the

equation ond{trve, x} -- x holds. In this case x is a variable of the sort BOOLEAN. See the

example for the complete list of equations that we stated to hold for the booleans.

As the semantics for the data types we use the initial algebra semantics as defined in

[EM85,GM85]. In short this means that all terms that are equal, as derivable from the

equations, are in the same equivalence class. Each equivalence class corresponds with

exactly one element of the initial algebra. We write [tl for the equivalence class of a term t.

3. PROCESSES

In this and the following sections we focus on the process modules. Processes in PSFd are

described as a series of atomic actions combined by operators. Atomic actions are the basic

and indivisible elements of processes in PSFd. By using atomic actions and operators we can

construct process expressions. These process expressions in combinat ion with recursive

process definitions are used to define processes. From now on we will introduce the

operators one by one, but first we will have to introduce the action rules, i.e. the notation

we use to express the semantics of an expression. Action rules were introduced by Plotkin in

[Plo82] to give an operational semantics for CSP [Hoa85].

For each atomic action a we define a binary relation . ~ . and a unary relation . ~ q on

closed process expressions, i.e. process expressions containing no variables. The notation

x ~-~ y means that a process expression represented by x can evolve into y by executing the

atomic action a and x ~ q means that the process expression represented by x can terminate

successfully after having executed the atomic action a. The special symbol "] can be looked

upon as a symbol indicating successful termination of a process. When using action

relations in this document the a always stands for an atomic action and the x and y stand for

a process expression. Beware that in this document we do not give the complete list of

action rules because it is meant as an introduction.

We start with an axiom that states that a process expression consisting of an atomic action a

only, can terminate successfully by executing atomic action a. This fact is expressed by the

following action rule:

a - ~ q

Sequential composition is expressed by using the ' . ' -operator like in: a . b, which states that

after atomic action a has been executed, atomic action b can be executed. The semantics for

sequential composition are given by:

x~x' x-~q
x.y ~-> x'-y x.y ~->y

275

The second rule, e.g., states that whenever a process expression x can terminate execution

action a, the process expression x.y is able to execute action a and to evolve into process

expression y.

Alternative composition is expressed by using the '+'-operator like in: a + b, which states

that a non-deterministic choice is made between a and b first and that the chosen action is

executed after that.

The semantics for alternative composition are given by:

x&x' x&q y&~ y&q
x+y~x ' x + y ~ q x+y~y ' x + y ~

With these simple operations we are already able to specify a simple vending machine. Our

vending mac~ne sells coffee for 25 cen~ and tea ~ r 10 cents.

process module Vending-Machine
begin

atoms
10c, 25c, coffee, tea

processes
VCT

definitions
VCT = ((10c . tea) + (25c . coffee)) . VCT

end Vending-Machine

There are some new features that appear in this example. The atomic actions are introduced

in the atoms section. In the processes section the names for processes are declared, while the

behaviour of a process is defined in the definitions section. In the definition of VCT we see

that after delivering a cup of tea or a cup of coffee the machine returns to its original state,

which is expressed by repeating the name of the process at the end of the right-hand side of

the equation. This feature is called recursion.

We give the initial part of a possible trace, i.e. a series of derivations, of this vending

machine. In this trace we will leave out the intermediate processes because we are only

interested in the atomic actions that occur.

V C T 1 0 c) . . . t e a) . . . 2 5 c) . . . c o f f e e) . . . 2 5 c) . . . c o f f e e) V C T

Next we want to introduce parallel composition, which is expressed by using the ' l l ' -

operator. The expression x I I y states that the processes x and y are executed in parallel. To

execute in parallel means that the first atomic action executed by x I I y may come from

276

either x or y , or that the first a tomic actions from both x and y can communica te wi th each

other. This is called inter leaving concurrency. The expression a lb = c states that two atomic

act ions a, b can communica te and that the resul t wi l l be another a tomic ac t ion c. The

semantics for paral le l composi t ion are given by:

x-~x' x-a~q y --~,/ y-~q
xlly -~ x'lly xlly-~y xlly-~ xlly' xlly-~x

x -~ x'; y b~y'; aIb=c x Gq; y ~q ; alb=c
xlly £~ x'lty'

x -~x'; y ~q ; alb=c

x[~yGq
x i~ q; y ~ y,; alb=c

xl[y ~x ' xtty-~y'

Suppose we want to add some users to the specification. In this example we wil l model a

situation in which a client that likes to have tea arrives at the vending machine fol lowed by

a client that wants coffee.

process module Vending-Machine-and-Users
begin

atoms
insert-10c, accept-10c, 10c-paid,
insert-25c, accept-25c, 25c-paid,
serve-coffee, take-coffee, coffee-delivered,
serve-tea, take-tea, tea-delivered

processes
VMCT, Tea-User, Coffee-User, System

sets
of atoms

H = { insert-10c, accept-10c, insert-25c, accept-25c,
serve-coffee, take-coffee, serve-tea, take-tea }

communications
insert-10c [accept-10c = 10c-paid
insert-25c I accept-25c = 25c-paid
serve-tea [take-tea = tea-delivered
serve-coffee [take-coffee = coffee-delivered

definitions
VMCT = ((accept-10c . serve-tea) +

(accept-25c . serve-coffee))
Tea-User = insert-10c . take-tea
Coffee-User = insert-25c . take-coffee

System

• VMCT

= encaps(H, VMCT [[(Tea-User . Coffee-User))

end Vending-Machine-and-Users

The specification has g rown considerably. We will have a look at the new features that have

been in t roduced . The first th ing we not ice is that the amoun t of a tomic act ions has

277

increased. This is due to the fact that we now have four pai rs of communica t ing atomic

actions. These pai rs and their results are l is ted in the communications section. The next

new feature is the sets section. It is possible in PSFd to assign a name to a set of terms of a

given sort, in this case the predefined sort atoms. In this example all a tomic actions that are

not the resul t of a communicat ion are pu t in the set H. This set is used in the last line of the

definitions sect ion by the encaps (encapsu la t i on) o p e r a t o r . The p roces s express ion

encops{H,x} is equal to the process express ion x w i thou t the poss ib i l i ty of pe r fo rming

atomic act ions from H. This construct ion is used to force communica t ion be tween certain

a tomic actions.

The semantics of the encaps operator are given by:

x -~ x'; a~ H

encaps(H,x) -~ encaps(H,x')

x -~q ; a~H

encaps(H,x) -~ q

The only possible trace of this system is:

System 10c-paid) ... tea-delivered) ... 25c-paid) ... coffee-delivered) encaps(H,VMCT)

N o w suppose we are not interested in the atomic actions that occur when the money has

been pa id . PSFd offers the hide opera to r to r ename all u n w a n t e d act ions into skip. Its

semantics are given by:

x -~. x'; ael x -~. ~/; ael
hide(I,x) skip) hide(I,x') hide(I,x) skip) ~/

x ~ x ' ; a~l x -~q; a~l

hide(I,x) ~ hide(I,x') hide(I,x) ~ q

From these action relat ions for hide it is clear that skip can also act as a label of a transition,

even though it is no atomic action.

To get r id of the u n w a n t e d actions in the previous example we define an extra set ! in the

sets sect ion and change the def ini t ion of System in the definitions sect ion to inc lude the

hide opera tor .

I = { 10c-paid, 25c-paid }

System = hide(I, encaps(H, VMCT [I (Tea-User . Coffee-User)))

The only possible trace of the system wou ld now be:

System skip) ... tea-delivered) ... skip) ... coffee-delivered) encaps(H,VMCT)

278

4. MODULARIZATION

The next thing we want to do is to specify a system of a vending machine and clients in a

modula r fashion. The three sections in PSFd that deal with modular i ty are the exports,
imports and parameters section. All definitions that are listed in the exports section are

visible outside the module. A data module may define sorts and functions, while a process

module may define atoms, processes and sets in the exports section. All objects that are

declared outs ide the exports section are called hidden and are only visible inside the

module in which they were declared. When a module A imports a module B, all names in

the exports section of B are automat ical ly exported by A too. This feature is called

inheritance.
To start our modula r specification of the vending machine we define some amounts of

money that it accepts.

data module Amounts

begin

exports
begin

sorts
AMOUNT

functions
10c : -> AMOUNT
20c : -> AMOUNT
25c : -> AMOUNT
30c : -> AMOUNT

end

end Amounts

The initial algebra of the sort AMOUNT in this module now consists of four elements

namely: [10c], [20c], [25c], [30c].

The basic way to combine modules is by way of import. In the imports section we define

which modules have to be imported. By import ing module A in module B, all exported

objects from A become visible inside B. It is not allowed to import a process module into a

data module. N o w we give a definition of some drinks and their prices. The module

Amounts is imported as to be able to use the sort AMOUNT.

data module Drinks
begin

exports
begin

sorts
DRINK

functions
tea : -> DRINK
coffee : -> DRINK
orange : -> DRINK
price : DRINK -> AMOUNT

end

279

imports
Amounts

equations
[PI] price(tea) = 10c
[P2] price(coffee) = 25c
[P3] price(orange) = 30c

end Drinks

This m o d u l e def ines a sor t DRINK conta in ing three e lements and a funct ion price from

DRINK to AMOUNT.

Next w e def ine a client that has its o w n favourite drink.

process module Drinks-User
begin

exports
begin

atoms
select
insert
take-drink :

processes
user : DRINK

end

imports
Drinks

variables
fav-drink : -> DRINK

definitions
user (fav-drink)

DRINK
AMOUNT
DRINK

-- the user's

= select(fay-drink) .
insert(price(fav-drink))
take-drink(fay-drink)

end Drinks-User

favourite drink

In this example w e see that atoms as well as processes can take da ta e lements as parameters .

The process user is parameter ized by the user 's favouri te drink, see the line user(fay-drink) =
select(fav-drink). So now we have def ined three users namely: user(tea}, user(coffee) and

user(orange}. These processes all have the same behaviour , except for the dr inks that are

subject to there actions. So the first action of the process user(tea) is select(tea), whereas the

first action of process user(coffee) is select(coffee}.

5. PARAh4ETERIZATION

To be able to exploit the reusability of specifications, a parameterization concept is included

in PSFd. Parameterization is described in the parameters section and takes the form of a

sequence of formal parameters. Each parameter is a block that has a name and lists some

280

formal objects. Pa ramete r s in a da ta m o d u l e m a y consist of sorts and funct ions only,

whereas parameters in a process module consist of atoms, processes and sets addit ionally. In

the next example we def ine a universa l vend ing machine that has the i tems it sells as a

parameter . These i tems are represented by the sort PRODUCT and we d e m a n d that there is a

function price from PRODUCT to AMOUNT.

process module Universal-Vending-Machine
begin

parameters
Items-on-sale

begin
sorts

PRODUCT
functions

price : PRODUCT-> AMOUNT
end Items-on-sale

exports
begin

atoms
get-selection : PRODUCT
accept : AMOUNT
serve-product : PRODUCT

processes
UVM

end

imports
Amounts

variables
chosen-item : -> PRODUCT

definitions
UVM = sum(chosen-item in PRODUCT,

get-selection (chosen-item) .
accept (price (chosen-item)) .
serve-product (chosen-item)

) . UVM

end Universal-Vending-Machine

The intui t ive idea behind the Universal Vending Machine is the following:

- for each product

• offer the possibi l i ty to select this product

• accept the amount of money to be pa id for this p roduc t

• serve the chosen product

In this example the sum opera to r , which acts as a gene ra l i za t ion of the a l te rna t ive

compos i t ion (+), is in t roduced . A so-cal led placeholder (chosen-item) is used to define a

process express ion containing a k ind of variable. The sum opera tor takes two arguments ,

the placeholder definition (chosen-item in PRODUCT), which def ines the doma in of the

placeholder , and a process expression, to which the scope of this p laceholder is l imited. In

281

this example the sum operator introduces one process expression for each element of

PRODUCT, as part of one big alternative composition.

There is another operator that resembles the sum operator, namely the merge operator that

generalizes the parallel composition in a similar way. This operator will not be dealt with in

this paper.

Whenever a parameterized module is imported into another module, each parameter of

the former module may become bound to a third module by binding all objects listed in the

parameter to actual sorts, functions, atoms, processes and sets from this third module. All

unbound parameters are inherited by the importing module and are indistinguishable from

the parameters defined in its own parameters section.

In the next example we make a specification of a vending machine and two users by using

the modules we have already defined.

process module VM-Tea-Coffee-Orange
begin

imports
Universal -Vending-Machine

{ Items-on-sale
bound by

[PRODUCT -> DRINK]
to Drinks
renamed by

[get-selection -> watch-button,
UVM -> VMCTO,
serve-product -> serve-drink] },

Drinks-User
{ renamed by

[select -> push-button }

atoms
order, delivered : DRINK
paid : AMOUNT

processes
System

sets
of atoms

H = { push-button(d), watch-button(d) l d in DRINK } +
{ serve-drink(d), take-drink(d) I d in DRINK } +
{ insert (c) , accept (c) l change in AMOUNT }

communications
push-button (d) I watch-button (d) = order (d) for d in DRINK
serve-drink (d) I take-drink (d) = delivered (d) for d in DRINK
insert(c) l accept(c) = paid(c) for c in AMOUNT

definitions
System = encaps(H, VMCTO I I (user (tea) . user (coffee)))

end VM-Tea-Co ffee-Orange

The visible names of a module can be renamed by the use of the renamed by construct,

which specifies a renaming by giving a list of pairs of renamings in the form of an old

282

visible name and a new visible name. Thus we specify the interaction be tween the user and

the vend ing machine in this example by means of but tons (wotch-button, push-button).
The bound by cons t ruc t is u sed to b i n d p a r a m e t e r s and speci f ies the n a m e of a

pa rame te r i zed module , a pa ramete r name, a list of b ind ings (pairs consis t ing of a formal

name and an actual name), and the name of an actual module . Thus w e have b o u n d the

pa rame te r Items-on-sole of the UVM to the modu le Drinks, obta in ing a Tea-Coffee-Orange

Vending Machine.

6. MORE ON SEMANTICS

In [MV88] the formal semant ics of PSFd are descr ibed. To shape the in tu i t ive not ion of

semantics t reated so far, we will e laborate on it in this section. To assign a semantics to a

m o d u l a r PSFd specif icat ion we use a normal iza t ion p rocedure that r emoves all modu la r

structure. It p roduces one fiat data modu le and one flat process modu le which imports the

flat da ta module . The fol lowing picture shows the several levels of semant ics involved in

the formal definit ion.

data 1 inltial algebra

J [atoms 1
(f J '

processes 1
tctlon relations

L

processes]
scmantlcs

figure 1. Dependencies among different semantic domains.

The semantics of the da ta modu le is the initial a lgebra semantics as po in ted out before. The

semantics of the objects def ined in the process modu le are based u p o n the initial algebra

semant ics of the da ta types. Sets can be unde r s tood as subsor ts of a given sort. Atomic

actions are def ined us ing the predef ined sort atoms and poss ib ly take elements of the data

types as parameters . There is an equivalence relat ion def ined on the atomic actions, which

is induced by the initial a lgebra semantics of the data types. We will i l lustrate this by giving

283

an example related to the module Drinks-User as defined in section four. Whenever a closed

term occurs as a parameter of an atomic action, it should be looked upon as representing its

equivalence class in the initial algebra. In fact we should have written It] for each data term

t in the specification, but we leave out the brackets for reasons of simplicity. So because

price{orange} represents the same object as 30c, the atomic action insert{price{orange}} is

equal to insert{30c}.
In section 3 we have defined an operational semantics for process expressions by means of

action relations. These action relations are suitable to define a semantic domain, i.e. the

graph model, on which most of the known equivalence relations on processes can be

defined. In this way we can assign a labeled directed transition graph to each process. We

define bisimulation equivalence [Par81] on these graphs as the intended semantics for PSFd

processes.

7, COMPARISONS

Compared with other FDT's (Formal Description Techniques) PSFd is most closely allied to

LOTOS [ISO87]. LOTOS is one of the two FDT's developed within ISO (International

Organization for Standardization) for the formal specification of open distributed systems.

Like PSFd, LOTOS is a combination of two formalisms, namely a variant of ACT ONE

[EM85] to describe data types and a process description part based on CCS [Mil80]. One of the

design goals of PSFd was to stay as close to ACP as possible. The result of this goal is that the

distance between PSFd and ACP is much smaller than the distance between LOTOS and

CCS.

The main differences between PSFd and LOTOS originate from the differences between ACP

and CCS. Sequential composition is expressed in CCS by means of the action prefix operator.

This operator combines an action and a process or behaviour expression. To link two

processes together one has to use another operator, the enable operator. In ACP atomic

actions are looked upon as being elementary processes, therefore only one operator is

needed to express sequential composition.

In LOTOS communication is established by synchronization of observable actions with the

same name. In ACP the communication function is used to define which atomic actions are

able to communicate. We think of this as an advantage when systems are specified in a

modular fashion, because it gives the possibility to develop modules independently and tie

them together by specifying the communication function afterwards. In contrast, in LOTOS

the names of all gates have to be known in advance.

The data specification parts of PSFd and LOTOS are very similar. This includes

parameterization and renaming of imported sorts and functions. However it is not possible

to define hidden signatures in LOTOS.

Though modularization is possible when defining data types, LOTOS does not support such

a powerful concept of importing and exporting processes and actions as opposed to PSFd,

which supports one global concept of modularization. The only way to have some

284

abstraction in LOTOS is by writing a specification in a stringent top-down manner using the

where construction, in which the subprocesses have to be specified explicitly each time. The

next piece of a LOTOS specification from [BB87] will clarify this notion.

process Sender[ConReq, ConCnf, DatReq, DisReq] :=
Connection-Phase[ConReq, ConCnf] ~ Data-Phase[DatReq, DisReq]

where
process Connection-Phase[ConReq, ConCnf] :=

ConReq; ConCnf; exit
endproc
process Data-Phase[DatReq, DisReq] :=

(DatReq; Data-Phase[DatReq, DisReq]
[] DisReq; stop)

endproc
endproc

We claim that such an approach does not support the reusability of specifications and we

think that it will lead to monolithic specifications that are harder to unders tand due to the

lack of a proper abstraction mechanism.

We refer to [MV88] for a more extensive comparison between PSFd and LOTOS as well as

some other FDT's and programming languages.

8. TOOLS

As stated in the introduction, PSF d has been designed as the base for a set of tools. The first

tool we are currently implementing is a simulator. The goal is to come up with a program

that is able to simulate, possibly in interaction with the user, the processes that are defined

in the PSFd specification. The first phase of this implementation, being a syntax and type

checker, has already been accomplished. In constructing this simulator we hope we will

gain more experience and ideas to build a verification tool, for testing equivalence of

processes, and as the last step an implementation tool, that will implement a specification

in some kind of programming language, hopefully to be executed on a parallel computer.

9. CONCLUSIONS

In this report we have presented PSFd, a new formalism to describe process behaviour. We

have shown that it is possible to integrate a formal approach towards data types in this

formalism and as an example we gave the specification of a vending machine in PSFd. PSFd

also has been used for specifications other than toy examples. We refer to [MV88] for a

detailed specification of the Alternating Bit Protocol making full use of the modularization

concepts, as well as some other more elaborate examples. We hope that PSFd will be able to

serve as a contribution to the construction of more reliable software.

285

10. REFERENCES

[BB87]

[BHK87]

[BK86a]

[BK86b]

[BV88]

[EM85]

[GM85]

[Hoa85]

[ISO871

[Mau87]

[Mil80]

[MV88]

[Par81]

[P1o82]

[Vaa86]

[Weij871

T. Bolognesi & E. Brinksma, Introduction to the ISO Specification Language
LOTOS, in: Computer Networks and ISDN Systems 14, pp 25-59, North-
Holland, Amsterdam, 1987.

J.A. Bergstra, J. Heering & P. Klint, ASF - An algebraic specification
formalism, Report CS-R8705, Centre for Mathematics and Computer Science,
Amsterdam, 1987.

J.A. Bergstra & J.W. Klop, Verification of an alternating bit protocol by means
of process algebra, in: Math. Methods of Spec. & Synthesis of Software
Systems '85, (W. Bibel & K.P. Jantke, eds.), Math. Research 31, Akademie-
Verlag Berlin, pp 9-23, 1986.

J.A. Bergstra & J.W. Klop, Process algebra: specification and verification in
bisimulation semantics, in: Math. & Comp. Sci. H, (M. Hazewinkel, J.K.
Lenstra & L.G.L.T. Meertens, eds.), CWI Monograph 4, pp 61-94, North-
Holland, Amsterdam, 1986.

J.C.M. Baeten & F.W. Vaandrager, Specification and Verification of a circuit
in ACP, Report P8803, University of Amsterdam, 1988.

H. Ehrig & B. Mahr, Fundamentals of Algebraic Specifications, Vol. I,
Equations and Initial Semantics, Springer-Verlag, 1985.

J.A. Goguen & J. Meseguer, Initiality, induction and computability, in:
Algebraic Methods in Semantics (M. Nivat & J.C. Reynolds eds.), pp. 460-541,
Cambridge University Press, 1985.

C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

International Organization for Standardization, Information processing
systems - Open systems interconnection - LOTOS - A Formal Description
Technique Based on the Temporal Ordering of Observational Behaviour,
ISO/TC 97/SC 21, (E. Brinksma, ed.), 1987.

S. Mauw, Process Algebra as a Tool for the Specification and Verification of
CIM-architectures, Report P8708, University of Amsterdam, Amsterdam,
198Z

R. Milner, A calculus of communicating systems, Springer LNCS 92, 1980.

S. Mauw & G.J. Veltink, A Process Specification Formalism, Report P8814,
University of Amsterdam, Amsterdam, 1988.

D.M.R. Park, Concurrency and automata on infinite sequences, in: Proc. 5th
GI Conf., (P. Deussen, ed.), Springer LNCS 104, pp 167-183, 1981.

G.D. Plotkin, An operational semantics for CSP, in: Proc. Conf. Formal
Description of Programming Concepts II, Garmisch 1982 (E. Bjorner, ed.), pp.
199-225, North-Holland, 1982.

F.W. Vaandrager, Verification of two communication protocols by means of
process algebra, Report CS-R8606, Centre for Mathematics and Computer
Science, Amsterdam, 1986.

W.P. Weijland, Correctness proofs for systolic algorithms: a palindrome
recognizer, Report CS-R8747, Centre for Mathematics and Computer Science,
Amsterdam, 1987.
To appear in: Theoretical Foundations of VLSI design, (K. McEvoy & J.V.
Tucker, eds.)

