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abstract: PSFd (Process Specification Formalism - Draft) is a Formal Description 
Technique developed for specifying concurrent systems. PSFd supports the modular 
construction of specifications and parameterization of modules. As semantics for PSFd a 
combination of initial algebra semantics and operational semantics for concurrent 
processes is used. This report is intended to give a brief introduction to the use of 
PSF d. 
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1. INTRODUCTION 

PSFd (Process Specification Formalism - Draft) has been designed as the base for a set of tools 

to support ACP (Algebra of Communicating Processes) [BK86b] and its formal definition San 

be found in [MV88]. ACP is a member of the family of concurrency theories, informally 

known as process algebras, and has already been applied to a large domain of problems, 

including: communicat ion protocols [BK86a,Vaa86], algorithms for systolic systems 

[Weij87], electronic circuits [BV88] and CIM architectures [Mau87]. The size of these 

specifications is rather small such that manual verification can be achieved, but for 

industrially relevant problems we feel the need for a set of computer tools to help with the 

specification, simulation, verification and implementation. 

Specifications in ACP, however, are written in an informal syntax and the treatment of data 

types is unspecified. The main goal in the design of PSFd was to provide a specification 

language with a formal syntax, that would yet resemble ACP as much as possible, and to use 

a formal notion of data types. We have incorporated ASF (Algebraic Specification 

Formalism) [BHK87], which is based on the formal theory of abstract data types, in PSFd to 

be able to specify data types by means of equational specifications. In order to meet the 

modern requirements of software engineering, like reusability of software, PSFd provides 

the modular construction of specifications and parameterization of modules. This paper is 

meant to be an informal introduction to PSFd. Please refer to [MV88] for more details. 

The layout of this paper is as follows. In section 2 we show how data types are specified. 

Section 3 deals with the introduction 

processes. Along with the syntax the 

example we will give the specification 

of all operators used in defining the behaviour of 

semantics of each operator is given. As a running 

of a vending machine. This specification is adopted 

each time new language constructs are introduced. Modularization is the subject of section 

4, in which import  and export of data types and processes is treated. Section 5 gives the 
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specification of a Universal  Vending Machine to i l lustrate the use of parameter iza t ion.  An 

ove rv i ew  of the semant ica l  issues  is g iven in sect ion 6. The las t  two sect ions give a 

comparison be tween PSFd and LOTOS and a survey of the tools based on PSFd. 

2. DATA TYPES 

A PSF specification consists of series of modules .  There are two kinds of modules  viz. data 

modules  and process modules.  In this section we deal  with the data  modules .  

The first step in defining a data  type is to define some sorts and some functions that operate 

on these sorts. The declarat ion of each function includes its input-type consist ing of a list of 

zero or more  sorts and  its output-type consist ing of exactly one sort. Funct ions that do not 

have an input - type ,  l ike the first two functions in the example ,  are called constants. The 

combinat ion  of sorts and  functions is called the signature of a data  type. Next  we give an 

example  of a s imple definit ion and point  out  its constituents. 

data module Booleans 
begin 

sorts 
BOOLEAN 

functions 
true : 
false : 
and : 
or 
not : 

-> BOOLEAN 
-> BOOLEAN 

BOOLEAN # BOOLEAN -> BOOLEAN 
BOOLEAN # BOOLEAN -> BOOLEAN 
BOOLEAN -> BOOLEAN 

variables 
x,y : -> BOOLEAN 

equations 
[BI] and(true,x) = x 
[B2] and(false, x) = false 
[B3] or(true,x) = true 
[B4] or(false,x) = x 
[B5] not(true) = false 
[B6] not(false) = true 

end Booleans 

This is an example  of the defini t ion of the data  type  booleans. The modu le  is enclosed by  

two lines that state that the name of this data module is Booleans. There is one sort declared 

in this modu le  called BOOLEAN and five functions among which two constants.  

The s igna ture  of  a da ta  type  gives all the informat ion  needed  to construct  well  formed 

terms, which represent  da ta  values  of that  par t icular  da ta  type. Terms are constructed by  

app ly ing  an n-ary function to n terms of the correct type. This means that a constant, being a 

0-ary  funct ion,  is a term in itself. An  example  of a term genera ted  by  the s ignature  of 

booleans  is: and{not(true}, or(false, false)). We are able to construct  a lot of syntact ical ly 

different  terms,  some of which  might  denote  the same value.  To state that  two terms 
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deno te  the same value  we use equations. An example  of  such an equat ion is: 

and{true, false) = false. More generally we could say that for every boolean term x, the 

equation ond{trve, x} -- x holds. In this case x is a variable of the sort BOOLEAN. See the 

example for the complete list of equations that we stated to hold for the booleans. 

As the semantics for the data types we use the initial algebra semantics as defined in 

[EM85,GM85]. In short this means that all terms that are equal, as derivable from the 

equations, are in the same equivalence class. Each equivalence class corresponds with 

exactly one element of the initial algebra. We write [tl for the equivalence class of a term t. 

3. PROCESSES 

In this and the following sections we focus on the process modules. Processes in PSFd are 

described as a series of atomic actions combined by operators. Atomic actions are the basic 

and indivisible elements of processes in PSFd. By using atomic actions and operators we can 

construct  process expressions. These process expressions in combinat ion with recursive 

process definitions are used to define processes. From now on we will introduce the 

operators one by one, but  first we will have to introduce the action rules, i.e. the notation 

we use to express the semantics of an expression. Action rules were introduced by Plotkin in 

[Plo82] to give an operational semantics for CSP [Hoa85]. 

For each atomic action a we define a binary relation . ~ .  and a unary  relation . ~  q on 

closed process expressions, i.e. process expressions containing no variables. The notation 

x ~-~ y means that a process expression represented by x can evolve into y by executing the 

atomic action a and x ~ q means that the process expression represented by x can terminate 

successfully after having executed the atomic action a. The special symbol "] can be looked 

upon  as a symbol  indicating successful termination of a process. When using action 

relations in this document  the a always stands for an atomic action and the x and y stand for 

a process expression. Beware that in this document  we do not give the complete list of 

action rules because it is meant as an introduction. 

We start with an axiom that states that a process expression consisting of an atomic action a 

only, can terminate successfully by executing atomic action a. This fact is expressed by the 

following action rule: 

a - ~ q  

Sequential composition is expressed by using the ' . ' -operator like in: a .  b, which states that 

after atomic action a has been executed, atomic action b can be executed. The semantics for 

sequential composition are given by: 

x~x' x-~q 
x.y ~-> x'-y x.y ~->y 
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The second rule, e.g., states that whenever a process expression x can terminate execution 

action a, the process expression x.y is able to execute action a and to evolve into process 

expression y. 

Alternative composition is expressed by using the '+'-operator like in: a + b, which states 

that a non-deterministic choice is made between a and b first and that the chosen action is 

executed after that. 

The semantics for alternative composition are given by: 

x&x' x&q y&~ y&q 
x+y~x '  x + y ~ q  x+y~y '  x + y ~  

With these simple operations we are already able to specify a simple vending machine. Our 

vending mac~ne sells coffee for 25 cen~ and tea ~ r  10 cents. 

process module Vending-Machine 
begin 

atoms 
10c, 25c, coffee, tea 

processes 
VCT 

definitions 
VCT = ((10c . tea) + (25c . coffee)) . VCT 

end Vending-Machine 

There are some new features that appear in this example. The atomic actions are introduced 

in the atoms section. In the processes section the names for processes are declared, while the 

behaviour of a process is defined in the definitions section. In the definition of VCT we see 

that after delivering a cup of tea or a cup of coffee the machine returns to its original state, 

which is expressed by repeating the name of the process at the end of the right-hand side of 

the equation. This feature is called recursion. 

We give the initial part of a possible trace, i.e. a series of derivations, of this vending 

machine. In this trace we will leave out the intermediate processes because we are only 

interested in the atomic actions that occur. 

V C T  1 0 c  ) . . .  t e a  ) . . .  2 5 c  ) . . .  c o f f e e  ) . . .  2 5 c  ) . . .  c o f f e e  ) V C T  

Next we want to introduce parallel composition, which is expressed by using the ' l l ' -  

operator. The expression x I I y states that the processes x and y are executed in parallel. To 

execute in parallel means that the first atomic action executed by x I I y may come from 
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either x or  y ,  or that  the first a tomic actions from both x and  y can communica te  wi th  each 

other. This is called inter leaving concurrency.  The expression a lb  = c states that  two atomic 

act ions a, b can communica te  and that  the resul t  wi l l  be  another  a tomic  ac t ion c. The 

semantics for paral le l  composi t ion are given by: 

x-~x' x-a~q y --~,/ y-~q 
xlly -~ x'lly xlly-~y xlly-~ xlly' xlly-~x 

x -~ x'; y b~y'; aIb=c x Gq; y ~q ;  alb=c 
xlly £~ x'lty' 

x -~x'; y ~q ;  alb=c 

x[~yGq 
x i~ q; y ~ y,; alb=c 

xl[y ~x '  xtty-~y' 

Suppose we  want  to add some users to the specification. In this example we  wil l  model  a 

situation in which a client that likes to have tea arrives at the vending  machine fol lowed by 

a client that wants coffee. 

process module Vending-Machine-and-Users 
begin 

atoms 
insert-10c, accept-10c, 10c-paid, 
insert-25c, accept-25c, 25c-paid, 
serve-coffee, take-coffee, coffee-delivered, 
serve-tea, take-tea, tea-delivered 

processes 
VMCT, Tea-User, Coffee-User, System 

sets 
of atoms 

H = { insert-10c, accept-10c, insert-25c, accept-25c, 
serve-coffee, take-coffee, serve-tea, take-tea } 

communications 
insert-10c [ accept-10c = 10c-paid 
insert-25c I accept-25c = 25c-paid 
serve-tea [ take-tea = tea-delivered 
serve-coffee [ take-coffee = coffee-delivered 

definitions 
VMCT = ((accept-10c . serve-tea) + 

(accept-25c . serve-coffee)) 
Tea-User = insert-10c . take-tea 
Coffee-User = insert-25c . take-coffee 

System 

• VMCT 

= encaps(H, VMCT [[ ( Tea-User . Coffee-User )) 

end Vending-Machine-and-Users 

The specification has g rown considerably.  We will  have a look at  the new features that have 

been  in t roduced .  The first  th ing  we  not ice  is that  the amoun t  of a tomic  act ions has 
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increased.  This is due  to the fact that  we  now have four pai rs  of communica t ing  atomic 

actions. These pai rs  and  their results  are l is ted in the communications section. The next 

new feature  is the sets section. It is possible  in PSFd to assign a name  to a set of terms of a 

given sort, in this case the predefined sort atoms. In this example  all a tomic actions that are 

not  the resul t  of a communicat ion  are pu t  in the set H. This set is used in the last line of the 

definitions sect ion by  the encaps ( encapsu la t i on )  o p e r a t o r .  The p roces s  express ion  

encops{H,x} is equal  to the process  express ion x w i thou t  the poss ib i l i ty  of pe r fo rming  

atomic act ions from H. This construct ion is used to force communica t ion  be tween  certain 

a tomic actions. 

The semantics of the encaps operator  are given by: 

x -~ x'; a~ H 

encaps(H,x) -~ encaps(H,x') 

x -~q ;  a~H 

encaps(H,x) -~ q 

The only possible  trace of this system is: 

System 10c-paid) ... tea-delivered ) ... 25c-paid) ... coffee-delivered) encaps(H,VMCT) 

N o w  suppose  we are not  interested in the atomic actions that  occur when  the money  has 

been  pa id .  PSFd offers the hide opera to r  to r ename  all u n w a n t e d  act ions into skip. Its 

semantics are given by: 

x -~. x'; ael x -~. ~/; ael 
hide(I,x) skip) hide(I,x') hide(I,x) skip) ~/ 

x ~ x ' ;  a~l x -~q; a~l 

hide(I,x) ~ hide(I,x') hide(I,x) ~ q 

From these action relat ions for hide it is clear that skip can also act as a label of a transition, 

even though it is no atomic action. 

To get r id  of the u n w a n t e d  actions in the previous  example  we  define an extra set ! in the 

sets sect ion and  change  the def ini t ion of System in the definitions sect ion to inc lude  the 

hide opera tor .  

I = { 10c-paid, 25c-paid } 

System = hide(I, encaps(H, VMCT [I (Tea-User . Coffee-User))) 

The only possible trace of the system wou ld  now be: 

System skip) ... tea-delivered ) ... skip) ... coffee-delivered) encaps(H,VMCT) 
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4. MODULARIZATION 

The next thing we  want  to do is to specify a system of a vending machine and clients in a 

modula r  fashion. The three sections in PSFd that deal with modular i ty  are the exports, 
imports and parameters section. All definitions that are listed in the exports section are 

visible outside the module. A data module  may define sorts and functions, while a process 

module  may  define atoms, processes and sets in the exports section. All objects that are 

declared outs ide  the exports section are called hidden and are only visible inside the 

module  in which they were declared. When a module  A imports a module  B, all names in 

the exports section of B are automat ical ly  exported by  A too. This feature is called 

inheritance. 
To start our  modula r  specification of the vending machine we define some amounts  of 

money that it accepts. 

data module Amounts 

begin 

exports 
begin 

sorts 
AMOUNT 

functions 
10c : -> AMOUNT 
20c : -> AMOUNT 
25c : -> AMOUNT 
30c : -> AMOUNT 

end 

end Amounts 

The initial algebra of the sort AMOUNT in this module  now consists of four elements 

namely: [10c], [20c], [25c], [30c]. 

The basic way  to combine modules is by way  of import. In the imports section we define 

which modules  have to be imported.  By import ing module  A in module  B, all exported 

objects from A become visible inside B. It is not allowed to import  a process module into a 

data module.  N o w  we give a definition of some drinks and their prices. The module  

Amounts is imported as to be able to use the sort AMOUNT. 

data module Drinks 
begin 

exports 
begin 

sorts 
DRINK 

functions 
tea : -> DRINK 
coffee : -> DRINK 
orange : -> DRINK 
price : DRINK -> AMOUNT 

end 
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imports 
Amounts 

equations 
[PI] price(tea) = 10c 
[P2] price(coffee) = 25c 
[P3] price(orange) = 30c 

end Drinks 

This m o d u l e  def ines  a sor t  DRINK conta in ing three e lements  and  a funct ion price from 

DRINK to AMOUNT. 

Next  w e  def ine a client that has its o w n  favourite drink. 

process module Drinks-User 
begin 

exports 
begin 

atoms 
select 
insert 
take-drink : 

processes 
user : DRINK 

end 

imports 
Drinks 

variables 
fav-drink : -> DRINK 

definitions 
user (fav-drink) 

DRINK 
AMOUNT 
DRINK 

-- the user's 

= select(fay-drink) . 
insert(price(fav-drink)) 
take-drink(fay-drink) 

end Drinks-User 

favourite drink 

In this example  w e  see that atoms as well as processes can take da ta  e lements  as parameters .  

The process user is parameter ized  by  the user 's  favouri te  drink,  see the line user(fay-drink) = 
select(fav-drink). So now we have  def ined three users namely:  user(tea}, user(coffee) and 

user(orange}. These processes all have  the same behaviour ,  except  for the dr inks  that are 

subject to there actions. So the first action of the process user(tea) is select(tea), whereas  the 

first  action of process  user(coffee) is select(coffee}. 

5. PARAh4ETERIZATION 

To be able to exploit the reusability of specifications, a parameterization concept is included 

in PSFd. Parameterization is described in the parameters section and takes the form of a 

sequence of formal parameters. Each parameter is a block that has a name and lists some 
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formal objects. Pa ramete r s  in a da ta  m o d u l e  m a y  consist  of sorts and  funct ions only,  

whereas  parameters  in a process module  consist of atoms, processes and sets addit ionally.  In 

the next  example  we  def ine a universa l  vend ing  machine  that  has the i tems it sells as a 

parameter .  These i tems are represented  by  the sort PRODUCT and we d e m a n d  that there is a 

function price from PRODUCT to AMOUNT. 

process module Universal-Vending-Machine 
begin 

parameters 
Items-on-sale 

begin 
sorts 

PRODUCT 
functions 

price : PRODUCT-> AMOUNT 
end Items-on-sale 

exports 
begin 

atoms 
get-selection : PRODUCT 
accept : AMOUNT 
serve-product : PRODUCT 

processes 
UVM 

end 

imports 
Amounts 

variables 
chosen-item : -> PRODUCT 

definitions 
UVM = sum(chosen-item in PRODUCT, 

get-selection (chosen-item) . 
accept (price (chosen-item)) . 
serve-product (chosen-item) 

) . UVM 

end Universal-Vending-Machine 

The intui t ive idea behind  the Universal  Vending Machine is the following: 

- for each product  

• offer the possibi l i ty  to select this product  

• accept the amount  of money  to be pa id  for this p roduc t  

• serve the chosen product  

In this example  the sum opera to r ,  which  acts as a gene ra l i za t ion  of the a l te rna t ive  

compos i t ion  (+), is in t roduced .  A so-cal led placeholder (chosen-item) is used to define a 

process express ion containing a k ind  of variable.  The sum opera tor  takes two arguments ,  

the placeholder definition (chosen-item in PRODUCT), which  def ines  the doma in  of the 

placeholder ,  and  a process expression,  to which the scope of this p laceholder  is l imited. In 
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this example the sum operator introduces one process expression for each element of 

PRODUCT, as part of one big alternative composition. 

There is another operator that resembles the sum operator, namely the merge operator that 

generalizes the parallel composition in a similar way. This operator will not be dealt with in 

this paper. 

Whenever a parameterized module is imported into another module, each parameter of 

the former module may become bound to a third module by binding all objects listed in the 

parameter to actual sorts, functions, atoms, processes and sets from this third module. All 

unbound parameters are inherited by the importing module and are indistinguishable from 

the parameters defined in its own parameters section. 

In the next example we make a specification of a vending machine and two users by using 

the modules we have already defined. 

process module VM-Tea-Coffee-Orange 
begin 

imports 
Universal -Vending-Machine 

{ Items-on-sale 
bound by 

[PRODUCT -> DRINK] 
to Drinks 
renamed by 

[get-selection -> watch-button, 
UVM -> VMCTO, 
serve-product -> serve-drink] }, 

Drinks-User 
{ renamed by 

[select -> push-button } 

atoms 
order, delivered : DRINK 
paid : AMOUNT 

processes 
System 

sets 
of atoms 

H = { push-button(d), watch-button(d) l d in DRINK } + 
{ serve-drink(d), take-drink(d) I d in DRINK } + 
{ insert (c) , accept (c) l change in AMOUNT } 

communications 
push-button (d) I watch-button (d) = order (d) for d in DRINK 
serve-drink (d) I take-drink (d) = delivered (d) for d in DRINK 
insert(c) l accept(c) = paid(c) for c in AMOUNT 

definitions 
System = encaps(H, VMCTO I I ( user (tea) . user (coffee) )) 

end VM-Tea-Co ffee-Orange 

The visible names of a module can be renamed by the use of the renamed by construct, 

which specifies a renaming by giving a list of pairs of renamings in the form of an old 
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visible name and  a new visible name. Thus we specify the interaction be tween the user and 

the vend ing  machine  in this example  by  means  of but tons  (wotch-button, push-button). 
The bound by cons t ruc t  is u sed  to b i n d  p a r a m e t e r s  and  speci f ies  the  n a m e  of  a 

pa rame te r i zed  module ,  a pa ramete r  name,  a list of b ind ings  (pairs consis t ing of a formal 

name  and an actual  name),  and  the name of an actual  module .  Thus w e  have b o u n d  the 

pa rame te r  Items-on-sole of the UVM to the modu le  Drinks, obta in ing  a Tea-Coffee-Orange 

Vending  Machine.  

6. MORE ON SEMANTICS 

In [MV88] the formal  semant ics  of PSFd are descr ibed.  To shape  the in tu i t ive  not ion of 

semantics  t reated so far, we will  e laborate  on it in this section. To assign a semantics to a 

m o d u l a r  PSFd specif icat ion we  use a normal iza t ion  p rocedure  that  r emoves  all modu la r  

structure.  It p roduces  one fiat data  modu le  and one flat process modu le  which  imports  the 

flat da ta  module .  The fol lowing picture shows the several  levels of semant ics  involved in 

the formal  definit ion.  

data 1 inltial algebra 

J [ atoms 1 
( f  J ' 

processes 1 
tctlon relations 

L 

processes ] 
scmantlcs 

figure 1. Dependencies among different semantic domains. 

The semantics of the da ta  modu le  is the initial a lgebra semantics as po in ted  out  before. The 

semantics  of the objects def ined  in the process modu le  are based  u p o n  the initial  algebra 

semant ics  of the da ta  types.  Sets can be unde r s tood  as subsor ts  of a given sort. Atomic  

actions are def ined  us ing the predef ined  sort  atoms and poss ib ly  take elements  of the data  

types  as parameters .  There is an equivalence relat ion def ined on the atomic actions, which 

is induced  by  the initial a lgebra semantics of the data  types. We will  i l lustrate this by  giving 
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an example related to the module Drinks-User as defined in section four. Whenever a closed 

term occurs as a parameter of an atomic action, it should be looked upon as representing its 

equivalence class in the initial algebra. In fact we should have written It] for each data term 

t in the specification, but we leave out the brackets for reasons of simplicity. So because 

price{orange} represents the same object as 30c, the atomic action insert{price{orange}} is 

equal to insert{30c}. 
In section 3 we have defined an operational semantics for process expressions by means of 

action relations. These action relations are suitable to define a semantic domain, i.e. the 

graph model, on which most of the known equivalence relations on processes can be 

defined. In this way we can assign a labeled directed transition graph to each process. We 

define bisimulation equivalence [Par81] on these graphs as the intended semantics for PSFd 

processes. 

7, COMPARISONS 

Compared with other FDT's (Formal Description Techniques) PSFd is most closely allied to 

LOTOS [ISO87]. LOTOS is one of the two FDT's developed within ISO (International 

Organization for Standardization) for the formal specification of open distributed systems. 

Like PSFd, LOTOS is a combination of two formalisms, namely a variant of ACT ONE 

[EM85] to describe data types and a process description part based on CCS [Mil80]. One of the 

design goals of PSFd was to stay as close to ACP as possible. The result of this goal is that the 

distance between PSFd and ACP is much smaller than the distance between LOTOS and 

CCS. 

The main differences between PSFd and LOTOS originate from the differences between ACP 

and CCS. Sequential composition is expressed in CCS by means of the action prefix operator. 

This operator combines an action and a process or behaviour expression. To link two 

processes together one has to use another operator, the enable operator. In ACP atomic 

actions are looked upon as being elementary processes, therefore only one operator is 

needed to express sequential composition. 

In LOTOS communication is established by synchronization of observable actions with the 

same name. In ACP the communication function is used to define which atomic actions are 

able to communicate. We think of this as an advantage when systems are specified in a 

modular fashion, because it gives the possibility to develop modules independently and tie 

them together by specifying the communication function afterwards. In contrast, in LOTOS 

the names of all gates have to be known in advance. 

The data specification parts of PSFd and LOTOS are very similar. This includes 

parameterization and renaming of imported sorts and functions. However it is not possible 

to define hidden signatures in LOTOS. 

Though modularization is possible when defining data types, LOTOS does not support such 

a powerful concept of importing and exporting processes and actions as opposed to PSFd, 

which supports one global concept of modularization. The only way to have some 
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abstraction in LOTOS is by writing a specification in a stringent top-down manner using the 

where construction, in which the subprocesses have to be specified explicitly each time. The 

next piece of a LOTOS specification from [BB87] will clarify this notion. 

process Sender[ConReq, ConCnf, DatReq, DisReq] := 
Connection-Phase[ConReq, ConCnf] ~ Data-Phase[DatReq, DisReq] 

where 
process Connection-Phase[ConReq, ConCnf] := 

ConReq; ConCnf; exit 
endproc 
process Data-Phase[DatReq, DisReq] := 

(DatReq; Data-Phase[DatReq, DisReq] 
[] DisReq; stop) 

endproc 
endproc 

We claim that such an approach does not support  the reusability of specifications and we 

think that it will lead to monolithic specifications that are harder to unders tand due to the 

lack of a proper  abstraction mechanism. 

We refer to [MV88] for a more extensive comparison between PSFd and LOTOS as well as 

some other FDT's and programming languages. 

8. TOOLS 

As stated in the introduction, PSF d has been designed as the base for a set of tools. The first 

tool we are currently implementing is a simulator. The goal is to come up with a program 

that is able to simulate, possibly in interaction with the user, the processes that are defined 

in the PSFd specification. The first phase of this implementation, being a syntax and type 

checker, has already been accomplished. In constructing this simulator we hope we will 

gain more  experience and ideas to build a verification tool, for testing equivalence of 

processes, and as the last step an implementation tool, that will implement  a specification 

in some kind of programming language, hopefully to be executed on a parallel computer. 

9. CONCLUSIONS 

In this report  we have presented PSFd, a new formalism to describe process behaviour. We 

have shown that it is possible to integrate a formal approach towards data types in this 

formalism and as an example we gave the specification of a vending machine in PSFd. PSFd 

also has been used for specifications other than toy examples. We refer to [MV88] for a 

detailed specification of the Alternating Bit Protocol making full use of the modularization 

concepts, as well as some other more elaborate examples. We hope that PSFd will be able to 

serve as a contribution to the construction of more reliable software. 
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