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Abst rac t  

We describe the core of a new strongly-typed functional programming language 
called LEAP, a gL__anguage with E__val And Polymorphism. ~ Pure LEAP is an exten- 
sion of the co-order polymorphic A-calculus {F~) by global definitions that allows the 
representation of programs and the definition of versions of re i fy ,  r e f l ec t ,  and eva1 
for all of Fw. Pure LEAP is therefore highly reflexive and strongly typed. We believe 
that Pure LEAP can be extended to a practical and efficient metalanguage in the ML 
tradition. At present we are experimenting with a prototype implementation of Pure 
LEAP. 

1 I n t r o d u c t i o n  

In this paper we describe the core of a new strongly-typed functional programming language 

called LEAP, a "L_anguage with E_val And Polymorphism." Our initial motivation came 

from the problem of finding a strongly-typed language suitable for use as a metalanguage 

for manipulating programs, proofs, and other similar symbolic data. The language ML [11] 

seemed to satisfy many of our criteria, but was not powerful enough to serve as its own 

metalanguage in a natural way. (We discuss what we mean by "natural" in Section 2.) 

This then led us to the question, first posed by Reynolds in [17], of whether strongly- 

typed languages admit metacircular interpreters. Conventional wisdom seemed to indicate 

that  the answer was "No." Our answer is "Almost." After a brief review of F~ in Section 3, 

we explain this answer in Sections 4 and 5 by giving a construction reminiscent of the 

reflective tower of Smith [18,19]. Wand and Friedman's analysis of the reflective tower [3,22] 

emphasizes reification, the translation from programs to data, and reflection, the translation 

from data to programs, as central concepts. In the setting of a strongly-typed functional 

language, we have found elegant and concise definitions of reification and reflection. 

Somewhat unexpectedly for us, the "tower" begins with an interpreter for the second- 

order polymorphic A-calculus (F2) (see Girard [5,6] and Reynolds [16]) written in the third- 

order polymorphic A-calculus (F3). This does not easily extend to higher orders--only 
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the addition of global definitions with polymorphic kinds to F~ allowed us to extend the 
construction. The result is a core language called Pure LEAP which is strong enough to 
allow the definition of reification and reflection functions for all of Fw. 

These theoretical results lead us to ask whether LEAP can be usefully extended while 
still preserving this ability to build a reflective tower. This is, in fact, possible, and we 
describe several such extensions in Section 6. First we extend LEAP with inductive data 
type definitions and primitive recursion (a conservative extension), and then we briefly 
sketch out extensions involving references, exceptions, and general recursion (no longer 
conservative, but preserving the reflection property as before). 

We claim that LEAP can be the core of a practical language in which efficient (meta-)pro- 
grams can be written. To test its practicality, we are presently experimenting with a 
prototype implementation of LEAP as well as designing a full language around it. 

2 Ref l ec t ion~  Ref l ex iv i ty~  a n d  S t a t i c  T y p i n g  

The idea of reflection in untyped programming languages can be found in both the early and 

the recent literature. In [17] Reynolds gives a metacircular interpreter for a simple, untyped 

functional language within itself. This was pursued further by Steele and Sussman [20] and 

others. In fact, writing metacircular interpreters has long been a standard practice in 

LISP [8,9]. Smith, in [18,19], introduces the notion of the reflective tower, illustrating it 
in the language 3-LISP. Friedman and Wand give their own analysis of the reflective tower 
in [4] and [3,22], isolating reification and reflection as key concepts. 

This paper reports on our attempt to model reification and reflection in a strongly-typed 
language. Our results may be summarized as follows: (1) The third-order polymorphic 
A-calculus (Fs) is powerful enough to represent programs written in the second-order poly- 
morphic A-calculus (F2) and also the functions r e i fy  and :reflect. This allows the definition 
of eva1 for F2 in Fs. (2) If one extends F~ by allowing polymorphic kinds (forming the Pure 
LEAP language), then one can define f e l l y  and r e f l ec t  for all of Fw, thus falling just short 
of a complete metacircular interpreter for all of LEAP. (3) The analogue of the structure 
of the reflective tower emerges when one considers the restriction of Pure LEAP to types 
of order n (LEAPn). Then LEAP,,+1 is powerful enough to allow the definition of F,, for 
n > 2. (4) We conjecture that it is impossible to define r e i fy  and r e f l ec t  for the simply 
typed A-calculus in F2, that is, the tower begins with an interpreter for $'2 in Fs. 

There are two representation "tricks" that make reflection possible in Pure LEAP. The 
first is to dispense entirely with the environments that play such a crucial role in previous 
work on metacircular interpreters and reflective towers. This trick seems necessary, since 
environments bind variables of different type, and therefore cannot be typed consistently. 
Instead, one uses continuations to reify (represent) A-abstraction. As a result we obtain 
a reification mechanism similar to the Lisp quote operator, but in which all variables are 
antiquoted (and hence captured in the current environment) at the time they are reified. 
(Actually, reification is more akin to the backquote operator, since backquote is typically 
used in Lisp to create program data structures containing captured variables.) Hence the 
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environments of, for example, 3-LISP are implicitly carried by the reifled data structures. 
(This is described in greater detail in Section 4.) 

The second trick is the solution to the technical challenge of dealing with inductively 
defined data types with polymorphic constructors. This problem had been addressed in the 
literature (see [1] and [11] for two different approaches) only for the case where types are 
guaranteed to be uniform over any given element of the inductive type (such as lists: a list 
of type ~ has sublists only of type ~). Programs do not have this uniformity property, since 
programs of type a can have subprograms of arbitrary type. 

2.1 R e f l e x i v i t y  o f  l a n g u a g e s  

We are concerned not only with the ability of a language to form a reflective tower, but also 
with how easily and naturally this construction can be expressed. We call this the reflezivity 
of the language. We will not attempt to give a formal definition for when a language is re- 
flexive. Instead we will try to give some informal criteria for judging the degree of reflexivity 
of a language, the basic one being the ability of a language to serve as its own metalanguage. 
This by itself does not seem enough, since then every Turing-complete language would be 
reflexive. In addition, we would like to require that the language/metalanguage relationship 

is ~natural." When is this relationship ~natural~? We think the answers to the following 
questions provide some hints when evaluating the degree of reflexivity of a language. 

How redundant is the definition of a metacircular interpreter? In a highly reflexive 
language, the metacircular interpreter should be simple and direct. The more that 
features of the object language can be implemented by using the corresponding fea- 
tures of the metalanguage, the more reflexive the language. We call this phenomenon 
inheritance of object language features from the metalanguage. Typical examples of 

features for which inheritance might be desirable are evaluation order (e.g., call-by- 
value vs. call-by-name) and, as we shall see, static type-checking. 

How much of the metalanguage can be interpreted by the metacircular interpreter? 
Ideally, the metalanguage and object language should coincide. 

Can we define the functions r e i fy  and r e f l ec t  in addition to eval? That  is, can we 
coerce data into programs and vice versa? 

How well can object language syntax and metalanguage syntax be integrated? We 
will mainly ignore this issue: with the aid of good syntactic tools one should always be 
able to achieve a reasonably smooth integration of metalanguage and object language. 

2 . 2  I n h e r i t a n c e  o f  m e t a l a n g u a g e  f e a t u r e s  

We believe that the concept of inheritance is important when considering the relationship 
of a metalanguage to its object language. Inheritance (though not under this name) was 
already considered by Reynolds [17]. The following examples should help to illustrate the 
concept. 
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. An ML interpreter written in ML would likely be highly redundant, since type inference 

would have to be reimplemented explicitly. In other words, it seems that ML type 

inference cannot be inherited, in part because because of the complexity of the data 

type of programs, and also because of the ~generic" nature of the ML let construct. 

Our solution to the generic let problem is discussed in Section 6.1.2. 

o An interpreter written for a dynamically-scoped LISP will also be redundant, since 

environments must be represented and manipulated explicitly by the interpreter. The 

notion of variable binding cannot be inherited and must be programmed explicitly. 

However, many other features such as automatic storage management clearly are 

inherited in a typical metacircular LISP interpreter, However, our results for LEAP 

indicate that a statically-scoped LISP could use closures in the metainterpreter instead 

of environments. 

t An interpreter for (pure) Prolog without cut written in Prolog is not very redundant, 

in particular since unification can be inherited. Other properties, such as whether 

search should be conducted in depth-first or breadth-first order can also be inherited. 

Prolog with cut is less reflexive, since the notion of cut must be implemented explicitly 

and cannot be inherited. 

• In the LEAP language, type inference and variable binding mechanisms will both be 

inherited. Evaluation order will also be inherited, thus making LEAP very reflexive. 
It should be noted that  this is not so important  for the pure language, since it has 
the strong normalization property (see Theorem 3). 

As one can see from the examples, reflexivity is elusive. Care must be taken when 
extending a language in order not to lose too much reflexivity. The reflexivity of pure 
Prolog, for instance, seems to be diminished by the addition of a cut operator. In other 
cases, the reflexivity of a language can be enhanced through strengthening. For example, we 
shall see that  the addition of explicit polymorphism to the simply-typed A-calculus results 
in a highly reflexive language. 

Languages that  have a strong degree of reflexivity seem in some way to distill the 
essence of a computational paradigm into a pure form. We believe that language designers 
should pay attention to the issue of reflexivity, in particular when designing a language for 
use as a metalanguage. We hope to demonstrate this principle in the following sections 
as we describe Pure LEAP, a highly reflexive language based on the w-order polymorphic 

A-calculus. 

3 The w-Order Polymorphic A-Calculus 

In [5,6], Girard defines a powerful extension to Church's simply typed A-calculus [2] and goes 

on to give a constructive proof of strong normalization for his system. A fragment of Girard's 
calculus was independently discovered by Reynolds [16] who introduced abstraction on type 
variables and application of functions to types in order to define explicitly polymorphic 

functions. Reynolds' calculus is known as the second-order polymorphic A-calculus. 
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Here we consider the w-order polymorphic A-calculus, which is an extension of Reynolds' 

system but only a fragment of Girard's system (since it omits existentially quantified types). 

Our presentation of the calculus contains three distinct syntactic categories: kinds, types, 

and terms. 

Since our calculus is higher-order, we have, in addition to types of terms, functions from 

types to types, etc. We will call every such object a type. The subset of these that are 

first-order, or, equivalently, of kind "Type," can actually be the type of a term. These and 

other properties of the calculus are summarized at the end of this section. Following Girard, 

we will write F, for the language of the nth-order polymorphic A-calculus, and F~ for the 

union over all finite orders. 

The language should properly be parameterized over a signature for type constructors 

and term constants. Since the pure language contains no such constants or constructors, 

we will abbreviate the presentation. We use K, K r for kinds, ~, fl,.., for types and type 

variables, 0 for type variables, M, N,... for terms, and x, y,... for variables. 

D e f i n i t i o n  1 The syntactic categories of  kind, type, and term are defined inductively by 

Kinds K : := T y p e l K - - * K  I 
Types a : := O I A O : K . a I a ~ I c ~ = ~ $ I A O : K .  

Terms M : := x l Az:a . M I M N I AO:K . M I M [a ] 

We will not  give the formal type inference system for this language here, but  merely 

explain it informally. A more formal development can be found in [14]. The A symbol is 

used to construct  functions tha t  can be applied to a term, yielding a term, and also to build 

functions tha t  can be applied to a type, yielding a type. The symbol h constructs  functions 

tha t  can be applied to types, yielding a term. Such a function will have a A type. The order 

of a te rm in this calculus is determined by what  kind of abstract ions over types are allowed: 

we obtain the second-order polymorphic A-calculus (Fg.) if we allow abstract ions only over 

type variables of kind Type; we obtain Fs if we allow abstract ions over type variables of 

kinds Type  ~ . . .  --* Type; etc. We use " M  6 c~" to indicate that  te rm M has type c~, and 

"a  6 K"  to indicate tha t  c~ has kind K.  We use r to s tand for contexts, which uniquely 

assign kinds to type  variables and types to term variables. We will omit  empty  contexts. 

In the second-order fragment F2 of F~, one can explicitly define common da ta  types 

and operat ions on them, such as natura l  numbers (int -- AO. 0 =:~ (O =~ O) ~ 8), products,  

disjoint sum, and lists (list - A s .  A 0 .  (a  :=~ 0 =~ 0) ~ 0 =~ 0). For a good exposition see 

Reynolds [15] or BShm [1]. We will give an al ternat ive way of defining some of these da ta  

types in Section 6.1.3. 

Next we define the judgments  of the inference system tha t  allow us to find valid types 

for terms and kinds for types. 

D e f i n i t i o n  2 The judgments  we use to define when a term is well-typed are: 

1- r context r is a valid context 
~- K E kind K is a valid kind 
r ~ a • K a has kind K 
P ~ u • a u has type a 
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The inference rules used to establish the validity of types, terms, or contexts can be 
found in [14]. We will regard a-convertible types and terms (with binders X, A, and A) to 

be equal. Thus we will ignore the issues of variable renaming and name clashes. 

In the inference rules of the polymorphic X-calculus, we will allow conversion between 

B~/-equivalent types. We define B and t/conversions of types as is usually done on terms. 
For example, a B-redex has the form (A0:K. a) ~/. 

In the conversions for terms we now also include the B-conversion of type applications, 
(Aa.  M) [B] ~ ( B / a ) M  and the T-conversion, (Aa.  M [a]) ~ M, a not free in M, of type 

abstractions. We write M = N if M is BiT-equivalent to N in this extended sense. 
A 

During the remainder of the paper, we will make use of some fundamental properties of 
the calculus whose proofs can be found elsewhere (see, for example, [5]) or follow immedi- 

ately from known results. We state here only a few of them. 

T h e o r e m  3 [Girard] (Basic properties of F¢o) 

1. I f  P ~ M E a then I ' l - - a ~ T y p e .  

g. I f  F ~- a E K then a has a unique ~T-normal form. 

8. I f  ~ ~ M E a then M has a unique BT'normal form, 

g. r ~ M E a is decidable. 

4 P u r e  LEAP 

In order to be able to give a finitary definition of re i fy  and ref lec t  at all levels of Fw, we 
need to allow global definition of types and functions with free variables ranging over kinds. 

Such variables are generic in the same way that some type variables are generic in ML (see 

Milner [12]). We will use the concrete syntax: 

0 - 8  
x --- M 

global definition of 0 to stand for fl 
global definition of x to stand for M 

for global definitions of types and terms, respectively. This addition to F~ is benign in the 
sense that given any term M to be type-checked and evaluated in a given global context, we 
can find an equivalent term N in F~ itself. N is obtained from M simply by expanding the 
definitions from the context. This is also how type-checking and evaluation for Pure LEAP 
are defined. Later, if the language is extended to allow slde-effects, and a commAtment to 
call-by-value is made, evaluation must be reconsidered. In Pure LEAP, every term will have 
a unique normal form, so the issue of a call-by-value or call-by-name semantics does not 

arise. 
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5 R e f l e c t i o n  i n  L E A P  

We now describe the representation of programs in Pure LEAP, and present our definitions 
of re i fy ,  r e f l e c t ,  and eval. 

5.1 Representation of programs 

When attempting to build a reflexive language, the first concern must be the ability to 

represent programs in the language as data. Two approaches seem plausible: to build in a 

new special data type for programs, or to use combinations of existing built-in data types 

to represent programs. Since we would like (at the outset) to keep our language as pure as 

possible, we will follow the latter approach. 

Perhaps the best way to understand this construction is in terms of inductively defined 
types. An inductively defined type is given by a list of its =constructors" and their types. 

This is an extension of the datatype construction in ML, since constructors may be ex- 

plicitly polymorphic. It is shown in [13] (extending ideas of BShm & Berarducci [1]) that 

these types do not require an addition to the core language, since inductively defined types 

are representable by closed types. With this in mind, we can now present a specification of 
the type of programs: 

|ndtype ~r : Type =~ Type with 

rep : Ace:Type. s =~ Irs 

lain: As:Type. A S : T y p e .  (s  =~ • 8) =~ • ( s  =~/~) 
app : A s : T y p e .  A S : T y p e .  ~ (s  =~ 8) =~ • s =~ • 8 

typlam : A s : T y p e  -* Type .  (AS:Type .  lr ( s 8 ) )  =~ • (A8 :Type .  (s/~)) 

typapp : As:Type -~ Type. ~ (AS:Type. (s 8)) =~ AS:Type. ~ (s 81 

end 

The basic problem is to be able to explicitly define a function Ir from types to types, 

such that ~s is a type representing programs of type s. The usual, well-known approach for 

defining inductive data types in the second-order polymorphic A-calculus (see [1,15]) fails, 

but we do not have a proof that such a representation is impossible. The data types that 

have been shown to be representable in F2 either have constructors that are not polymorphic 

(such as int - As . a =~ (a =~ a) =~ a, which has constructors 0:int and succ:int =~ int), 

or have the property that the type variables in the constructor are uniform over the whole 

data type (such as list --- Aa . A# . (s =~ # =~ 0) =~ 0 =~ e with constructors cons:A0 . 

0 =~ Jist# =~ list# and nil:Ae . list#). This allows the definitions of the constructors to be 

uniform over this type variable. 

An attempt at a straightforward extension of this approach to the case of a data type 

of programs fails, since a program of type 8 may have components of type a =t~ 8 and s, 

and thus in fact of arbitrary type. 

This problem disappears when one goes to the third-order polymorphic A-calculus, since 

in it one can explicitly use a function from types to types that maps the type of the 
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components to the type of a term. We will begin the formalization of these ideas by giving 
an F3 encoding of $'2 programs. Each line is annotated with a corresponding constructor 

function tha t  is defined below. We use O for a bound variable of kind Type ~ Type, that  

is, for a function from types to types. 

A 7 . AO:Type  --* T y p e .  
( A a .  a ~ o ,x )  

(Aa:Type -~ Type. (Aft. O (aft)) =~ O (Aft. aft)) => 
(Aa:Type -~ Type. O (Aft. a ~) =~ (Aft. O (a ~))) => 

(* rep *) 
(* lain *) 
(* app *) 
(* typlam *) 
(* typapp *) 

This is a special case of a very general transformation from an inductive definition of a 
data  type into an encoding into F~ described in [13]. The definitions of the constructors in 

this encoding can be found in Figure 1. 

rep : 

rep ---- 

] .am : 

lain -- 

a p p  : 

a p p  --= 

typlam : 
typlam = 

typapp : 
typapp 

ha Ax:a . 
AO Arep Alam Aapp Atyplam Atypapp . 

/,,~ A a .  (,~ ~ ~ ~) :~ ~ (,~ =~ ~) 
Aa Aft Af :a  =~ ~r f t .  
AO Arep Alam Aapp Atyplam Atypapp . 
tam [a] [fl] (Ax:a.  f z [O] rep lama app tvplama tvpapv) 

Act Aft Az:r(a =~ fl) Ay:ra . 
AO Arep )dam Aapp Atyplarn Atypapp . 
app [a] [~] (z [O] rep lama app tvplara tvpapp) (V [O] rep lain app tvplam tvpapp) 

Aa:Type  ---, T y p e .  ( A # .  ~r (a ~))  ~ ~" ( A # .  a #) 
Aa:Type ---+ Type af :A,f l ,  a" (a  f l) .  
AO Arep Mama Aapp Atyplam Atvpapp . 
tvvtama [,~] (A~.  f [fl][e] re v h,n app typtama typapp) 

Aa:Type  --, T y p e .  • ( A ~ .  a ~ )  =~ ( A f l . r  ( a~ ) )  
Aa:Type --~ Type Af:~ (Af t .  c~ ~) Aft. 
AO Amp Alam Aapp Atyplam Atypapp . 
typapp ['~1 ( f  [0] rep lama app tvptama tvpapP) [ill 

Figure 1: Definition of program constructors for F2 in F~. 

Several things should be noted in this definition: 
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1. Representations of programs are not unique. That  is, any program M in normal form 
can be represented as rep [a] M (c~ the type of M),  but it also has a representation in 

terms of lain, app, typlam, typapp, and rep~ where rep is applied only to variables. 

2. The rep constructor can not be eliminated, since it is crucial in order to convert 
bound variables into their representations. We do not see a simple way of fixing this 

by changing the type of the lain constructor to A n  A/3.  (r  a =~ r/3) ~ r (c~ =~ /3), 
since that  seems to preclude a representation of lain. 

5 .2  R e i f i c a t i o n  a n d  r e f l e c t i o n  

In the definition and theorems below we will omit contexts. They can be filled in easily. 

Def in i t i on  4 (Program representation) Let M be a term of F2. 

representation M of M in Fs inductively as follows: 

We define the standard 

I f  z E ~ then ~ -- rep [Or] X 
I f  Ax:c~ . M e c~ =~ fl then Ax:c~. M = lam[a][fl] (,kx:a. M---) 
I f  M • ~ =~ fl and N • a then M N -- app lot] [/3] M g 
If A/3. M • / , / 3 .  ,~/3 then A/3. M = typla,,[,~] (A/3. M----) 
I f  M [13] • ~/3 then M [/3] = typapp [a] M [/3] 

We define the relation ~represents" inductively like the standard representation, ezcept that 

rep [c~] M (which is not the standard representation of any term unless M is a variable) is 

defined as representing M.  

The following theorem shows that  this is a proper representation function, but the 
crucial property will of course be that  evaluation is definable over this representation (see 
Theorem 8). 

T h e o r e m  5 (Soundness of program representation) Let N G c~. Then -N E r c~. 

P r o o f :  By a simple induction on the structure of N. 
[] 

C o n j e c t u r e  6 (Faithfulness of program representation) Let N be a term of type r a. Then 

there is an M E c~ such that N represents M.  

It should be noted that  this conjecture is not critical for the further development of 
program representation and evaluation in the remainder of this paper. Should it turn out 

that  there are terms of type ~r ~ which are not the representation of programs of type 

~, the representation of the functions defined below are still correct on terms that  are 

representation of programs, and will again produce representations of programs. 
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5 .3  T h e  d e f i n i t i o n  o f  r e f l e c t  

The crucial step in the definition of eval is the definition of r e f l e c t ,  which maps the 

representation of a term of type ot into a term of type or, that is, r e f l e c t :  Aot . a" ot ==~ or. 

Such a function will have to do some form of evaluation, since normal-form terms of type 

7r ot can represent terms of type ot that  are not in normal form. 

Let us first present the function in the form of an iterative definition (see [1] for a 

discussion of iterative definitions in F~ and [13] for a generalization that encompasses Foj)~ 

reflect [ot] (r.p [ot] ~) 
ref lect  lot ~ a] (1 . .  [ot] [~] ~) 
reflect [~] (.pp [ot] [~] • y) 
reflect [A~:Type. ot ~] (typl,~ lot] ~) 
reflect [or/~] (typapp [Or] X [/~]) 

= ay:ot, refXect [~](~y) 
= (reflect lot ~ Z] ~) (re~l,ct [ot] y) 
---- Aft :Type.  reflect [or fl] (x [/3]) 
= re f lec t  [A~:Type.  ot Z] • [~] 

Note that  x and y are object language variables ranging over terms, and that  ot and fl are 

object language type variables. These variables are essentially bound over the body of the 

iterative definition. 

Iteratively defined functions over inductively defined types turn out to be representable 

in F0~. In this case the explicit definition of r e f l e c t  is surprisingly simple. This explicit 

definition highlights the fact that  a program is represented as its own iteration funct ion--  

iteration is achieved by applying the representation of a program to each of the cases from 

an iterative definition. Let id  ------ Aot Az:ot. z be the polymorphic identity. Then we get in 

this case: 

reflect : 

reflect ----- A7 Ap:~ ~ .  
p [A~. 8] 
(^or. ia  [ot]) 
(Aot AS .  ia  lot ~ 8]) 
(^or AS.  ~d [or ~ 8]) 
(Aot:Type -~ Type .  id [AS .  ot 8]) 
(hot:Type --* Type .  id [Ast. ot •]) 

T h e o r e m  7 (Correctness of r e f l e c t )  Let N E ~r ot be some (not necessarily standard} 

representation of the term M.  Then r e f l e c t  N = M. 

P roo f :  By induction on the normal form of N in terms of the constructors of ~r. 
[] 

5 .4  T h e  d e f i n i t i o n s  o f  r e i f y  a n d  eval 

Given the definition of r e f l e c t ,  it is a simple matter to give the definition of eval:Tf ot :~ ~- ot. 

Intuitively, eval should take the representation of a term and return a representation of its 

normal form. This is achieved simply by composing reflection with representation. This 
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definition (given formally below) will not return the standard representation of the normal 
form of the term, but rather exploit the fact that  every normal form term M can be 
represented as rep M. 

reify : As . s =~ ~ s 

reify --= rep 

eval : As.~s=~s 

eval --= As Ax:r s .  r e i f y [ s ]  ( r e f l ec t  [s] x) 

T h e o r e m  8 (Correctness of eva1) Let N E r s be some (not necessarily standard) repre- 

sentation of the term M.  Then eval [s] N EIr s is a representation of the normal form of 
M.  

We do not have a simple and intuitive characterization of exactly which functions are 
definable over the given representation of programs. In particular, we do not know whether 
the apparently simpler one-step outermost ft-reduction is representable. The problem is 
that  the first argument to lain expects a function of type s ~ r ft, not of type ~ s =~ r ft. 

One-step call-by-value reduction is an example of another function (beside evaluation) that  
is definable, that  is, we can evaluate the argument to a top-level ft-redex and then perform 
one outermost reduction. 

5 .5  G e n e r a l i z i n g  t o  h i g h e r  t y p e s  

We will now generalize the definition of ~r to allow representation of programs in F~. Note 
that  a term representing a program in Fn will be in Fn+l. 

A'7 • he:Type ---* Type .  
( A s .  s :* 0 s )  :~ 
(As  Aft .  ( s  :* e ft) =~ e (s : .  ft)) : .  
( ~ s  ~ f t .  e ( s  ~ ft) ~ e s ~ of t ) )  
( A s : K  --. T y p e .  (Af t :K.  e (sf t))  =~ e (Af t :K.  af t ) )  =~ 
( A s : K '  ~ T y p e .  O ( A f t : g ' .  s f t )  ::~ ( A f t : g ' .  O (af t)))  ::~ 
:::~ 0"7 

(* rep *) 
(* lain *) 
(* app *) 

(* typlam *) 
C* typapp *) 

This definition and the corresponding definitions of the constructor functions are now 
parameterized over the kinds K and K I. Since definitions with - are viewed as global, these 
kind variables are generic and may be instantiated differently at different occurrences of ~r. 

This is a part of the language where full reflexivity fails, since = cannot he represented in 
LEAP. 

6 E x t e n d i n g  P u r e  LEAP t o  LEAP 

We now turn our attention to extending Pure LEAP to the full "LEAP core language." Our 
goal here is to incorporate useful features of functional languages while adhering to the 
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principle of reflexivity. Specifically, in order to arrive at full LEAP, we make extensions in 
two phases: first those which can be defined entirely within Pure LEAP and hence constitute 

only conservative, syntactic extensions, and then the nonconservative, semantic extensions 

to Pure LEAP which still preserve reflexivity. 

6 .1  S y n t a c t i c  E x t e n s i o n s  

We begin with a brief description of the syntactic extensions. 

6.1.1 P a r t i a l  t y p e  inference  

Explicit polymorphism makes Pure LEAP impractically verbose; a type inference system 

for the language is essential. Partial type inference allows the types of bound variables and 

the type arguments to terms to be omitted, but  type abstractions and placeholders for type 
arguments (denoted by []1 must be supplied. For example, self-application may be written 
as ~ x .  (x [] x), but  not as ) ,x.  (z x). Partial type inference would type-check the former, 

but  not the latter. 

In [14], Pfenning shows that the partial type inference problem for F~ (and hence LEAP) 
is undecidable, but  also gives a complete semi-decision procedure based on higher-order 
unification. More extensive experiments are necessary in order to gauge the practicality of 
this algorithm. Our current prototype uses a AProlog [10] implementation of this algorithm, 

with very encouraging preliminary results. 

6.1.2 Gener ic  p o l y m o r p h i s m  and the  * s y n t a x  

In the A-calculus, the construction le t  x : N in M is taken as an abbreviation for (~z . 
M) N. The enhanced legibility of the shorthand is due to the lexical proximity of the z and 
N. In this form, the le t  construct can be carried over into LEAP in unadulterated form. 

However, in ML the l e t  construct is a convenient and critically important device for 

establishing generic polymorphism. 

Thus, for example, 

l e t  f = ~= .  • in ( f  1, f t~ue) 

in ML is type-correct, since Ax. z has principle type a =~ a for a type variable a and this 
type variable may be instantiated differently at different occurrences of f in the scope of the 
binding on f (and is thus called generic). Hence l e t  cannot be treated merely as syntactic 
sugar, since the expanded version of the example above, 

(Af .  ( f  1 , f  true)) (Ax. x) 

is not type-correct. 

This genericity reduces reflexivity since it seems to be impossible for type-checking with 
generic type variables to be inherited. We are left, then, with the problem of recovering the 
programming convenience of ML's l e t  without destroying the reflexivity of the language. 
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The solution we propose introduces additional verbosity over ML, which fortunately can be 

"sweetened" with some syntactic sugar. 

We would rewrite the example above in LEAP as follows: 

l e t  f*  = Ac~. Az :a .  z in ( f  1 , f  true) 

Here the "starred" identifier, f*, is defined in the body of the l e t  term. The single star 
is a purely syntactic, macro-like feature which in this case specifies that  occurrences of the 

variable f (without the star) are to be macro-expanded into the term f* []. 

We adopt this as a general syntactic feature of LEAP so that  whenever z* . . .  * is defined, 

in-scope occurrences of x appearing without a type argument are automatically expanded 

to x * . . . *  [ ]...[ ], where the number of *'s matches the number of [ ]'s. This essentially 
"syntactifies" generic polymorphism without giving up much expressive convenience (and 
still preserving reflexivity). The additional verbosity over ML occurs at the place where a 
polymorphic function is defined, since type abstractions must be made explicit. However, 

functions are typically used much more often than defined, and so this overhead does not 

seem an undue burden. 

Taking the example of eva1 and the ~r-eonstructors from the previous section, we can 
replace eval with eva1*, rep with rep*, lain with lain**, and so on, in order to make eva1 

and the w-constructors to appear "generically" polymorphic. 

6.1.3 P r i m i t i v e  r e c u r s i o n  a n d  i nduc t i ve ly -de f ined  d a t a  t y p e s  

In [15], Reynolds gives several examples of eneodings of inductively-defined data types in 
the second-order polymorphic A-calculus. Among the examples are integers, lists, and trees. 
Nonrecursive data  types such as the unit type, pairs, and disjoint sums can also be encoded 

in a similar manner as special cases of the general encoding. These encodings require only 
the second order, and can be transferred directly into Pure LEAP. Our encoding of the the 
type of program representations, lr, is an example of such an encoding that  seems to require 

functions from types to types, i.e., the third-order polymorphie ),-calculus. 

For a practical language, such encodings are much too unwieldy. Hence, we make a 

syntactic extension to Pure LEAP which provides a sublanguage for inductively-defined type 

specifications. An example of such a specification appears in Section 5.1, where we define 
the type ~r using this syntactic extension. A full discussion of the definition of primitive 
recursion and inductively-defined data types in Pure LEAP is given in another paper [13]. 

6 .2  S e m a n t i c  E x t e n s i o n s  

Several features found in languages such as Standard ML can not be defined simply through 
syntactic extension of Pure LEAP. These include general recursion, polymorphic assignable 

references, and polymorphic exceptions (or ea l l /cc) .  

In all three cases, it appears to be possible to incorporate these features into the language 

by adding new constants which embody the desired semantics. Having chosen the constants, 
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it remains for us only to verify that  reflexivity is not violated by the extensions. For 
polymorphic references and exceptions, we have found that  the explicit polymorphism in 

Pure LEAP with suitable restrictions which can be easily checked, provide an extra degree 
of control which eliminates the need for "weak" [7] or "imperative" [21] type variables. 

7 C o n c l u s i o n s  

As we stated in the introduction, our original goal was to design an practical, statically- 

typed language suitable for use as a metalanguage for manipulating programs, proofs, and 
other similar symbolic data. What  we have attained is Pure LEAP, a statically-typed 
language core which admits the definition of a metacircular interpreter for a large language 

fragment in a natural and direct way. This language is based on the or-order polymorphic 
A-calculus of Girard, extended by global definitions and some syntactic sugar. In what  ways 

does Pure LEAP satisfy our original goal? In other words, how well does Pure LEAP serve 

as a metalanguage? 

Of course, without a serious implementation we can only speculate on this question, but 
almost any argument that  might be made for ML as a metalanguage can also be made for 

LEAP. In addition, Pure LEAP is able to represent and manipulate data (e.g., programs 

in object languages) with richer type structures than is possible in ML. How useful this 
added power is in practice will require much further investigation and experience with the 

language. 

Other issues to be studied further include the exact extent of the language, in particular 
with respect to additions such as references, exceptions, recursion, and so on. We have 
clone some preliminary work along these lines, and have some evidence that  such extensions 
will not destroy the reflexivity of the language. Another issue is the efficient implemen- 
tation of LEAP. Work here is presently underway, with a simple implementation based on 
AProlog currently operational. One of the main challenges appears to be devising efficient 
implementation strategies for inductively-defined data types. 

We hope to have more to report as the design and implementation of a full language 

around Pure LEAP proceeds. 
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