
LEAP: A Language with Eval And Polymorphism

F r a n k P f e n n i n g and Pe te r Lee

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890

Abst rac t

We describe the core of a new strongly-typed functional programming language
called LEAP, a gL__anguage with E__val And Polymorphism. ~ Pure LEAP is an exten-
sion of the co-order polymorphic A-calculus {F~) by global definitions that allows the
representation of programs and the definition of versions of re i fy , r e f l ec t , and eva1
for all of Fw. Pure LEAP is therefore highly reflexive and strongly typed. We believe
that Pure LEAP can be extended to a practical and efficient metalanguage in the ML
tradition. At present we are experimenting with a prototype implementation of Pure
LEAP.

1 I n t r o d u c t i o n

In this paper we describe the core of a new strongly-typed functional programming language

called LEAP, a "L_anguage with E_val And Polymorphism." Our initial motivation came

from the problem of finding a strongly-typed language suitable for use as a metalanguage

for manipulating programs, proofs, and other similar symbolic data. The language ML [11]

seemed to satisfy many of our criteria, but was not powerful enough to serve as its own

metalanguage in a natural way. (We discuss what we mean by "natural" in Section 2.)

This then led us to the question, first posed by Reynolds in [17], of whether strongly-

typed languages admit metacircular interpreters. Conventional wisdom seemed to indicate

that the answer was "No." Our answer is "Almost." After a brief review of F~ in Section 3,

we explain this answer in Sections 4 and 5 by giving a construction reminiscent of the

reflective tower of Smith [18,19]. Wand and Friedman's analysis of the reflective tower [3,22]

emphasizes reification, the translation from programs to data, and reflection, the translation

from data to programs, as central concepts. In the setting of a strongly-typed functional

language, we have found elegant and concise definitions of reification and reflection.

Somewhat unexpectedly for us, the "tower" begins with an interpreter for the second-

order polymorphic A-calculus (F2) (see Girard [5,6] and Reynolds [16]) written in the third-

order polymorphic A-calculus (F3). This does not easily extend to higher orders--only

This research was supported in part by the Office of Naval Research under contract N00014-84-K-0415
and in part by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 5404, monitored
by the Office of Naval Research under the same contract.

346

the addition of global definitions with polymorphic kinds to F~ allowed us to extend the
construction. The result is a core language called Pure LEAP which is strong enough to
allow the definition of reification and reflection functions for all of Fw.

These theoretical results lead us to ask whether LEAP can be usefully extended while
still preserving this ability to build a reflective tower. This is, in fact, possible, and we
describe several such extensions in Section 6. First we extend LEAP with inductive data
type definitions and primitive recursion (a conservative extension), and then we briefly
sketch out extensions involving references, exceptions, and general recursion (no longer
conservative, but preserving the reflection property as before).

We claim that LEAP can be the core of a practical language in which efficient (meta-)pro-
grams can be written. To test its practicality, we are presently experimenting with a
prototype implementation of LEAP as well as designing a full language around it.

2 Ref l ec t ion~ Ref l ex iv i ty~ a n d S t a t i c T y p i n g

The idea of reflection in untyped programming languages can be found in both the early and

the recent literature. In [17] Reynolds gives a metacircular interpreter for a simple, untyped

functional language within itself. This was pursued further by Steele and Sussman [20] and

others. In fact, writing metacircular interpreters has long been a standard practice in

LISP [8,9]. Smith, in [18,19], introduces the notion of the reflective tower, illustrating it
in the language 3-LISP. Friedman and Wand give their own analysis of the reflective tower
in [4] and [3,22], isolating reification and reflection as key concepts.

This paper reports on our attempt to model reification and reflection in a strongly-typed
language. Our results may be summarized as follows: (1) The third-order polymorphic
A-calculus (Fs) is powerful enough to represent programs written in the second-order poly-
morphic A-calculus (F2) and also the functions r e i fy and :reflect. This allows the definition
of eva1 for F2 in Fs. (2) If one extends F~ by allowing polymorphic kinds (forming the Pure
LEAP language), then one can define f e l l y and r e f l ec t for all of Fw, thus falling just short
of a complete metacircular interpreter for all of LEAP. (3) The analogue of the structure
of the reflective tower emerges when one considers the restriction of Pure LEAP to types
of order n (LEAPn). Then LEAP,,+1 is powerful enough to allow the definition of F,, for
n > 2. (4) We conjecture that it is impossible to define r e i fy and r e f l ec t for the simply
typed A-calculus in F2, that is, the tower begins with an interpreter for $'2 in Fs.

There are two representation "tricks" that make reflection possible in Pure LEAP. The
first is to dispense entirely with the environments that play such a crucial role in previous
work on metacircular interpreters and reflective towers. This trick seems necessary, since
environments bind variables of different type, and therefore cannot be typed consistently.
Instead, one uses continuations to reify (represent) A-abstraction. As a result we obtain
a reification mechanism similar to the Lisp quote operator, but in which all variables are
antiquoted (and hence captured in the current environment) at the time they are reified.
(Actually, reification is more akin to the backquote operator, since backquote is typically
used in Lisp to create program data structures containing captured variables.) Hence the

347

environments of, for example, 3-LISP are implicitly carried by the reifled data structures.
(This is described in greater detail in Section 4.)

The second trick is the solution to the technical challenge of dealing with inductively
defined data types with polymorphic constructors. This problem had been addressed in the
literature (see [1] and [11] for two different approaches) only for the case where types are
guaranteed to be uniform over any given element of the inductive type (such as lists: a list
of type ~ has sublists only of type ~). Programs do not have this uniformity property, since
programs of type a can have subprograms of arbitrary type.

2.1 R e f l e x i v i t y o f l a n g u a g e s

We are concerned not only with the ability of a language to form a reflective tower, but also
with how easily and naturally this construction can be expressed. We call this the reflezivity
of the language. We will not attempt to give a formal definition for when a language is re-
flexive. Instead we will try to give some informal criteria for judging the degree of reflexivity
of a language, the basic one being the ability of a language to serve as its own metalanguage.
This by itself does not seem enough, since then every Turing-complete language would be
reflexive. In addition, we would like to require that the language/metalanguage relationship

is ~natural." When is this relationship ~natural~? We think the answers to the following
questions provide some hints when evaluating the degree of reflexivity of a language.

How redundant is the definition of a metacircular interpreter? In a highly reflexive
language, the metacircular interpreter should be simple and direct. The more that
features of the object language can be implemented by using the corresponding fea-
tures of the metalanguage, the more reflexive the language. We call this phenomenon
inheritance of object language features from the metalanguage. Typical examples of

features for which inheritance might be desirable are evaluation order (e.g., call-by-
value vs. call-by-name) and, as we shall see, static type-checking.

How much of the metalanguage can be interpreted by the metacircular interpreter?
Ideally, the metalanguage and object language should coincide.

Can we define the functions r e i fy and r e f l ec t in addition to eval? That is, can we
coerce data into programs and vice versa?

How well can object language syntax and metalanguage syntax be integrated? We
will mainly ignore this issue: with the aid of good syntactic tools one should always be
able to achieve a reasonably smooth integration of metalanguage and object language.

2 . 2 I n h e r i t a n c e o f m e t a l a n g u a g e f e a t u r e s

We believe that the concept of inheritance is important when considering the relationship
of a metalanguage to its object language. Inheritance (though not under this name) was
already considered by Reynolds [17]. The following examples should help to illustrate the
concept.

348

. An ML interpreter written in ML would likely be highly redundant, since type inference

would have to be reimplemented explicitly. In other words, it seems that ML type

inference cannot be inherited, in part because because of the complexity of the data

type of programs, and also because of the ~generic" nature of the ML let construct.

Our solution to the generic let problem is discussed in Section 6.1.2.

o An interpreter written for a dynamically-scoped LISP will also be redundant, since

environments must be represented and manipulated explicitly by the interpreter. The

notion of variable binding cannot be inherited and must be programmed explicitly.

However, many other features such as automatic storage management clearly are

inherited in a typical metacircular LISP interpreter, However, our results for LEAP

indicate that a statically-scoped LISP could use closures in the metainterpreter instead

of environments.

t An interpreter for (pure) Prolog without cut written in Prolog is not very redundant,

in particular since unification can be inherited. Other properties, such as whether

search should be conducted in depth-first or breadth-first order can also be inherited.

Prolog with cut is less reflexive, since the notion of cut must be implemented explicitly

and cannot be inherited.

• In the LEAP language, type inference and variable binding mechanisms will both be

inherited. Evaluation order will also be inherited, thus making LEAP very reflexive.
It should be noted that this is not so important for the pure language, since it has
the strong normalization property (see Theorem 3).

As one can see from the examples, reflexivity is elusive. Care must be taken when
extending a language in order not to lose too much reflexivity. The reflexivity of pure
Prolog, for instance, seems to be diminished by the addition of a cut operator. In other
cases, the reflexivity of a language can be enhanced through strengthening. For example, we
shall see that the addition of explicit polymorphism to the simply-typed A-calculus results
in a highly reflexive language.

Languages that have a strong degree of reflexivity seem in some way to distill the
essence of a computational paradigm into a pure form. We believe that language designers
should pay attention to the issue of reflexivity, in particular when designing a language for
use as a metalanguage. We hope to demonstrate this principle in the following sections
as we describe Pure LEAP, a highly reflexive language based on the w-order polymorphic

A-calculus.

3 The w-Order Polymorphic A-Calculus

In [5,6], Girard defines a powerful extension to Church's simply typed A-calculus [2] and goes

on to give a constructive proof of strong normalization for his system. A fragment of Girard's
calculus was independently discovered by Reynolds [16] who introduced abstraction on type
variables and application of functions to types in order to define explicitly polymorphic

functions. Reynolds' calculus is known as the second-order polymorphic A-calculus.

349

Here we consider the w-order polymorphic A-calculus, which is an extension of Reynolds'

system but only a fragment of Girard's system (since it omits existentially quantified types).

Our presentation of the calculus contains three distinct syntactic categories: kinds, types,

and terms.

Since our calculus is higher-order, we have, in addition to types of terms, functions from

types to types, etc. We will call every such object a type. The subset of these that are

first-order, or, equivalently, of kind "Type," can actually be the type of a term. These and

other properties of the calculus are summarized at the end of this section. Following Girard,

we will write F, for the language of the nth-order polymorphic A-calculus, and F~ for the

union over all finite orders.

The language should properly be parameterized over a signature for type constructors

and term constants. Since the pure language contains no such constants or constructors,

we will abbreviate the presentation. We use K, K r for kinds, ~, fl,.., for types and type

variables, 0 for type variables, M, N,... for terms, and x, y,... for variables.

D e f i n i t i o n 1 The syntactic categories of kind, type, and term are defined inductively by

Kinds K : := T y p e l K - - * K I
Types a : := O I A O : K . a I a ~ I c ~ = ~ $ I A O : K .

Terms M : := x l Az:a . M I M N I AO:K . M I M [a]

We will not give the formal type inference system for this language here, but merely

explain it informally. A more formal development can be found in [14]. The A symbol is

used to construct functions tha t can be applied to a term, yielding a term, and also to build

functions tha t can be applied to a type, yielding a type. The symbol h constructs functions

tha t can be applied to types, yielding a term. Such a function will have a A type. The order

of a te rm in this calculus is determined by what kind of abstract ions over types are allowed:

we obtain the second-order polymorphic A-calculus (Fg.) if we allow abstract ions only over

type variables of kind Type; we obtain Fs if we allow abstract ions over type variables of

kinds Type ~ . . . --* Type; etc. We use " M 6 c~" to indicate that te rm M has type c~, and

"a 6 K" to indicate tha t c~ has kind K. We use r to s tand for contexts, which uniquely

assign kinds to type variables and types to term variables. We will omit empty contexts.

In the second-order fragment F2 of F~, one can explicitly define common da ta types

and operat ions on them, such as natura l numbers (int -- AO. 0 =:~ (O =~ O) ~ 8), products,

disjoint sum, and lists (list - A s . A 0 . (a :=~ 0 =~ 0) ~ 0 =~ 0). For a good exposition see

Reynolds [15] or BShm [1]. We will give an al ternat ive way of defining some of these da ta

types in Section 6.1.3.

Next we define the judgments of the inference system tha t allow us to find valid types

for terms and kinds for types.

D e f i n i t i o n 2 The judgments we use to define when a term is well-typed are:

1- r context r is a valid context
~- K E kind K is a valid kind
r ~ a • K a has kind K
P ~ u • a u has type a

350

The inference rules used to establish the validity of types, terms, or contexts can be
found in [14]. We will regard a-convertible types and terms (with binders X, A, and A) to

be equal. Thus we will ignore the issues of variable renaming and name clashes.

In the inference rules of the polymorphic X-calculus, we will allow conversion between

B~/-equivalent types. We define B and t/conversions of types as is usually done on terms.
For example, a B-redex has the form (A0:K. a) ~/.

In the conversions for terms we now also include the B-conversion of type applications,
(Aa. M) [B] ~ (B / a) M and the T-conversion, (Aa. M [a]) ~ M, a not free in M, of type

abstractions. We write M = N if M is BiT-equivalent to N in this extended sense.
A

During the remainder of the paper, we will make use of some fundamental properties of
the calculus whose proofs can be found elsewhere (see, for example, [5]) or follow immedi-

ately from known results. We state here only a few of them.

T h e o r e m 3 [Girard] (Basic properties of F¢o)

1. I f P ~ M E a then I ' l - - a ~ T y p e .

g. I f F ~- a E K then a has a unique ~T-normal form.

8. I f ~ ~ M E a then M has a unique BT'normal form,

g. r ~ M E a is decidable.

4 P u r e LEAP

In order to be able to give a finitary definition of re i fy and ref lec t at all levels of Fw, we
need to allow global definition of types and functions with free variables ranging over kinds.

Such variables are generic in the same way that some type variables are generic in ML (see

Milner [12]). We will use the concrete syntax:

0 - 8
x --- M

global definition of 0 to stand for fl
global definition of x to stand for M

for global definitions of types and terms, respectively. This addition to F~ is benign in the
sense that given any term M to be type-checked and evaluated in a given global context, we
can find an equivalent term N in F~ itself. N is obtained from M simply by expanding the
definitions from the context. This is also how type-checking and evaluation for Pure LEAP
are defined. Later, if the language is extended to allow slde-effects, and a commAtment to
call-by-value is made, evaluation must be reconsidered. In Pure LEAP, every term will have
a unique normal form, so the issue of a call-by-value or call-by-name semantics does not

arise.

351

5 R e f l e c t i o n i n L E A P

We now describe the representation of programs in Pure LEAP, and present our definitions
of re i fy , r e f l e c t , and eval.

5.1 Representation of programs

When attempting to build a reflexive language, the first concern must be the ability to

represent programs in the language as data. Two approaches seem plausible: to build in a

new special data type for programs, or to use combinations of existing built-in data types

to represent programs. Since we would like (at the outset) to keep our language as pure as

possible, we will follow the latter approach.

Perhaps the best way to understand this construction is in terms of inductively defined
types. An inductively defined type is given by a list of its =constructors" and their types.

This is an extension of the datatype construction in ML, since constructors may be ex-

plicitly polymorphic. It is shown in [13] (extending ideas of BShm & Berarducci [1]) that

these types do not require an addition to the core language, since inductively defined types

are representable by closed types. With this in mind, we can now present a specification of
the type of programs:

|ndtype ~r : Type =~ Type with

rep : Ace:Type. s =~ Irs

lain: As:Type. A S : T y p e . (s =~ • 8) =~ • (s =~/~)
app : A s : T y p e . A S : T y p e . ~ (s =~ 8) =~ • s =~ • 8

typlam : A s : T y p e -* Type . (AS:Type . lr (s 8)) =~ • (A8 :Type . (s/~))

typapp : As:Type -~ Type. ~ (AS:Type. (s 8)) =~ AS:Type. ~ (s 81

end

The basic problem is to be able to explicitly define a function Ir from types to types,

such that ~s is a type representing programs of type s. The usual, well-known approach for

defining inductive data types in the second-order polymorphic A-calculus (see [1,15]) fails,

but we do not have a proof that such a representation is impossible. The data types that

have been shown to be representable in F2 either have constructors that are not polymorphic

(such as int - As . a =~ (a =~ a) =~ a, which has constructors 0:int and succ:int =~ int),

or have the property that the type variables in the constructor are uniform over the whole

data type (such as list --- Aa . A# . (s =~ # =~ 0) =~ 0 =~ e with constructors cons:A0 .

0 =~ Jist# =~ list# and nil:Ae . list#). This allows the definitions of the constructors to be

uniform over this type variable.

An attempt at a straightforward extension of this approach to the case of a data type

of programs fails, since a program of type 8 may have components of type a =t~ 8 and s,

and thus in fact of arbitrary type.

This problem disappears when one goes to the third-order polymorphic A-calculus, since

in it one can explicitly use a function from types to types that maps the type of the

352

components to the type of a term. We will begin the formalization of these ideas by giving
an F3 encoding of $'2 programs. Each line is annotated with a corresponding constructor

function tha t is defined below. We use O for a bound variable of kind Type ~ Type, that

is, for a function from types to types.

A 7 . AO:Type --* T y p e .
(A a . a ~ o ,x)

(Aa:Type -~ Type. (Aft. O (aft)) =~ O (Aft. aft)) =>
(Aa:Type -~ Type. O (Aft. a ~) =~ (Aft. O (a ~))) =>

(* rep *)
(* lain *)
(* app *)
(* typlam *)
(* typapp *)

This is a special case of a very general transformation from an inductive definition of a
data type into an encoding into F~ described in [13]. The definitions of the constructors in

this encoding can be found in Figure 1.

rep :

rep ----

] .am :

lain --

a p p :

a p p --=

typlam :
typlam =

typapp :
typapp

ha Ax:a .
AO Arep Alam Aapp Atyplam Atypapp .

/,,~ A a . (,~ ~ ~ ~) :~ ~ (,~ =~ ~)
Aa Aft Af :a =~ ~r f t .
AO Arep Alam Aapp Atyplam Atypapp .
tam [a] [fl] (Ax:a. f z [O] rep lama app tvplama tvpapv)

Act Aft Az:r(a =~ fl) Ay:ra .
AO Arep)dam Aapp Atyplarn Atypapp .
app [a] [~] (z [O] rep lama app tvplara tvpapp) (V [O] rep lain app tvplam tvpapp)

Aa:Type ---, T y p e . (A # . ~r (a ~)) ~ ~" (A # . a #)
Aa:Type ---+ Type af :A,f l , a" (a f l) .
AO Arep Mama Aapp Atyplam Atvpapp .
tvvtama [,~] (A~. f [fl][e] re v h,n app typtama typapp)

Aa:Type --, T y p e . • (A ~ . a ~) =~ (A f l . r (a~))
Aa:Type --~ Type Af:~ (Af t . c~ ~) Aft.
AO Amp Alam Aapp Atyplam Atypapp .
typapp ['~1 (f [0] rep lama app tvptama tvpapP) [ill

Figure 1: Definition of program constructors for F2 in F~.

Several things should be noted in this definition:

353

1. Representations of programs are not unique. That is, any program M in normal form
can be represented as rep [a] M (c~ the type of M), but it also has a representation in

terms of lain, app, typlam, typapp, and rep~ where rep is applied only to variables.

2. The rep constructor can not be eliminated, since it is crucial in order to convert
bound variables into their representations. We do not see a simple way of fixing this

by changing the type of the lain constructor to A n A/3. (r a =~ r/3) ~ r (c~ =~ /3),
since that seems to preclude a representation of lain.

5 .2 R e i f i c a t i o n a n d r e f l e c t i o n

In the definition and theorems below we will omit contexts. They can be filled in easily.

Def in i t i on 4 (Program representation) Let M be a term of F2.

representation M of M in Fs inductively as follows:

We define the standard

I f z E ~ then ~ -- rep [Or] X
I f Ax:c~ . M e c~ =~ fl then Ax:c~. M = lam[a][fl] (,kx:a. M---)
I f M • ~ =~ fl and N • a then M N -- app lot] [/3] M g
If A/3. M • / , / 3 . ,~/3 then A/3. M = typla,,[,~] (A/3. M----)
I f M [13] • ~/3 then M [/3] = typapp [a] M [/3]

We define the relation ~represents" inductively like the standard representation, ezcept that

rep [c~] M (which is not the standard representation of any term unless M is a variable) is

defined as representing M.

The following theorem shows that this is a proper representation function, but the
crucial property will of course be that evaluation is definable over this representation (see
Theorem 8).

T h e o r e m 5 (Soundness of program representation) Let N G c~. Then -N E r c~.

P r o o f : By a simple induction on the structure of N.
[]

C o n j e c t u r e 6 (Faithfulness of program representation) Let N be a term of type r a. Then

there is an M E c~ such that N represents M.

It should be noted that this conjecture is not critical for the further development of
program representation and evaluation in the remainder of this paper. Should it turn out

that there are terms of type ~r ~ which are not the representation of programs of type

~, the representation of the functions defined below are still correct on terms that are

representation of programs, and will again produce representations of programs.

354

5 .3 T h e d e f i n i t i o n o f r e f l e c t

The crucial step in the definition of eval is the definition of r e f l e c t , which maps the

representation of a term of type ot into a term of type or, that is, r e f l e c t : Aot . a" ot ==~ or.

Such a function will have to do some form of evaluation, since normal-form terms of type

7r ot can represent terms of type ot that are not in normal form.

Let us first present the function in the form of an iterative definition (see [1] for a

discussion of iterative definitions in F~ and [13] for a generalization that encompasses Foj)~

reflect [ot] (r.p [ot] ~)
ref lect lot ~ a] (1 . . [ot] [~] ~)
reflect [~] (.pp [ot] [~] • y)
reflect [A~:Type. ot ~] (typl,~ lot] ~)
reflect [or/~] (typapp [Or] X [/~])

= ay:ot, refXect [~](~y)
= (reflect lot ~ Z] ~) (re~l,ct [ot] y)
---- Aft :Type. reflect [or fl] (x [/3])
= re f lec t [A~:Type. ot Z] • [~]

Note that x and y are object language variables ranging over terms, and that ot and fl are

object language type variables. These variables are essentially bound over the body of the

iterative definition.

Iteratively defined functions over inductively defined types turn out to be representable

in F0~. In this case the explicit definition of r e f l e c t is surprisingly simple. This explicit

definition highlights the fact that a program is represented as its own iteration funct ion--

iteration is achieved by applying the representation of a program to each of the cases from

an iterative definition. Let id ------ Aot Az:ot. z be the polymorphic identity. Then we get in

this case:

reflect :

reflect ----- A7 Ap:~ ~ .
p [A~. 8]
(^or. ia [ot])
(Aot AS . ia lot ~ 8])
(^or AS. ~d [or ~ 8])
(Aot:Type -~ Type . id [AS . ot 8])
(hot:Type --* Type . id [Ast. ot •])

T h e o r e m 7 (Correctness of r e f l e c t) Let N E ~r ot be some (not necessarily standard}

representation of the term M. Then r e f l e c t N = M.

P roo f : By induction on the normal form of N in terms of the constructors of ~r.
[]

5 .4 T h e d e f i n i t i o n s o f r e i f y a n d eval

Given the definition of r e f l e c t , it is a simple matter to give the definition of eval:Tf ot :~ ~- ot.

Intuitively, eval should take the representation of a term and return a representation of its

normal form. This is achieved simply by composing reflection with representation. This

355

definition (given formally below) will not return the standard representation of the normal
form of the term, but rather exploit the fact that every normal form term M can be
represented as rep M.

reify : As . s =~ ~ s

reify --= rep

eval : As.~s=~s

eval --= As Ax:r s . r e i f y [s] (r e f l ec t [s] x)

T h e o r e m 8 (Correctness of eva1) Let N E r s be some (not necessarily standard) repre-

sentation of the term M. Then eval [s] N EIr s is a representation of the normal form of
M.

We do not have a simple and intuitive characterization of exactly which functions are
definable over the given representation of programs. In particular, we do not know whether
the apparently simpler one-step outermost ft-reduction is representable. The problem is
that the first argument to lain expects a function of type s ~ r ft, not of type ~ s =~ r ft.

One-step call-by-value reduction is an example of another function (beside evaluation) that
is definable, that is, we can evaluate the argument to a top-level ft-redex and then perform
one outermost reduction.

5 .5 G e n e r a l i z i n g t o h i g h e r t y p e s

We will now generalize the definition of ~r to allow representation of programs in F~. Note
that a term representing a program in Fn will be in Fn+l.

A'7 • he:Type ---* Type .
(A s . s :* 0 s) :~
(As Aft . (s :* e ft) =~ e (s : . ft)) : .
(~ s ~ f t . e (s ~ ft) ~ e s ~ of t))
(A s : K --. T y p e . (Af t :K. e (sf t)) =~ e (Af t :K. af t)) =~
(A s : K ' ~ T y p e . O (A f t : g ' . s f t) ::~ (A f t : g ' . O (af t))) ::~
:::~ 0"7

(* rep *)
(* lain *)
(* app *)

(* typlam *)
C* typapp *)

This definition and the corresponding definitions of the constructor functions are now
parameterized over the kinds K and K I. Since definitions with - are viewed as global, these
kind variables are generic and may be instantiated differently at different occurrences of ~r.

This is a part of the language where full reflexivity fails, since = cannot he represented in
LEAP.

6 E x t e n d i n g P u r e LEAP t o LEAP

We now turn our attention to extending Pure LEAP to the full "LEAP core language." Our
goal here is to incorporate useful features of functional languages while adhering to the

356

principle of reflexivity. Specifically, in order to arrive at full LEAP, we make extensions in
two phases: first those which can be defined entirely within Pure LEAP and hence constitute

only conservative, syntactic extensions, and then the nonconservative, semantic extensions

to Pure LEAP which still preserve reflexivity.

6 .1 S y n t a c t i c E x t e n s i o n s

We begin with a brief description of the syntactic extensions.

6.1.1 P a r t i a l t y p e inference

Explicit polymorphism makes Pure LEAP impractically verbose; a type inference system

for the language is essential. Partial type inference allows the types of bound variables and

the type arguments to terms to be omitted, but type abstractions and placeholders for type
arguments (denoted by []1 must be supplied. For example, self-application may be written
as ~ x . (x [] x), but not as) ,x. (z x). Partial type inference would type-check the former,

but not the latter.

In [14], Pfenning shows that the partial type inference problem for F~ (and hence LEAP)
is undecidable, but also gives a complete semi-decision procedure based on higher-order
unification. More extensive experiments are necessary in order to gauge the practicality of
this algorithm. Our current prototype uses a AProlog [10] implementation of this algorithm,

with very encouraging preliminary results.

6.1.2 Gener ic p o l y m o r p h i s m and the * s y n t a x

In the A-calculus, the construction le t x : N in M is taken as an abbreviation for (~z .
M) N. The enhanced legibility of the shorthand is due to the lexical proximity of the z and
N. In this form, the le t construct can be carried over into LEAP in unadulterated form.

However, in ML the l e t construct is a convenient and critically important device for

establishing generic polymorphism.

Thus, for example,

l e t f = ~= . • in (f 1, f t~ue)

in ML is type-correct, since Ax. z has principle type a =~ a for a type variable a and this
type variable may be instantiated differently at different occurrences of f in the scope of the
binding on f (and is thus called generic). Hence l e t cannot be treated merely as syntactic
sugar, since the expanded version of the example above,

(Af . (f 1 , f true)) (Ax. x)

is not type-correct.

This genericity reduces reflexivity since it seems to be impossible for type-checking with
generic type variables to be inherited. We are left, then, with the problem of recovering the
programming convenience of ML's l e t without destroying the reflexivity of the language.

357

The solution we propose introduces additional verbosity over ML, which fortunately can be

"sweetened" with some syntactic sugar.

We would rewrite the example above in LEAP as follows:

l e t f* = Ac~. Az :a . z in (f 1 , f true)

Here the "starred" identifier, f*, is defined in the body of the l e t term. The single star
is a purely syntactic, macro-like feature which in this case specifies that occurrences of the

variable f (without the star) are to be macro-expanded into the term f* [].

We adopt this as a general syntactic feature of LEAP so that whenever z* . . . * is defined,

in-scope occurrences of x appearing without a type argument are automatically expanded

to x * . . . * []...[], where the number of *'s matches the number of []'s. This essentially
"syntactifies" generic polymorphism without giving up much expressive convenience (and
still preserving reflexivity). The additional verbosity over ML occurs at the place where a
polymorphic function is defined, since type abstractions must be made explicit. However,

functions are typically used much more often than defined, and so this overhead does not

seem an undue burden.

Taking the example of eva1 and the ~r-eonstructors from the previous section, we can
replace eval with eva1*, rep with rep*, lain with lain**, and so on, in order to make eva1

and the w-constructors to appear "generically" polymorphic.

6.1.3 P r i m i t i v e r e c u r s i o n a n d i nduc t i ve ly -de f ined d a t a t y p e s

In [15], Reynolds gives several examples of eneodings of inductively-defined data types in
the second-order polymorphic A-calculus. Among the examples are integers, lists, and trees.
Nonrecursive data types such as the unit type, pairs, and disjoint sums can also be encoded

in a similar manner as special cases of the general encoding. These encodings require only
the second order, and can be transferred directly into Pure LEAP. Our encoding of the the
type of program representations, lr, is an example of such an encoding that seems to require

functions from types to types, i.e., the third-order polymorphie),-calculus.

For a practical language, such encodings are much too unwieldy. Hence, we make a

syntactic extension to Pure LEAP which provides a sublanguage for inductively-defined type

specifications. An example of such a specification appears in Section 5.1, where we define
the type ~r using this syntactic extension. A full discussion of the definition of primitive
recursion and inductively-defined data types in Pure LEAP is given in another paper [13].

6 .2 S e m a n t i c E x t e n s i o n s

Several features found in languages such as Standard ML can not be defined simply through
syntactic extension of Pure LEAP. These include general recursion, polymorphic assignable

references, and polymorphic exceptions (or ea l l /cc) .

In all three cases, it appears to be possible to incorporate these features into the language

by adding new constants which embody the desired semantics. Having chosen the constants,

358

it remains for us only to verify that reflexivity is not violated by the extensions. For
polymorphic references and exceptions, we have found that the explicit polymorphism in

Pure LEAP with suitable restrictions which can be easily checked, provide an extra degree
of control which eliminates the need for "weak" [7] or "imperative" [21] type variables.

7 C o n c l u s i o n s

As we stated in the introduction, our original goal was to design an practical, statically-

typed language suitable for use as a metalanguage for manipulating programs, proofs, and
other similar symbolic data. What we have attained is Pure LEAP, a statically-typed
language core which admits the definition of a metacircular interpreter for a large language

fragment in a natural and direct way. This language is based on the or-order polymorphic
A-calculus of Girard, extended by global definitions and some syntactic sugar. In what ways

does Pure LEAP satisfy our original goal? In other words, how well does Pure LEAP serve

as a metalanguage?

Of course, without a serious implementation we can only speculate on this question, but
almost any argument that might be made for ML as a metalanguage can also be made for

LEAP. In addition, Pure LEAP is able to represent and manipulate data (e.g., programs

in object languages) with richer type structures than is possible in ML. How useful this
added power is in practice will require much further investigation and experience with the

language.

Other issues to be studied further include the exact extent of the language, in particular
with respect to additions such as references, exceptions, recursion, and so on. We have
clone some preliminary work along these lines, and have some evidence that such extensions
will not destroy the reflexivity of the language. Another issue is the efficient implemen-
tation of LEAP. Work here is presently underway, with a simple implementation based on
AProlog currently operational. One of the main challenges appears to be devising efficient
implementation strategies for inductively-defined data types.

We hope to have more to report as the design and implementation of a full language

around Pure LEAP proceeds.

A c k n o w l e d g e m e n t s

The authors would like to thank Christine Paulin-Mohring for pointing out a problem in

a purported "proof" of Conjecture 6, and also Ken Cline, Scott Dietzen, Spiro Michaylov,

and Benjamin Pierce for many helpful discussions about Pure LEAP.

References

[1] Corrado BShm and Alessandro Beraxducci. Automatic synthesis of typed A-programs on term
algebras. Theoretical Computer Science, 39:135-154, 1985.

[2] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press, Princeton,
New Jersey, 1941.

359

[3] Mitchell D. Wand and Daniel P. Friedman. The mystery of the tower revealed: a non-reflective
description of the reflective tower. In Proceedings of the 1986 ACM Conference on L~p and
Functional Programming, Cambridge, pages 198-307, ACM, August 1986.

[4] Daniel P. Friedman and Mitchell Wand. Reiflcation: reflection without metaphysics. In Pro-
ceediags of the 1985 ACM Symposium on Lisp and Functional Programming, pages 348-355,
ACM Press, August 1984.

[5] Jean-Yves Girard. Interprgtation fonctioncUe ct ~limination des coupures de l'arithmgtiquc
d'ordere supgrieur. PhD thesis, Universit6 Paris VII, 1972.

[6] Jean-Yves Girard. Une extension de rinterpretation de GJdel a l'analyse, et son appfication a
relimination des coupures dans ranalyse et la theorie des types. In J. E. Fenstad, editor, Pro-
cecdings of the Second Scandinavian Logic Symposium, pages 63-92, North-Holland Publishing
Co., Amsterdam, London, 1971.

[7] David B. MacQueen. References and weak polymorphism. 1988. Standard ML of New Jersey
compiler release notes.

[8] John McCarthy. History of LISP. ACMSIGPLANNotices, 13(8):217-223, August 1978.

[9] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and Michael I.
Levin. LISP 1.5 Programmer's Manual. MIT Press, Cambridge, 1962.

[10] Dale A. Miller and Gopalan Nadathur. Higher-order logic programming. In Proceedings of the
Third International Conference on Logic Programming, Springer Verlag, July 1986.

[11] Robin Milner. The Standard ML core language. Polymorphism, II(2), October 1985. Also
Technical Report ECS-LFCS-86-2, University of Edinburgh, Edinburgh, Scotland, March 1986.

[12] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348-375, August 1978.

[13] Frank Pfenning. Inductively Defined Types in the Calculus of Constructions. Ergo Report 88-
069, Carnegie Mellon University, Pittsburgh, Pennsylvania, November 1988.

[14] Frank Pfenning. Partialpolymorphic type inference and higher-order unification. In Proceedings
of the 1988 A CM Conference on Lisp and Functional Programming, ACM Press, July 1988.

[15] John Reynolds. Three approaches to type structure. In Hartmut Ehrig, Christians Floyd, Man-
race Nivat, and James Thatcher, editors, Mathematical Foundations of Software Development,
pages 97-138, Springer-Verlag LNCS 185, March 1985.

[16] John Reynolds. Towards a theory of type structure. In Proc. Colloque cur la Programmation,
pages 408--425, Sprlnger-Verlag LNCS 19, New York, 1974.

[17] John C. Reynolds. Definitional interpreters for higher-order programming languages. In Pro-
ceedings of the 25th ACM National Conference, pages 717-740, ACM, New York, 1972.

[18] Brian Cantwell Smith. Reflection and Semantics in a Procedural Language. Technical Re-
port MIT-LCS-TR-272, Massachusetts Institute of Technology, Cambridge, Massachusetts, Jan-
uary 1982.

[19] Brian Cantwell Smith. Reflection and semantics in Lisp. In Proceedings of the Eleventh Annual
A CM Symposium on Principles of Programming Languages, Salt Lake City, pages 23-35, ACM,
January 1984.

[20] Guy Steele and G. Sussman. The Art of the Intcrprcter~ or, The Modularity Complex (Parts
Zero, One, and Two). Artificial Intelligence Laboratory Memo AIM-453, Massachusetts Insti-
tute of Technology, Cambridge, Massachusetts, 1978.

[21] Mads Toffs. Operational Semantics and Polymorphic Type Inference. PhD thesis, Department
of Computer Science, Edinburgh University, 1987.

[22] Mitchell D. Wand and Daniel P. Friedman. The mystery of the tower revealed: a nonreflective
description of the reflective tower. Lisp and Symbolic Computation, 1(1):11-38, June 1988.

