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ABSTRACT

The use of SIMD computers requires efficient schemes of storage of data
in order to have conflict-free access in parallel computation. In this paper
we restate the problem of finding such schemes in an algebraic context. This
approach supplies simple statements and proofs of main results on the subject,
and allows further development of it.

Index terms: Parallel memories, conflict-free access, skewing schemes.

1. INTRODUCTION

The wuse of parallel processing in large computers leads to the
organization of primary memories in parallel units, in order to allow the
access to multiple data in every memory cycle.

The effective utilization of such organization depends heavily on being
able to arrange the data in the memory banks so that certain subsets of data
can be fetched simultaneously without conflict. In this context, a typical
problem arises when a two dimensional matrix is to be stored in such a way
that all vectors of interest (rows, columns, diagonals, etc.) can be retrieved
in one memory cycle, see [1].
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Any storage scheme of a set of data into a set of memory banks is called
skewing scheme, and such a scheme allows simultaneous access to the elements
of a subset of data if and only if they are stored in different memory units.
In [4], the existence and propertiecs of skewing schemes that supply
conflict-free access to prescribed subsets of data was related to the study of
plane tessellations. This geometrical approach was also used in [4-7].

In this work we restate the problem in a more general context introducing
algebraic  tessellations of  Abelian  groups.  Within  this  framework, all
definitions and statements are given in a simple and concise way, allowing
further development of the subject. The paper is organized as follows. In
Section 2 we give the basic definitions and results concerning algebraic
tessellations of Abelian groups. In Section 3, a general definition of skewing
scheme identifying each datum with an element of a group is given. Valid and
proper schemes relative to a subset of data are characterized as a
generalization of known results. Finally, in Section 4, the important class of
periodic skewing schemes is set up in this new context, and the results of the
general case are particularized.

Through the paper, G=(G,+) denotes an Abelian group. We write [g] for the
equivalence class of an element g of G modulo a given subgroup, and, if T is a
subset of G, |[T] denotes the set of classes of the elements of 7. In this
case, it will always be supposed that all the elements of T belong to
different classes. If T, H are subsets of G, their sum T+H is the set
{t+h : 1€T, he H}). When each element in T+H can be uniquely written as a sum of
an element of 7 and an element of H, we say that the sum is direct, and we
represent it as T®H.

2. ALGEBRAIC TESSELLATIONS OF AN ABELIAN GROUP

In this section we introduce the basic definitions and results that are
used later. The notion of “tessellation" defined below generalizes its usual

meaning.

2.1. Definition: Let T be a subset of a commutative group G. We will say that
T pseudotessellates G by H if there exists a subset H of G such that the sum
T+H 1is direct. If T®H=G, we say that T tessellates G by H, or that the family
of subsets {T+h : he H) is a tessellation of G.
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From this definition, some basic results follow.

2.2. Lemma: The following statements are equivalent
(a) T (pseudo)tessellates G by H.
(b) H (pseudo)tessellates G by T.
(c¢) T (pseudo)tessellates G by g+H for any g in G.
(d) T (pseudo)tessellates G by -H (if T is a finite subset).

Proof: By the symmetry of the Definition 2.1, (a) and (b) are equivalent.
On the other hand, for a given g in G, g+t+h=g+I'+h’ < t+h=r+hk so (a) is
equivalent to (c). For the last equivalence, we have t-h=t'-h' < t+h’=r'+h, so
T pseudotessellates G by H iff T pseudotessellates G by —H. Finally, suppose
that T is a finite subset, say T=(tl,...,rq}, and that T®H=G. By (c) and (b),
we can suppose that Oe7. Let g be any element in G. For each i=l,...,q, there
exists an unique hi in H and O'(Ii)eT such that g+ri=hi+0'(ri). Notice that, if
for some indices i, j we have o(ti)=0'(rj), then hi—ri=hj—tj , or hi+:j=hj+ri,
and the sum T+H is not direct. Then, ¢ must be a permutation of 7, and G(ti)=0
for some L. Then, g+ri=hi , so that g=hi—ri. Since the choice of g was
arbitrary, G=(-T)®H, or, equivalently, -G=G=T®(-H), and T tessellates G by
H =

Notice that in the last equivalence of the above lemma, the finiteness of
T is not necessary in the case of pseudotessellation. When H is a proper
subgroup of G, the family of cosets of H in G can be viewed as a tessellation
of the group. A slight generalization of this important case is typified in

the next definition.

2.3. Definition: We say that T (pseudo)tessellates G by H periodically if

* *
there exists a nontrivial subgroup H'<G and a subset H cG such that H=H'®H .
The subgroup H’ is said to be the period of the tessellation.

According to this definition, if H is a subgroup of G, a transversal T to
¥
H tessellates G periodically with period H (H =(0}), and T can be viewed as
the quotient group G/H.

24. Lemma: Let H' be a non-trivial subgroup of G, H*CG, and H=H’€BH*. Let TcG
such that it has no two elements in the same class modulo H'. Then T
pseudotessellates (tessellates) G by H with period H’ iff [T]
pseudotessellates (tessellates) GIH' by [H*]-
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Proof: There exist €T, and h heH such that [t 40K )=le J+ A, iff
there exist hheH’ such that 1 +h +h'-r +h +h‘ Hence, accordmg to the
hypothesis over T, the sum T+H is dlrect 1ff thc sum [T]+[H ] is direct. Now,
if T®H=G, for every [g] in G/H' we have [g]=[r+h +h’ ]=[t]+[h] for some
th' k', hence, [TI®[H 1=G/H’. Finally, if [T)®[H |=G/H’ and [g]—{r]+[h*] for
each clement g in [g] there exist an unique kA’ in H’ such that g—t+h +h’, so
TOH @H '=TOH=G. =

3. SKEWING SCHEMES

Let A be a set of data and M=(1,..,m} a set of m<|A| memory modules. By
a skewing scheme it is meant any rule to store the data of A into the m memory
units. In our formulation we identify each element of A with an element of a
group G with the same cardinality. A more precise definition follows.

3.1. Definition: A skewing scheme s is any surjective map 5:G —— M.

In this definition it must be understood that any element g of G is
stored by the skewing scheme in the bank s(g). Our goal is to characterize
those schemes that are suitable for some prescribed subsets of data, that is,
skewing schemes that store every element of such subsets into different memory
banks. To this end, the following concepts are needed.

3.2. Definition: A data template T of size g is any subset of G with ¢
elements, g<m.

3.3. Definition: The skewing scheme s is wvalid for a data template
T=[rl,...,zq], iff for any g in G the restricion of s to g+T is injective. In
particular, when this restriction is bijective, ¢=|T|=m, the skewing scheme s
is said to be proper for T.

In other words, s is a valid skewing scheme for T when no two elements in
g+T are stored in the same memory bank for every g in G. The skewing scheme s
is proper for T when it is valid for T and each memory unit contains one
element of g+7. From Definition 3.3, it is clear that s is valid for T iff it
is valid for g+T for any g in G. So, there is no loss of generality in

assuming OeT.
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Any skewing scheme s induces an equivalence relation = in G defined as
g=g" iff s(g)=s(g’). Let Hi=s'1(i), i=1,....m, denote the equivalence classes
of =, that is, the set of data stored in the ith memory module. Notice that a
skewing scheme s is valid for T iff |(g+T)r\Hi|£1 for every g in G and each
i=1,...m. Similarly, s is proper for T iff |(g+T)(‘\Hi|=1 for every g in G and
each i=1,...,m. This fact leads to the following result.

3.4. Theorem: A skewing scheme is valid (proper) for the data template T iff,
for any i in M, T pseudotessellates (tessellates) G by Hi.

Proof: Suppose that s is valid for T. For each i=l,..m and every element
g in G, we have |(g+T)r\Hi|SI. If |(g+T)r‘1Hi|=1, there exist an unique ¢ in T
and an unique 4 in H_ such that g+=h, or g=h—, and if |[(g+1)NH. |=0,
g€ Hi+(—T), so -T pseudotessellates G by Hi for every i. By Lemma 2.21, T
pseudotessellates G by H’i for every i Finally, if s is a proper skewing
scheme for T, for every g in G we have |[(g+T)nH =1 , i=l,.,m. Hence, g=h-t
for some hszi and teT, and (—T)GBHi=G for each i=l,..m. By Lemma 22, T
tessellates G by H, i=1,...m. These arguments can be reversed to obtain the
converse statement. m

This theorem 1is a simpler statement and a generalization of the main
result obtained in [4]. It is clear that, if T tessellates G by H, every
subset T° of T pseudotessellates G by H. So, a proper skewing scheme for T is
valid for any of its subsets. In what follows we will concentrate on proper
schemes, although all statements and proofs can be easily rewritten for valid
schemes and pseudotessellations.

The following result provides necessary and sufficient conditions for the
existence of a proper skewing scheme for a given data template T.

3.5. Theorem: There exists a proper skewing scheme s for a given data template
T={rl,.-.,rq} iff T tessellates G by some subset H.

Proof: The direct sense of the statement is clear from Theorem 3.4, since
T tessellates G by Hl, for example. For the converse, define s as s(g)=i iff
geH+ri, i=1,...,q. Now, Hi:HHe and, by Lemma 2.2, T tessellates G by Hi for
each i. Therefore s is proper for 7. =

As a particular case of Theorem 3.5, since any subgroup of G tessellates
G, there always exists a proper skewing skewing scheme for T when T is a
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subgroup of G or a transversal to some subgroup in G.

In the context of the conflict-free access problem, there are usually
several data templates that should be fetched without conflict. For instance,
rows, columns and diagonals in a matrix. Theorem 3.5 can be easily generalized
for this purpose.

3.6. Theorem: There exists a proper skewing scheme for all the data templates
1'"1,...,'.1"r (all of them with the same size) iff there exists a subset H of G
such that each Ta tessellates G by H, o=1,...,r.

Proof: Suppose that T tessellates G by some subset H for each o=1,...,.

Let T1={rl,...,tq]. As we hc;vc seen in the proof of Theorem 3.5, the skewing
scheme s defined as s(g)=i iff ge H+ri, i=1,..,q, is proper for Tl. Now, by
Lemma 2.2, for every o=2,..r, Ta tessellates G by Hi=H+:i, i=1,....m.
Therefore, b}.’_ Theorem 3.4, s is also proper for T2,...,Tr. Reciprocally, if s

is proper for all Ta, each one tessellates G by H, for example. =

4. PERIODIC SKEWING SCHEMES

From a practical point of view, skewing schemes should be easily
computed. This fact leads to the study of periodic schemes, the definition of

which follows.

4.1. Definition: A skewing scheme s is said to be periodic when there exists a
subgroup H’<G such that [g]=[g’] implies s(g)=s(g’). The subgroup H’ is the
period of s, and the index of H’ in G is called the index of the scheme.

In other words, the skewing scheme s has period H’ iff it is constant
over each of the cosets of H' in G. In [4], Shapiro considered periodic
skewing schemes over z° with period H'=mzxmz. In [2], and independently in
[7], the situation was generalized to periodic skewing schemes defined over z°
with period H’=Mz’ the Ilattice generated by the column vectors of the dxd

integral matrix M.

Notice that, if s is a periodic skewing scheme with period H’ and index
k, there exists an induced map s’ such that the following diagram commutes,



244

G — M

G/H’

where P is the canonical projection of G over G/H'. Therefore, s can be
deduced from s’ (that is defined over only k wvalues). This fact is on the
basis of the use of periodic schemes, and leads to the following main results.
As said before, it is always supposed that no two elements in 7 belong to the
same class modulo H’.

4.2. Theorem: Let s be a periodic skewing scheme with period H'. Then s is
proper for T iff s':GIH' —— M is proper for [T].

Proof: Suppose that s is a proper periodic scheme for T with period H’.
Since s 1is constant ol:'cr the elements ot; each coset modulo H’, Hi=s'1(i) can
be written as Hi=H’€E¢J‘1'i for some subset H of G and each i. By Theorem 34, T
tessellates G by H; , so T tessellates i}‘ periodically with period H’ Hence, by
Lemma 2.4, [T] tessellates G/H’ by [H i] for each i. From Theorem 3.4 again,
since s"l(i)=[H’:], s’ is proper for [T]. This argument can be reversed to
complete the proof. =

In the proof of the above lemma, we have also proved the following

result.

4.3. Corollary: Let s be a periodic skewing scheme with period H'<G. The
following statements are equivalent. '
(i) s is proper for T;
(ii) T tessellates G by H penodlcalfy with period H' for every i=1,....m;
(iii)  [T] tessellates GIH’ by [H J=s (:) for every i=1,.. "

The following theorem, analogous to Theorem 3.6, generalizes the main

result in [4].

4.4. Theorem: There exists a periodic skewing scheme s with period H' proper
for the famdy T ]r"r of data templates {of size m) iff there exists a
subset H such that every 3"‘1 tessellates G by H=H' EBH with period H'.
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Proof: By Corollary 4.3, if s is proper for every Tl,...,Tr, each Ti
tessellates G pcx;iodically by H, for example, with period *H’. Reciprocally,
if there exists H such that every '1"i tessellates G by H=H'@®H with period H’,
then each [Ti] tessellates G/H' by [H*]. By Theorem 3.6, there exists a
skewing scheme s’ (defined over G/H’) proper for each [Ti]- Then the skewing
scheme s defined by s(g)=s’([g]), geG, is proper for every Ti and clearly it
has period H’. =

From a practical point of view, Theorem 4.4 provides necessary and
sufficient  conditions for the existence of a periodic skewing scheme, proper
for a given family of data templates, that can be easily tested with an
appropriate choice of the subgroup H’ —namely, when G/H’ is a small group.
Moreover, it supplies a simple way to define s through s’.

5. CONCLUSIONS

In this paper we have reformulated the theory introduced by Shapiro in
[4] about the problem of conflict-free access in parallel memories using the
concept of algebraic tessellations of a group. In this context, the basic
equivalence between tessellations of the plane and existence of proper skewing
schemes has been generalized in a simple and concise way. On the other hand,
the study of the useful class of periodic schemes has also been set up in this

new framework.

In the literature, the main concern in relation to the conflict-free
access problem in parallel memories has been the matrix storage. When the set
of data A is a P X Xp, d-dimensional array, every element is labelled with a
d-tuple (il,,..,id), OéijSpj-l. In this case, we can use the group Zd, and
periodic ~ skewing  schemes  with  period a  subgroup H’ such  that

zd/H’zzp GB...Gsz. Then the identification between the set of data and this
1 d
last group is quite natural. Moreover, it can be wuseful to wuse periodic

skewing schemes in Zz b EB...EB'ZP. The  study of such schemes can be related to
1 d

the integral matrix M such that H=Mz", 7z%H’<z/H’. In this context, the
structure  of Z°/H” can be derived from the Smith normal form of M, see [3].
Its application to the characterization of the so-called linear schemes (an
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interesting  subclass of periodic schemes in  which /H” is  cyclic) s
considered in [7].

The theory developed in this work, can also be applied to other
geometrical or combinatorial structures in which the set of data to be stored
is embedded. In each case, the problem consists on finding, when possible,
an appropriate identification between the set of data and an Abelian group.
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