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Abstract

4 uselul technique for the study of locsl bifurcations s the center inanifold theory because a dimen-
slonal reduction is schieved. The computation of Teylor series approximations of center manifolds gives
rise to severs] difficulties regarding the operstionsl complexity and the computationsl effort. Previous
works proceed in such & way that the computational sffort is not optimized. In this paper an algerithm for
genter manifolds well suited t¢ symbolic computation is presented. The algorithm is organized according
to ay iterative scheme making good use of the previous steps, thereby minimizing the numnber of opera-
tions, The results of two examples obtained through o REDUCE 3.2 implementsation of the algorithn: are
included,

1. Introduction

The qualitative analysis of dynamical syslems ~in particulsr, the characterization of
local bifurcations— requires suxilinry tools to facilitate ita fulfilment. The center manifold
theory {5 a useful technigue becavse a dimensional redisction of the problem is achieved,
This paper deals with the practical computation of Teylor series approximations of center
manifolds,

Consider the system

;i::fi:z:-f-f(sﬁ,y}

¥ = By 4 g(z,y) (L.1)

where z € IR®, y € IR™, and A, B are constant matrices such that all the eigenvalues of A
have zero real parts while all the sigenvalues of B have negative real parts. The functions
f end g are C7 with f(0,0) = 0, Df{0,0) = 0, ¢(0,0) = 0, D¢{0,0) = 0. The origin
iz obviously a nonhyperbolic equilibrium, In this situation there exisis a local invaviant
manifold: y = h{z) with A(0) = 0, DA(0)} = 0 and h is C7} it is the so-named center
manifold. The flow on this manifold is governed by

&= Az + f(x, M(x)) (1.2}
which congtitutes the so-named reduced {n-dimensional) system. It contains all the neces-

sary informution to determine the asymptotic behavior for the flow near the origin of the
{1 + m)-dimensional syastem (1.1},
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As the center manifold is invariant for the flow, the following equation must be held

M(k(z)) = Dh(z){Az + f(z, k(z))} — Bh(z) — g(x, h{(z)) = 0 (1.3)

The center manifold can be spproximated as a Taylor expansion series at x = 0,

in the following sense (Carr [2]): if a function #{z) with $(0) = 0,D¢(0) = 0, verifies
M(¢(z)) = Oj={") where | > 1, then h(z) = ¢(z) + O(Jz|’) as = — 0.

In practice we consider a polynomial approximation ¢ and its computation proceeds

as follows. Let V{k,n,m) denote the linear space of all m-vector functions v(z) of the

n-vector & which are homogeneous polynomials in = of degree k. Thus ¢ can be expressed

1]
Kmax

#z) = z v{x) where vr(z) € V(k,n,m) (14)
k=2
and Ay,ax is the degree of accuracy. To compute v(z) we agsume that vi{z), 2<: <k,

have been obtained and we set ¢p{z) = Efﬂ vi(z).
If we define
L{h{z)} = Dh{z)Ax — Bh{z)
N(h{z)) = g(z, b(x)) — Dh(z)f (2, &(z))
then (1.3) can be rewritten ns L(h(x)) = N{h(x)).
Note that L is a hinear operator and L{V(k,n,m)) ¢ V(k,n,m) for all k. Se it is
required that

(1.5)

L{px(2)) = N($u{z)) + O(|=**") (1.6}
and a3 L(gw(=)) = T, L(vi(a)) , then
Li(vp(2)) = ng(a) {1.7)

where Ly is L restricted to V(k,n,m) and ng{x) represents the k-degree terms of Taylor
expansion of N{¢x(2)) -and so ng{z) is an element of V(k,n,m). The equation (1.7)
constitutes a linear system to be solved in V(k,n,m) whose dimension is m - (F*371),

In the spplications {1.1} can be a large system (the value of m + n is high); further,
one can consider linear degeneracies of codimension greater than one (high value of n).
In other ceses, as in presence of symmetries, we deal with high.codimension nonlinear
degeneracies, forcing a growth in the order of necessary accuracy (high value of kpnax). In
gum, the linear system (1.7) might be a very large system and so its computer algebra
resolution should be effectively impossible unless a careful insight is provided.

In order to solve (1.7) we need a matrix repregsentation of Ly and n; and this task
involves computational complexities. Notice that a direct substitution of ¢x(z) in the
Taylor expansion of N to obtein ny produces not ooly &-degree terms but lower and
higher ones which are not required and consequently the computational effort would not
be optimized.

Previous known works ([4], [5], [10]) essentielly proceed in this way. Therefore it seems
interesting to design new approeches which overcome the limitations above mentioned,
In this paper an algerithm for center manifolds well suited to symbolic computation is
presented. The algorithm is organized according to an iterative scheme meking good
use of the previous steps, thereby minimizing the number of operations and the memory
requirements.
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2. Description of the algorithm

In the study of the behaviour near a degenerste equilibrium of a dynamicsl system
is of great interest to use certain coordinate changes by means of which it is possible to
“simplify” its differential equation, so obtaining the so-called normal forms. These forms
are simpler than initial system to the effect that nonlinear terms which are not essential
have been removed.

The coordinate transformationa yielding norme] forma can be used for center manifolds
caleulations (see Chow & Hale [3]). Let us make the following near-identity transformation

in (L1}
o ] g
=1 T 2.1
()-G)+ (i) =
where # € R®,§ € R™ and B(0) = 0, DR(0) = 0. The new differential equations are:

B = Az + f(2,5)

: 22
§ = Bj +§(3,4) #2

where

F(&,5) =F(&§ + h(2))
§(z,5) = — {Dh(%)A% — Bh(z)}+ i (2.3)
+ {9(&, 7+ &) — DR(E)F(F, 5+ R(z)}

We choose h(Z) such that § = 0 were an invariant hyperplane for (2.2). Thia condition
is equivalent to §{#,0) = 0 and therefore, we deduce that A(Z) must verify the equation
(1.3) corresponding to center manifolds; from now, we identify & and &. Furthermore the
aystem

& = AZ + f(z,0)
becomes the reduced system. So center manifold computation for {1.1) is equivalent to
calculate the transformation (2.1} leading to (2.2) with the above condition. From a
geometrical point of view the playing role of coordinate transformation is to flat the center
nanifeld.

In Meyer & Schmidt [8] and Chow & Hale [3], en approach to the transformation
theory leading to normal forms -using Lie transforms— is- presented. They arrive to a
recursive algorithm to obtain the transformed equations from originel ones. It follows a
review of idens behind their algorithm and how to use them in our problem.

Suppose the following formal expansions:

f(ziy} = Ef&(xsy:)s fk & V(kin'i— ’3?2,?2)

k>2

glz,y) = ;}9&(3‘; ¥ gx € Vik,n4m,m) (2.4)

hz) = E hi{x)y, he € V(k,n,m)

k>2
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It must be noticed that s can be identified to vy (see 1.4). And we will also suppose

f(i‘lg)= ka(ﬁag)’ fk GV(k’n+m!ﬁ)

k>3

)= ng(ﬁ,ﬂ), gr € V{k,n +m,m)
k>2

@ (2.5)

]
=y

Comparing (2.3) and (1.5) it must be concluded that
G1(7,0) = —Li(he(®)) + ne(), k22 (2.6)

In the above notation our objective is to obtain Ay, fi.
Hax=eX,y=¢Y, e Rin (1.1), then

X = AX 4 Fu(X,Y)e* k!
k>1

Y =BY + ) Ge(X,Y)e* /k!
k1

2.7)

where

Fi(X,Y) = K fer1(X,Y)

Gk(X1Y) = k! gk+l(X: }"), k =1 (28)

and they are homogeneous polynomials in (X,Y) of degree k + 1. Also define
Fy(X,Y) = AX and Go(X,Y) = BY.
Now congider a transformation of variables:

(i’f) - (i’f) * (H(g?)) - (f’+ E,jl Hk(i))\ (2.9)

where the Hj are homogeneous in X of degre k + 1. Then the differential equations for

(X,Y) are

X = AR+ 3 Fu(X, )t /h!
k>

Y =BY + 3 Gu(X, P)e/k!
k>1

(2.10)

where the K, Gy are homogeneous polynomials in (X ,}?) of degree k + 1. Consequently,
the changes of variables © = X, y = €Y} = X, § = eV and (2.9) yield the system (2.2)
provided that _

H(X) = Hhea(X), k21 (2.11)
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and so we obtain

Fo(X,¥) =kl fra (X, 1)

B A {2.12)
GE{X, Y) = kit Tt {X, Y}

In fact, transforming (2.7) by the changes defined by (2.9) is equivalent to trans-
forming (1.1} by the changes of the form (2.1). The reason justifying the above set of
transformations is that the Fy, y can be recursively computed from F;, Gy, Hi, i < k;
and so, the relations (2.8), (2.11) and (2.12) enable us to calculate recursively fi, i .

We introduce now the following notation:

OR(XY) . vy

R(X,Y 00N
(561) * (2)) = 95V ) ) - B gy, v, (213

Notice that this convention is related to the Lie bracket operator when applied to the
two particuler functions above.

if we define the sequence
(g),zgmmgzm

by the recursive relaiions:
R=F &=6. 1=0,1,2,...
i - H i1
) =(a) 50 (62) = (an)
(Gf TG * 2 j it Hyq

2,...
,2,3,... (2.14)
Je=0

then jt can be proved ([3], [8]:

(%) (%),k:gg“, (2.15)

We remark that the computations (2.14) can be accomplished by considering the
so-called Lie triangle:

z§

z Z;

79 gzl 72 1 F}

FIES I where Z; = i)
f
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snd each element can be calculated by using the elements in the column one step to the
left and up. From (2.15) the searched elements are Z}, which are on the dingonal of Lie
triangle. Note that in ench row the terms involved have always the same degree,

Remember that our objective is to obtain hy, Fis & 2 2, and now, since (2.11), (2.12),
it is the same to compute Hy, Fy, k> 1. From (2.12), the condition §(%,0) = 0 becomes
Gi(X,0)=0, k > 1, and then we can write (see 2.6 and 2.11):

Gu(X,0)= GE,0) = {-LonBED p (i) =0, k21 (219)

We recognize in (2.16) the equation satisfying the &-approximation of the center man-
ifold, which is obtained in & recursive way aa the second component of Z} element on the
diagonal of Lie trinngle. Furthermore, the first component of Z¥ is precisely F (see (2.15))
which leads us to the reduced system.

We can rewrite {2.16) as

Ligi(He(X)) = Nl X), k21 (2.17)

where Ngi1(-) = klnegi(), A key observation is that we can split the algorithm in two
branches, i.e. it ia more convenient to compute Ly on one hand and Ny on the other
hand. Thus, our aim will be now to obtain separately the two sides of (2.17).

We now turn to perform some adaptations which permits us to achieve Npy;. For
that we seot

i , = i + 0 ~
Zhei= Wit (L pana i)
and then it can be strictly proved that a recursive relation analogous to {2.14) holds for

the W'. In fact the last term in the summatory leading to Z}_, (ie. with j =k~ 1)
becomes

), k>, 1<i<k (2.18)

& x (ff:(}xa)) - (““Lk+1?-g§(}?}}) (2.19)
and then,
= (8)+ 2 (&) () e

Furthermore, taking into account that

(s&}) * (T&)) B (3)

4 0 , 0
4 =W 2.21
Zix (&m) Wi x (Hﬁ«a) (221)

we ohiain
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and therefore

&g
Wi =Wilin+ Z ( ) ;:iﬂ x (H_S-l-l) y 2515k (2.22)

J=t

for all & = 1. With this notation, we construct a similar triangle without the first coluwmun:

Wy
wi wg
wi wi W

. Note that {2.16) together with {2.18) implies that the first n components of W§ and
Z§ are the same, giving us ?g, and the last m components now provide us Ny, This
strategy slong with the determination of L4 for each k (see (3.1}) allows us the setting
of the linear system (2.17).

In practice, the final chjective is usually the reduced system and it should be noticed
that computing the first n components of the next row in the above triangle up to WJ 410
the (k 4 1}-approximation to the reduced equation is obiained.

3, Programming aspects

The above approach permits us to set up a computer algebra algorithm which proceeds
tteratively up to a settled order. It is possible to implement the algorithm by selecting the
appropriate primitives of a computer algebra systemn merely reproducing the mentioned
steps. However, as noted in the introduction, it is more efficient and less expensive to use
a vectarial representation of the functions involved.

We constrain ourselves to work in V(k + 1,n,m) clioosing en ordered basis. In par-
ticular, we will use a lexicographic ordered basis,

3.1. Representation of Ly,

Let us denote d the number of different (A + 1)-degree monomials in n-vector  and
let Pryr = {0, 2%,...,p%)} be the ordered set of n-indices with module &+ 1. If e}* stands
for the I-th element of & canonical me-dimensional basis, then

) ; :
Bryy = {z" «e?‘:iﬂtéd% P €Prys, 1slsm}

is & basis of V{k + 1,n,m) where o' = z%1x Ps coeakn,
To determine the matrix representation ef Liy1 over By observe that
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Lppa(a? - el) = MA&: — Ba® .e;n .
dx
= (mbii’??;¥ "'"bﬁx?;y . E E(paa;pir,«m) b{fﬂ:r vy _bmlmpl)T (34141)
s=t yaxl

where . ,

Ll ;::P‘xp’ :cp* gy, P2,
Z, 2%, otherwise.
Thus (3.1.1) provides the image of ((I — 1)d + 1)-th basic vecior in Bi4y. To obtain the
Br4y-representation of above m-vector we can organize the mairix representation of Ly
as a matrix of m x m blocks, each block being a d x d matrix. Then we can identify

A—bnl  —bal 0 byl
byl A=bul - byl
L= | o R : (8.19)
bl bl o A=l

wlhiere I iz the identity of order d and .4 is & square matrix independent on ! which arisen
from the double sminmatory in (3.1.1).

Regarding (3.1.2), it is obvious the importance of the atructure of matrix B. In fact,
if B is trisngular we can solve the corresponding system (2.17) by means of a backward-
gubstibution process. Without loss of generality, we can suppose that the matrix B s in
its Jorden form, end then we might adopt specific inethods to solve (2.17).

The matrix A conditiones strongly the structure of A that should make possible in
several typical cases we might adopt apecific resolution methods. In any case .4 is certainly
sparae and a deeper study of its structure can be of interest.

3.2. Computing Npy1

Now we will denote d' the number of dt’fferent (k + 1)-degree monomials in (n +
m)-vector (2,y) and let Qupr = {g',¢%,...,¢% } be the ordered set of (n + m)-indices
with module k + 1 while ef+™ stands for the l-th element of & canonical basis in IR™+™,
To represent sdequately the W’s expressions and (Fi,Gi), we can construct a basis of
Vik+1,n+mn+m)by

L=y et 1<i<d, ¢ e Qi 1SISn4+m)

In this context to perform: (2.20) and (2.22), we will split the corresponding expresions
in terms of basic elements and as the X-operntion is clearly hnear it is interesting to verify
its behaviour over those elements, Thusif 1 € Iy < m, ¢ € Q,, and p € P, one can
abiain
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g
@ et x (g ) =

2,4 )¢ ¥
§n+l,( x) 2 et ™ — py (a,y )i eptl, for15h <n,
o o (3.2.1)
B (wﬁy)g +m o
Gntls Peepipy, forn+l<h <n+m

)

where

¥y

The above expressions enable us to work only with vectorial coefficients instead of
the corresponding polynomial by means of their representation in By, B . For that it
ie useful to have defined some auxiliar procedures to handle the besic slements. One can
argument that with this aproach we waste the possibilities of symbolic computation, but
the experience suggests that in most cases computer algebra cannot be effectively used by
merely transcribing formules. Note that symbolic computation is still needed hecause the
mentioned coefficients can involve additional parameters. If we adopt no such scheme (j.e.
working directly memory polynomials) we can exhaust repidly the memory space {thereby
incrensing the number of “garbage collection” or what should be worse, causing o machine
“hang-up” ). Furthermore the frequent built-in function calls (v.g. derivatives) would be
very time-consuming,

n Gridly = h #n :
(z,9)0 —{ sfaf’ et g T et H gy 2 1

(z,5)%, otherwise.

3.3. Program structure
Thus we can suramaerize the algorithm as follows:
{a) Read data problem A, B, f,¢ (see {1.1)).
{b) Set kmax, the wanted accuracy degree.
{c) Build the basis B}, for 2 < k £ k. Note that By is easily locelized into Bj.
(d) Set up the vectorial coefficients of data functions f,g.
{(e) Loop: forke=1,...,kpex — 1
{e.1} Determine ,A corresponding to k + 1
{€.2) Compute W}_, according to {2.20) and {3.2.1)
(¢.3) Loop: for I = 2,..,,k compute W[_, following (2.22) and (3.2.1)
(e.4) Segregate N4y from W
{e.5) Solve (2.17) using (3.1.2) to obtain Hy.
(f) Write results,

4. Computational resulis
We have obtained & first implementation of the above algorithm on REDUCE 3.2 [7].
Now we present the results achieved for two examples. We want to mention that in both
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cnses the use of the algorithm has been crucial. Previous calculations by hand (we do not
recommend it) or by reproducing (1.3) directly on a computer algebra system required
tedious work, even though a deeper analysis fo remove unnecessary terms had been made.

4.1, Example 1 (n =3,m =1L kg =4)

In [1}, & system dynamics model representing the evolution of three urban gones with
a diffusion mechanisin anlong zones is presented. After a certain change of variables, the
model can be written as

g 2 Vot
Y. 4 22

,_I..
- 6 T V6 V3
N (0 OV () | e
= -3y ¥ a3
: g 0 g Z Qﬁgmg
LA AR
V3 V3 3

2 v’y \/“
+az | S tyz ~EELVE, 2eyz
2 2 V2 (4.1.1)

1, 5zt 2y Bzz° 2, 2 gy . Avz(z® +3%)
= «{» + 2% ~ 2} —
( *'}' 3\}5 2 {y* - %)

Zy($ + 3z3%) 83:3 4oy (@ + ) | 4yr(=® +y7)

+ ag f{43vf' +3V, 7 “}"3\{%’2}
75("2" -i-:!:zyz-i-gz + 5 +2z2(z + 40} - —4z{23;§3$3¥ )}

where &, y, z are related with the urban development of each zone, # stands for the diffusion
coeflicient and ag, a3, a;,a; are parameters defining the nonlinesrity involved. We adopt
u as the bifurcation parameter, and then we must add to (4.1.1) a new equation: # = 0.

It can be easily seen that the critical value of the bifurcetion paremeter is u. = 0 and
that (4.1.1) is in correspondence with (1.1) f weset vy =2, 2=y, w3=wu, 9y =1z
where A is now a tridimensional zero-matrix and B = {aq).

The model is equivariant under a simmetry group {the dihedral group Dj3) and this
fact made possible ~by using a specific basis obtained with the use of complex variables—to
compute by hand the corresponding center manifold. We present here the results obtained
up to fourth order with our elgorithm that are in full concordance with the previous
ealculations [9):



228

£33 2 131 2 oty + 23? 7
h(z,py, ) = — —=—y* — + 6 yty — 2T
(=>4, 1) Y f% 22 Y
ay aga.g +2¢z a2
"'I“ﬁ\/.— 5y 2u + 2 =* — 36 \fga%y u
_ /3%t a1 + ayay v+ 3\';'3%“’2 + 1031 - 36 a¥yd (4.1.2)

2\/’" 2 fag
Lk L B \/—3aea2+iﬁer 3y, \/—aeaa-wxaax.;

\/_a.a 23 2\/—%

4.2. Example 2 {n=4,m =1, knex = §}
Gur second example arise from the study of an electronic cireuit partially analyzed in
[6]. The equations of the model are:

& ~(B+v)fr Blr 0\ [z B0t 1 By —ap
!? = 2] - -1 ¥ i+ o mﬁg(y,; )? {4.2.1)

where x,y,z are the state variables corresponding to voltages snd currents in the civeuit
aud r,az, by are additional perameters while 2, » ere bifurcation parameters. We try to
compute the center manifold corresponding to 8, = . = \/r. In such case, the linear part
of (4.2.1) presents a double-zero eigenvalue with Riesz index 2 and a simple eigenvalue equal
to —+/r. To achieve a formulation according to (1.1}, we must perform some preparations.

Firstly we make a translation over 3, v: 3 = f — 8., ¥ = v — v, so that bifurcation
occurs in a neighbourhood of B = 0, # = 0. Also we must include in (4.2.1) the equations
A =0, i = 0. Purthiermore, we make a change of variables

& &1 -
¥ =Ptz |, $3m§} Ty = ¥
£ n

which leads us to the Jordan form of linesr part in (4.2.1) (P is the matrix of principal
vectors for B = fB,, v = v,) and now we are in correspondence with (1.1).

In a previous work [4], we followed the approach in [5] but we exhausted the computing
facilities at our disposal without success, Only after a strong guidance of the symbolic
computations we achieved our purpose. By using the algorithm we obtain the solution in
& few cpu-minutes of microVAX-IL:
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o - r41 1 r+1 r— 2%
f&(xixz‘.z;&s;xg} mm};«;{zg% + W“;“;a“&?:zzg —_- }1—33:;3:4 - - Tyy - ( ) } :’égﬁl‘i
g 2r¥ By — 8 247 400 +2
+ ) Ta¥alq — e ity
3 2
—agr® + Bagr® + 6(by —aa)r +0(bg +ag) 5 ~r+3 o
+- \/FTS Ty + ﬁ?”& Ey¥y
F2+5r+ﬁ f‘s-{—'ﬁ—?‘g-i-ﬁr-{-& ) 4:}9
Ww;mgm + v’?f‘s o 5 ( 2.2}
_ 3631*3 +2(b3 — 4:35};' +2(b + a3)$1£§
ol a oy, artltels

%. Concluding remarks

A new slgorithm for symbolic computation of center manifolds is introduced, Using
an algorithm to compute normel forms, we derive a recursive algorithm to calculate center
menifolds. Rand and Keitl [10] use this approach but not srriving to an iterative scheme
snd so making not advantages of full capability of normel form transformations.

In our opinion this algorithin is & good exponent of the way computer algebra must
be guided to perform effectively a complex calenlation. We have tested the algorithm with
different exsmples already solved by ofher means (two of them are presented here) and it
has overcame several computationsl difficulties in previous approaches. The program used
~written in REDUCE 3.2- is available at request to authors.

Future research should be directed to some enhacements already mentioned. In partic-
ular, we must investigate what polynomial internal representation is best for our purposes
and the possible ameliorations depending on the actual bifurcations involved. Further
in presence of simmetry a choice of adequate beses should be fruitful, by lowering the
dimension of vectorial representation managed.
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