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D. Cantone, V. Cutello, and A. Ferro

Courant Institute of Mathematical Sciences

Department of Computer Science, NYU
University of Catania - Department of Mathematics

1. INTRODUCTION.

In this paper we present three decidability results for some quantifier-free and quantified

theories of sets involving rank related constructs.

For the unquantified case, we will show that the theories in the language (empty set),

= (equality), £ (membership), U (union), \ (set difference) plus rank comparison and singleton

(MLSSR), or plus the operator pred^ (set-of-predecessors) (see [Vau]) defined as

pred<(x) = {z : rk{z) < rk{z)] (MLSPR<),

have a solvable satisfiability problem.

As for the quantified case, we will prove that the propositional closure of simple prenex for-

mulas in the language 0, =, 6, rk (rank operator) has a solvable finite satisfiability problem.

The notion of trapped places and trapped variables previously introduced in [CFS] is here

generalized in two ways and plays an important role.

Other results concerning rank constructs are contained in [CFMS] where the theory MLS
(cf. [FOS]) extended by the rank operator or by the rank comparison predicate are shown to be

decidable.

[BFOS] solves the ordinary satisfiability problem for some elementary quantified theories.

We use techniques and ideas developed in [CFMS], [CFS] and [BFOS]. For all the definitions

and basic properties in set theory we refer to [Jec] and [Vau].

2. PRELIMINARIES.

In [FOS], the theory MLS, which is the set of formulas built using the boolean connectives

(conjunction, disjunction, implication and negation) from set theoretic atoms of the following types:

X = V U z, X = v\ z

(2.1)
'

X £ y, X = i/j

is shown to be decidable.

Here we summarize briefly the basic concepts and results.



It can be shown that the decision problem for the theory MLS is equivalent to giving an

algorithm for deciding satisfiability of any conjunction P of literals of type:

(= ) X = yU z, X = y\z

(2.2) (e) xey

(^) ^^y

The following definitions play a central role in subsequent sections.

Definition 2.1. A place tt of P is a 0/1-valued function on the set of all variables in P such that

7r(x) = 7r(2/) V 7r(2) if x = y\Jz is in P

and

7r(a-) = 7r(y) A -'7r{z) if x = y\ z is in P.

Definition 2.2. Given a variable x of P, a place tt is said to be a place o/P at x if:

n(y) =1 if X E y is in P

and

7r(2/) = if X ^ y is in P.

In the next sections we will also make use of the following notions.

Definition 2.3. An injective model of di formula 4> is any model of which maps distinct variables

into distinct sets.

Definition 2.4. 4> is injectively satisfiable if it has an injective model.

Clearly the following holds:

Theorem 2.1. <t> is satisfiable if and only if it is injectively satisfiable. •

The theorem in [FOS] can then be rewritten

Theorem 2.2. Let V be a normalized conjunction of literals of type (2.2). Let V = {2/1 , . .
. , j/m}

be the set of variables occurring in P. Then P is injectively satisfiable if and only if there exist

(i) a set U = {ttj, . . . ,7r„} of places ofV;

(ii) a mapping x 1-^ tt^ from V into 11;

(iii) a linear ordering ofJl

such that:

(a) no two distinct variables in P are II- equivalent;

(b) for each x in V and tt m II, ifn{x) = 1 then tt < tt'.
• •



3. MLS EXTENDED BY RANK COMPARISON AND SINGLETON.

Let MLSSR be the unquantified theory which extends MLS by adding to the atoms of (2.1)

the following

X < y which means rank{x) < rank(y)

(3.1) X < y which means rank{x) < rank{y)

X = {?/}, where {•} is the singleton operator.

In [FOS] and [CFMS] the extensions of MLS with each of these constructs were shown to be

decidable. Here we wiU show that both extensions can be handled simultaneously, thus obtaining

the decidability of MLSSR. Arguing as in the preceding section, in order to prove the decidability

of MLSSR it is sufficient to give an algorithm for detecting injective satisfiability of a conjunction

P of literals of type (2.2) and (3.1). We can assume without loss of generality that P contains the

literals:

(3.2)

2/0 = tf

yi = {2/0}

Let n = {tto 7r„ ] be a set of places of P and let ?/o ,••••> J/m be the variables in P. Put

A. = {tTj :Tj(2/.) = 1}

Notice that Aq = 0.

Definition 3.1. Let A,,A_, be such that A, / A_,. We write A, -^ Aj if and only if either

y, = {V]}, or y, < yj, or y, < yj is in P .

Definition 3.2. A set A, is said to be bounded if and only if either A, = or A, -^ 0, where

—^ is the transitive closure of the relation —* defined above.

Definition 3.3. A place tt G 11 is called trapped ii a^nd only if tt 6 A, for some bounded A,. A

variable j/; is trapped if and only if every tt G A, is trapped.

Notice that ttq and yo are both trapped.

Decidability of MLSSR is an immediate consequence of the following theorem.

Theorem 3.1. Let P be a normalized conjunction o/MLSSR. Let V = {t/o, • • • ,2/m} be the set of

variables occurring in P. Then P is injectively satisfiable if and only if there exist:

(i) a setJl = {ttq, . . . ,7rn} of places ofV; {without loss of generality we can suppose that there

exist < k < n and < h < m such that: only ttq . .
.

, ttj. are trapped, ttq is a place at and only

2/0,..., J/h are trapped);

(ii) nonempty pairwise disjoint hereditarily finite sets WJ, < j < k, of rank lower than h + 1

such that the assignment Jl/y, = U,^
( )=i ^ ^^ ^'^ injective model for the subset of? involving

only trapped variables;

(iii) a mapping x h^ tt' from V into IT; [for simplicity we define a function F : {0, . . . . m] —

>

{0, . .
.

, n} such that F{i) = j if ir^' = ttj)



(iv) a sequence of integers: Tq = < rj < . . . < r^ = n-k and a function R : {/:+!,. . . ,n} —<

{0, 1, . . . ,e} such that:

(a) no two variables in P are H-equivalent;

(6) x^"(= T^F(i)) is a place at yi for all variables in P:

(c) if yi and ttj are trapped and Myt G ttJ then tt"' = ttj
;

(d) if j > k (i.e. if-Kj is nontrapped) then rfnji_i < j — k < r^jy,

(e) ifi>h,j> k (i.e. ifyi and tTj are not trapped) and Trj{yi) = 1 then r^j^^j < rji^p^^^^^

For all i G {0, . . . ,77i} such that yi is nontrapped we put

i' = max{R{t) : 7r,(r/,) = 1}.

Then we have

(/) ^/2/ii ^ Vi^ is ^^ P (^^d Vix is nontrapped then i\ < ij;

is) if Vii < 2/«2 is i^ P (^'^(^ Vi, is nontrapped then i\ < i^;

{h) ifvi^ —
{2/12} and yi^ is nontrapped then

(/i2) z/tTj / 7r^'= «/jen 7r_, (?/,,) = 0, j e {0,...,n};

(hs) if F(i) = Fiio) then i = I'o, for all i £ {0,...,m} (i.e., tt^'j 25 a place only at

the variable yt^);

(h,) R{F(i,)) = i; + l.

Proof: (=>) Assume that P has an injective model M. Let (7Q,...,an be the nonempty, dis-

joint parts of the Venn diagram defined by Myo, . . . ,Myr„ in the universe Mj/o U ... U Mym U

{Myo,...,Mym]-

Let
, , / 1 if 0-, C Mx r 11 • r« -I

'^^(^)=lO ifa,nM:r = '
^°^^" je{0,...,n}.

Let n = {ttq, . . . ,7rn} and put tt^- = ttj if and only if Mj/, G CTj, i.e. /"(z) = j if and only if

Myi G CTj

.

Assume that :ro, . . . ,7rj. are the trapped places, yo,.. . ,yh are the trapped variables and that

Xq is the place at 0. Suppose also that ji < j^ implies rank{(Tj^) < rank{aj^) and /i < i^

rank{Myi^) < rank{Myi^).

Lemma 3.1. For < j < k, Oj is hereditarily finite and rank{aj) < /j + 1.

Proof: Since tTj is trapped by Definition 3.3, tt^ G A^ for some bounded A; . Clearly A; ^ 0.

Hence by Definition 3.2, A, —* 0. This means that there is a chain

(3.3) A. = A,, ^ A.... -...--A,„ = Ao =

with t>\ (see Definition 3.1).

Claim. For every 1 < / < < and for every Kj G Ai,

(3.4) Tank(aj) <l-{-\

Proof of the Claiim: We proceed by induction on /. If / = 1 and ttj G A,, we have

A., - and Ai. j^ 0.

4



By Definition 3.1, it follows that the literal y,, = {Vo} is in P. Since A/y,, = {Myo] = {0}, it

follows that ao = {0} so that rank{ao) = 1 < 2.

Assume now that the claim is true for every !</'</ and let tT; 6 Ai, -* Ai,_, . We

distinguish the following subcases.

Case 1). 2/„ = {y.,.,} is in P. Since My,, = {My„_,} then a^ - Myi, . By induction hypothesis:

rank{Myi, J = max rank{a,) < / - 1 + 1 = / .

Hence ran/;((T^) = ranA:(Mj/,,_,) + 1 </+ 1.

Case 2). Either y,, < yi,_, or y„ < ?/„_, is in P. It follows by induction hypothesis

rank{aj) < rank{Myi,) < rank{My,,_^) < I < I + I.

This completes the proof of the claim.

Without loss of generality we can assume that in (3.3) all the A,, are pairwise distinct (since

any cycle can be skipped). Therefore each reduction —> introduces a new trapped variable. This

means that the length t of (3.3) is at most h. This together with (3.4) proves Lemma 3.1. •

We choose ri , . .
.

, r^ in such a way that for k < ji , J2 < n:

r^-i < h - ^, h - k < r^ ^ rank{uj^) = rank{(7j^)

and we put iZ(ji ) = R{J2) — o.-

Trivially (fc), [d) and (e) are true.

Let us prove that also (/) holds. If y,, < t/.j then rank{Myi^) < rank{Myi^) . Now

Myi = U r 1-1 '^i
^^'^ ^^y>2 — U, ( )=i <^]- If <i is the maximum index of elements of A^^

= {tTj : 7r_,(2/,J = 1} then

rank{Myi^) = rank{Oa).

For each j such that 7rj(y,, ) = 1,

rank{aj) < rank{Myi^) < rank{aa)-

It follows that for every ttj 6 A,,, R(j) < R(a) and this completes the proof of (/).

Similarly we can show that (g) holds.

Finally, it is trivial to see that (i) also holds, completing the proof of the theorem in one

direction.

(«i=) Conversely, if there exist Il,W^,... ,Ti^,x t-f tt^, Tq, . . . ,rj such that conditions (b)-{i) hold,

we build a model for P in the following way: let 7 be an integer such that

7> J2 (|7i7|) + n + m.

TT
J
trapped

For k < j < n let

I, = {0,l,...,n,...,7 + i?(j)}\{j}.

5



So

|/_,|
= 7 + R{j) and rank{Ij) = 7 + Rij) + 1,

and for each j we have rank{Ij) = rajih{lfi(^j)).

For k < j < n put

_ f {A/j/, : F(i) = j} if there is y.- = {j/,} in P and F{i) = j
^ ' ^ ~ I {/,} U {My, : F(i) = j] otherwise.

Notice that, by condition (/is), (3.5) is independent of the literal j/i- = {j/i}.

The following lemma can be proved much in the same way of Lemma 3.1.

Lemma 3.2. For < j < k, a^ is hereditarily finite and rank{(Tj) < h + I.

Lemma 3.3. rank(aj) = rankilr^^^^) + 1, k < j < n.

Proof: We proceed by induction on j. If j = A; + 1 then since TTjt+i is nontrapped it cannot be the

case that {ttj} = A; for some literal y, = {2/:'} in P. Hence

(7i + i ={h+,}U{My,:F(i) = k + l}.

Now, if My, G <Tk + i it follows by Lemma 3.2 that rank{My,) <h + l<-y+l — rank{Ii, + i).

Therefore rank{ak+\) — rank(Ik+i) + 1 = '''ank{Ifi(k+i))-

Inductive step: case a) Cj = {A/?/,}. By condition (/i4) rank{aj) = rank{My,) + 1 =

Tank{ot) + 1 for some t such that 7r,(?/, ) = 1 and ?'* = R{t), and

R{j) = Rit) + 1 = r + 1

Since y, is not trapped then ttj is not trapped and by induction hypothesis rank{aj) — rank{at)-\-

Case b). a_, = {/_,} U {My, : F(i) = j). Now if My, € a, and ay C My, then by (e)

• RiJ') < R{F{i)) = R{j)

So rank{My,) < rank(Ir^ ) thus rank(aj) — rank{Ij) + 1 = ranfc(/rpj^i) + 1 completing the

proof of Lemma 3.3. •

Lemma 3.4. If s < k and s < j then a, fl Oj = 0.

Proof: \i 2 <k then a, HCTj = by condition (ii) of Theorem 3.1. \i j > k then Oj — {/j} U {Myi :

F{i) = j]. Ij ^ a, by Lemma 3.2. Similarly if y, is not trapped then A/y, ^ a, by Lemmas 3.2 and

3.3. Moreover if y, is trapped and F{i) = j then by condition (6) Myi ^ a, since s :^ j = F{t).

Consequently, a, H Uj = 0. Lemma 3.4 is thus proved. •

Lemma 3.5. If k < s < jthena, H Oj = 0.

Proof: We proceed by induction on s.

Base Case: If 5 = A: + 1 then (7j. + i
= {/jt + i} U {Myi : F{i) = k + 1} where by condition (e) all

the yi such that F(i) — k + l are trapped. So if <7j = {Af y,-} with F{i') = j then Myi' / Myi since



My,' is not trapped. Moreover Mj/;. 7^ 7^ + 1 because \h+i\ = 7 + R(^^ + 1) whereas \Myi'\ < 7.

Thus if cTj = {My,'} then at+i n cTj = 0. U ctj = {7,}U {A/j/,- : F(i') = j}, obviously Ij / /t+i.

If F(i) = 5 = it + 1 and F(2') = j we know that j/,- must be trapped. If y,' is also trapped then

by condition (ii) of the theorem My, / My,-. On the other hand if j/,- is not trapped then by

Lemmas 3.2 and 3.3 My, / My,'. This shows that a^+i n <t_, = for every j > A: + 1.

Inductive step. Assume that the assertion is true for every k < sq < s and let j > s. Since

a, = {I,}u{My,:Fii) = s}

^^'^^
aj = {I,}U{My,,:F{t') = j}

it is sufficient to show that the right-hand side members in (3.6) are disjoint. Indeed, 7, / 7, and

7, / My, by Lemmas 3.2 and 3.3. Finally if F{i) = s,F{i') = j then clearly if 5 / j. My, # My,..

In fact we have the following two cases.

Case a). If there there exists ttj, such that 7rj(yi) = 1 and 7ri(y,') = then a^ C A7y, whereas

by induction hypothesis and by Lemma 3.4 at, D Myi' = yielding Myi 7^ Myi'.

Case b). If 7rj(y, ) = 1 — 7ri,(y,') = 1 then A7y, C Myi'. On the other hand there must

exist 6' such that 7ri,'(y,') = 1 and ^^(yi) = otherwise i = i' and so F{i) = F(i'). Hence by

induction hypothesis CTj H a^ =0 for every b such that 7ri(y,) = 1 showing Myi ^ My,' since

at' C A7y,' \ My,. This completes the proof of Lemma 3.5.

By Theorem 2.1 we can affirm that M is also an injective model for the literals of type (2.2)

with occurrences of nontrapped variables. Also y, < y,' is in P with yi trapped and yi- nontrapped,

then

My, < My,' because rank(My,) < h and rank{Myi') > 7.

If yi,yi' are both nontrapped then rank{Myi) < rank{Myi') by condition (/). Therefore M is

a model of all the literals of type <. Literals of type y^ < y,- are handled in a similar way by

making use of condition (g). Finally if y, = {yi') is in P and y,' is not trapped then, by (i),

Myi' — <7f (,/) = {Myi}, proving that M is indeed a model of P and in turn concluding the proof

of the theorem. •

4. MLS EXTENDED BY THE SET OF PREDECESSOR OPERATOR.

Consider the theory MLSPR< which extends MLS by adding to the atoms of type (2.1) the

following:

(4.1) X = pred^iy).

where pred^{y) — {z : rank(z) < rank{y)}.

As in [FOB] decidability of MLSPR< is equivalent to checking injective satisfiability of any

conjunction P of literals of type (2.2) and (4.1). The following theorem establishes the decidability

of MLSPR<.



Theorem 4.1. Let P be a conjunction of literals of type (2.2) and (4.1) and let V be the set of

all variables in P. Then P is satisfiable if and only if there exist:

(j) a set n = {tti, . . . ,7rn} of pairwise distinct places. Let V = {2/1 , . .
. , t/m} be the set

of all variables in P.

(ii) a mapping yi >—> tt^' .

For simplicity we introduce the function

F:{l,2,...,m} ^ {1,2, . .
.

, n),

tt"' = TTj if and only if F{i) = j.

(iii) a sequence of integers, = ro < ri < . . . < rjt = n, and a function R :

{l,2,...,n} -» {1,2,...,A;} such that:

(a) rfi(j)_i < j < rn^j), I < j < n;

(6) T^Ffi) = ^^' 2^ o place at y,, 1 < i < m;

(c) ifnjiyi) = 1 </jen rfi(_,) < r/}(j.(,));

(d) i/y,, = pred<(j/,j) is m P then if we put

i' = max{i2(j) : 7rj(t/,j) = 1} for every 1 < t'l < m, then

(di) T^jiyi,) - 1 if and only if j < r;.

(^2) ifys is such that s* < i\ then F{s) < r^ , i.e. i/tt"' = ttj then j < r,- .

Proof: (=^) Assume that P has an injective model M. Let {yi, ... ,ym} be the set of all variables

in P. Let cti, . . . ,a„ be the nonempty, disjoint parts of the Venn diagram defined by Mj/i, . . . ,Mym
in the universe

Myi U...UMy^ U {J\/yi, . . . ,My„}.

Let
f 1 if (Tj C Ma:

^;(2-) - \q ifCT,- nMx = '

n = {tti, . . . ,7r„} and F{i) = j *-* My^ G Uj. Then, by [FOS], IT is a set of places of P satisfying

Mx = U,r (j.)=i
CTj Without loss of generality we can suppose that if ji < j^ then rank{aj^) <

rank{Oj^). So we choose ri,...,rjt in such a way that: for all j\,J2,i'h-\ < Ji,J2 < ^h <->

rank(aj^) = rank(aj^) and in this case we put: R{ji) = RiJ2) — h- Trivially (a), (6) and (c)

are true. To see that {d) also holds assume that y,, = pred^{y,^) is in P. Then, since Afj/,, =

pred^(Myi^) we have

Kj{yi^ ) = 1 «-»
(7_, C My,j <- rank{(Tj) < rank(Myi^) *-^ j < r^-

.

Moreover if y, is such that s' < ij then

rank{My,) < rank{Myi,) — My, G My,, — CTj.,,, C My,^ -^ F(s) < r,-

.

(<=) Conversely, assume that II, F, ri,...,rk and R exist in such a way that (a)-(rf) are

verified. Let Lj = {2?"i?(j), j}. So we have rank{Lj) = 2r^(j) + 1. Following the increasing order of

Indices put

a, = {Lj} U {My, : F(/) = j}, j ji r,, l<h<k
^''^^

a., =pred^i{Lr,})\(l \J a,] U {My, : s' < hU

8



and My, = U,^(y.)=i <t,.

Lemma 4.1. rank{aj) = rank(Ij) +1, I < j < n.

Proof: We proceed by induction on j.

Base case: a^ - {/i} U {My, : F{s) = 1}. By (c) ii F{s) = 1 i.e. n''- - Xj then 7rj(j/,) =

for aU j. Thus

_l'{/i)u{0) if F(s) = 1 for somes

I {/i

}

otherwise

In any case rank(ai) = rank{Ii) + 1.

Induction step: Suppose that tlie assertion is true for any a', with j' < j and let us show

that it holds for a^

.

Case a) j = r^ for some h. So

CT, = pred({I,})\{{\J a,)U {My, : s- < h])

First we show that:

(4.3) /, ^[ja,.
t<j

Indeed let t < j and consider two cases.

Case Ci. R{t) < h. In this case by induction hypothesis

rank{a,) = rank{It) + I — 'Ir^^^^ + 2 < 2Th + 1.

In fact, r^,,, + 1 < r^, so rfl^,_, + 2 < 2rh < 2rh + 1. But rank{Ij) = 2rh + 1, thus rank{a,) <

rank{Ij). So /, ^ ct,.

Case 02. R(t) = h. In this case t is not of type rt,, I < b < h. So

a, = {I,}u{My, .F(s) = t]

Since t < j, /, ^ If Moreover rank{My,} = rank (Uj^,y,)=i (^a)- Furthermore

^aiy,) = 1 ^ a < F(s) = t<j.

By (c) it follows that r^(a) < ^^(o = j- By induction hypothesis

Tank{(Ja) = rank{Ia) + 1 = ^rj^^) + 2 < 2rft + 1-

It follows hence

rank{My,) < 2rh + 1, whereas rank(Ir^) = 2rt, + 1.

Therefore Ij ^ Myt and /_, ^ a,. This completes the proof of (4.3).

9



Let us now prove

(4.4) /; ^ {My, : s* < h).

By the argument of (Case 02) and by induction hypothesis

rank{My,) = rank{ar,. ) < rank{ar,. ) + 1 < rank(ar^) + 1.

Therefore if s* < h, My, / /,. (4.3) and (4.4) show that

So we can conclude

rank{aj) = rank{Ij) + 1

Case b). ; / r^, 1 < /i < k. In this case ctj = {7^} U {My, : F{s) = j]. On the other

hand, if F{s) = j then by (c) T^tiy,) = 1 ^ rj^t) < '•r(j), yielding 2rR(i,) + 2 < 2r;},_,) + 1.

Therefore if F{s) = j and Trh{y,) = 1, rankiirt,) = 2rfnt,) + 2 < rank{Ii) and consequently

rank{My,) < rank(Ij) which shows that even in this case rank(aj) = rank(Ij) + 1. Thus, the

proof of Lemma 4.1 is completed. •

Lemma 4.2. (Tj, n ct^^ =0 whenever ji < J2.

Proof: If jo = Th for some I < h < n, then by (4.2) the lemma holds. So we can assume that

J2 ^ fhi ^ ^ h < k and

(4.5) a,,^{I,,}U{My,:F{s) = h}.

We proceed by induction on ji

.

Base case: Let us show that Oi D (Jj^ = if J2 > 1- By the argument used in the proof of the

preceding lemma
_ f {/i } U {0} if F{s) = 1 for some 1 < 5 < m

^ I {A

}

otherwise .

Now /i ^ Ij^ and /i ^ My, since /i has odd rank, whereas, by the preceding lemma, My,

has even rank. It follows by (4.-5) that /j ^ ctj^. On the other hand if F{s) - 1 then ctjj.

Consequently CTj fl ct^^ = 0.

Inductive step): Assume that the lemma holds for \ < j' < j\ and let us show that aj^ ncr^^ =

whenever ji < j^.

Case 1). ii 7^ ^h, 1 < /i < A;. Then

<^u ={/;,}u{Mt/, :F(6) = ii}

a,, = {/,JU{M2/,, :F(5') = j2}

We have: /,, / /j^; Ij^ilji 7^ My,, My,' for every s,s', since the /,'s have odd ranks whereas

My,'s have even rank for every s. Therefore to show disjointness it is sufficient to prove that

My, / My,, if F{s) = j, and Fis') = j..

10



Indeed by the induction hypothesis and by (c)

ot, ncr,, =

for every ii such that Kt,{y,) = 1, ^2 / ^- It follows that:

My, = \j a,i^ My,, = U a,,.

T,(y,)=l f|'(y.')=l

Since F(5) / F(s'), then 5 ^ s' and y, / y,., implying My, / My,'. This completes the proof of

disjointness in case 1).

Case 2) j'l
= r^ for some \ < h <k.

a„ = a., = pred<({/.J) \ {\J o,^ {My, : s' < h]\

Since rant(/jJ > ranirC /^J then 7,^ ^ ct^, . Moreover My,- e <7_y, implies that either ran/:( A/ y,-) >|

Tank(Ir^ ) and so My,, ^ ct^^ or rank{My,,) < rank{Ir^) and so 5'* < h which by (3.2) implies

My,' ^ CTr^ . Lemma 2 is then completely proved. •

From Theorem 2.1 it follows that M is a model for all the terms of type (2.2) in P. Moreover

assume that y,, = pred^(j/,, ) is in P. Let z £ pred<(M?/,J then rank{z) < rank{Myi^) =

rank{ar.) = rank{Ir .) + 1. It follows that z 6 pred^({/r^. }). By condition [di) we have

""r.. (y.,) = 1 s-iid then
3

pred<({7.. })\( U a,U{My,:s'<i'^])CMy,,.
(<r,.

This implies that if z ^ (U,<r . <^tU {My, : s' < i'^}) then z G Afy^,. On the other hand if

'2

2 G Ut<r . <^i then 5 G a^ for some <' < r^.. It follows that by condition {di )
we get

'3

T('(yiJ = l giving cr,' C My,, and z e Myi^.

Finally, if 2 G {My, : s' < ij} then z = My, for some s such that s* < Zj. By (£^2) we have

F{s)< r.. andby(di)

2 = My, G crf(,) C Myj,.

Thus we have showed that pred<(Mt/,j) C My,,. Conversely, let z £ Myi^. Then 2 G cr, for

some i <t < n and T^tiyi,) = 1- By (di) / < r,-, yielding ran/c(2) < rank{a,) < rank{{Ir^.})

= rank{Myi^). Therefore My,^ C pred< (My,J. This shows that My,^ = pred< (My;J and the

proof of the theorem affirming the decidability of MLSPR< is complete.
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5. FINITE SATISFIABILITY OF FORMULAS INVOLVING RESTRICTED QUAN-
TIFIERS AND THE RANK OPERATOR.

A prenex formula QiQ 2 ... <5„ pis called simp/e if fori = 1,2,.. .,n either every Qi is (3y, G •?,)

or every Qi is (Vy, G 2,), and no Zj is a y, for any i,j = l,2,...,n (cf. [BEOS]). Let T be the

quantifier-free theory in the language 0, =, G, rk (where rk is a function symbol which maps

sets into their rank). The following theorem contains an implicit algorithm for deciding finite

satisfiability of the propositional closure of the class of simple formulas over matrices belonging to

the theory T.

Theorem 5.1. Let F be a conjunction of simple prenex formulas of the theory T, and let V =

{j/i,. .
. , j/m} be the set of free variables occurring in P. Without loss of generality we can assume

that existential quantifiers are not present in P since they can be eliminated by introducing a new

variable for each existentially quantified variable. Let U 6e a set of variables disjoint from V and

such that:

\U\ <m- +6m+ |V„ + i|,

where V^ is the collection of all sets having rank less than m. Put Vq = ^ U {0} and let P' be the

formula resulting from P by replacing each formula (Vx G z)p by the set of formulas

{{xez^p)l:weUUVo}]

until all the univeral quantifiers are eliminated. Then P is injectively satisfiable if and only if there

exist

(1) a function '
: V — f

/^ U Vo (predecessor);

(2) a function "
: U i^Vo -> U \JVo (rank);

(3) a set Q of membership relations such that for all x and y in U U Vq either x £ y or

X ^ y occurs in Q;

(4) a disjunct P" of a disjunctive normal form ofY' such that:

(a) P" A Q does not contain any explicit contradiction of the form A A -'A, where

P" denotes the formula obtained by recursively substituting each term rk(^x) by

X, until all terms rk{x) are eliminated;

(6) Q does not contain any cycle of memberships Xq £ Xi G • . . G Xq;

(c) if X E. y is in Q then "x £.y is in Q;

(d) if X E y is in Q then x = x;

(e) if y is in V then y' £ y is in Q. Moreover if x E y is in Q then either x £ y' or

X = y';

(/) X ^ 9_is in Q for all x in U UVq;

(g) = is inQ;

(h) for all X, y in U l) Vo such that x ^ y , either x £ y or y £ x is in Q.

t By 0^'' '"^"^ we denote the result of simultaneously substituting in (t> all free occurrences of

Xj , . .
.

, x„ with the terms Wi,. . . ,Wn
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Given x in U L) Vq, we say that x is trapped if and only if either x = <lor x = z

for some trapped z, or x is trapped, or x is in V and x' is trapped. Then

(j'l) \{x in U UVq : X is Jiontrapped}\ < m' + 6m;

(in) if we define a partial assignment M' over the trapped variables, by recursively

putting M*0 = and

M'x = {M'y : {y is in U U Vq) A (y is trapped) A (y e x is in Q)}

then

M'x = rk{M' x) for all trapped x\

(is) for every pair x,y in the set S = V U {x : x is trapped} U {x : x is in U U Vq],

if X, y are distinct then there exists z in U U Vq such that exactly one of the two

literals z £ x, z E y is in Q.

Proof: Assume first that P is finitely satisfiable and let M be a model of P. Since Mx is finite

for aU X in F, we can define the map ' as follows: let a; be in V and let s^ be any element of Mx
such that rank(Sj:) + 1 = rank(Mx). Then, if 5^ = My for some y for which M is defined, we put

x' = y otherwise we pick up a new variable Zj. and put x' = z^ and Mz^ — s^. Let IJ\ be the set

of the new variables z introduced in the preceding step. Clearly \lJ\\<m.

Next we partition the variables in Vq U f^i according to the rank of their model. For each

class C of variables in the partition we do the following: let x be any variable in C; then if

Tank{Mx) — My for some y for which M is defined, we put x = y and also ~ = y for all 2 G C,

otherwise we introduce a new variable z,. and put Mzj. = rank{Mx), I7 s z^, J = 2^ for all z in

C. Let U2 be the set of variables introduced during the preceding step. Trivially IC/2I < 2m. We

also put

Qi = {{x e y) : x,y are in Vq U U^ U U2 and Mx € My)U

{{x ^ y) : x,y are in Vq U Ui U Uo and Mx ^ My}.

Using much the same definition given before condition (i) of the theorem (but with respect

to Vo U Ui U U2 in place of Vq U ^ and the set of membership relations Qi in place of Q), we can

define the notion of trapped variables. Let £0 be the maximum length of any chain of membership

relation in Qi of trapped variables. Then

(5.1) io < m.

Indeed, by inducting on the length of the derivations needed to prove the trappedness of

variables, it is easy to see that for each trapped variable x there is a variable z^ in Vo such that x =

17. Therefore, li Xq E x^ £ . . . £ Xr is any chain of memberships of trapped variables, then there

must exist 2/,„, t/i, , . . . ,2/i, in Vq such that rank{Myi^) e rank{Myi^_^,J for all j = 0,1 r - 1.

Hence r < m, which proves (5.1).

Let TRANS be the transitive closure of the set {Mx : i is in Vq U ?7i U U2 and x is trapped).

Notice that if 5 G TRANS then rank{s) € TRANS. Notice also that since 4 < m then TRANS C

V„+i and consequently |TRANS| < |V„+i ]. Now, for each set s 6 TRANS \{Mx : x G VUU1UU2}
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introduce a new variable z, and extend M by putting Mz, = s. Let U3 be the set of all new variables

introduced at this step; clearly If/a] < |V„, + i|. In addition, we extend the map ~ to f/3 by putting

X = z where Mz — rank{Mx).

For each pair of distinct x, y in Vo such that the set (Mx \ My) U (My \ Mx) does not contain

any element of type Mz, we choose an element 5r,y in [Mx \ My) U (My \ Mx), introduce a new

variable z^^y and define Mzx^y = s^y. Also, li rank{Sj:^y) = rank{Mz), for some z, we put "z^ = J

otherwise we introduce a new variable Zr and put J^ = z^ = z^ Let f/4 be the set of the new

variables introduced. Trivially |i74| < 2('"+^) = m^ + m.

Finally, for each variable x in V such that Mx is not an ordinal, we distinguish the following

two cases according to whether Mx contains nonordinal elements or not. In the first case, we

pick a nonordinal element of Mx, say s. We introduce a new variable z^ and put Mz^ = s.

In addition, if rank{M z^) is not already present, we introduce another new variable z^ and put

Mzr = rank{Mzx) and extend ~ by putting 17 = 17 = 2^, otherwise we put Y^ = z, where

rank{Mzr) = Mz.

In the second case, i.e. if Mx is a set of ordinals, Mx cannot be transitive for it would be an

ordinal itself, so we can pick two sets Si and 53 such that S2 G 5i € Mx and Sj ^ Mx. Again, if it

is the case we introduce new variables for Si,S2 a-nd their ranks extending the map "accordingly.

Let U5 be the set of new variables introduced in the above step. Clearly l^/sl < 2m.

Finally we put {/ = U,=i Ui. We plainly have

5

|C/| = lU U,\ < m- + 6m + |V„ + i|.

1=1

Now define

Q = {{x ey):x,y eU Li Vo,Mx e My} U {{x ^ y) : x,y e U Li Vo,Mx ^ My}

Clearly condition (3) is satisfied.

Let P' be the formula resulting from P after eliminating quantifiers from it in the way described

in the statement of the theorem. Obviously AI is also a model of P'. So let P" be a disjunct of a

disjunctive normal form of P' which is satisfied by M.

The way in which the original model M has been extended assures that conditions (a)-(i) are

all satisfied, thus establishing the theorem in one direction.

Conversely, assume that the set U, the functions ',~, the set Q and a conjunction P" can be

found as in (l)-(4) and such that all conditions (a)-(i) are satisfied. We can also assume, without

loss of generality, that there are nontrapped variables. Indeed, if all variables were trapped, then

by (12) M' would be a model of P. So, let w be an G-minimal nontrapped variable such that w = w.

Let G a^i 6 . . . G Xt be a longest chain of trapped variables. Observe that k < m. Indeed, by

reasoning as in the proof of Lemma 1, for each trapped variable x there exists a variable Zj. in Vq

such that T = 27. Thus, in correspondence of i) , . .
.

, x^ we can find j/^, , . .
. , j/,^ in Vq such that

yij= ^1 for all j = l,...,k. But since Xj G a^j+i, then xj e ^T+T? i-^-i fj ^ Vj+T^ J - l,---,^' - 1-

Therefore from (h) we deduce that the variables y, must be pairwise distinct, thus showing that

k < m.
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Let w be an G-minimal nontrapped variable such that w = w and let Zi ,2^21 • • • i-^m + e-t be

newly introduced variables. Add to Q the sets of relations:

m + 6-k

U Ql
«=i

{z, £ Zj : i < j, i,j = l,...,m + 6 - k}

{z, ^ Zj : i> j, i,j ^ l,...,m + 6- k]

Also extend ~ to 2i,Z2,.. .,2m + 6-t by putting J, = Zi for all i = 1, . . . ,m + 6 - k. Let W =

U UVqU {zi,Z2,.. . ,Zm+6-k]- It is immediate to verify that after the insertions of variables z and

the consequent update of ~ and Q, conditions (a)-(i) of the theorem still hold.

Definition 5.1. A variable x in W is said to be an ordinal variable iiT = x.

Given an ordinal variable x, we denote by height{x) the length of a longest chain of memberships

<!s e xi £ X2 e e X, = X.

For each variable z in W, we put

prk{z) = height{J) (pseudorank).

Let 5i,S2<- • i-Sm=+6m be pairwise distinct elements of Vm+7 \ {Vm + i}- For each h > m + 7

and j = 1,. . . ,m- + 6m we put

ih.: ={V,_2}U(V,_2\{5;}),

and call the sets i^j individuals. Clearly, rank(i(, j) = h — 1.

From (a) and (6), we can define the model M by induction on the pseudorank of the variables.

We put M0 = 0. Next, assume that M has been defined for all variables y such that prk{y) < k.

Let Ui^Uo,- ,uc^ be all variables having pseudorank equal to A;. If fc < m + 7, we put

(5.2.1) Muj ^ {My: ye Uj ism Q), ; = 1,2,...,4

On the other hand, if k > m + 7, we can assume without loss of generality that Ui = Ui and that

U2 , . • , Urt are in V, whereas Ur^ + 1
, . .

.
, u^^ are not in V. Then we put

(5.2.2) M-. = {\u''-'V''''"Vinr ^ ^' = '^^--''%
'

\, {My -.y € Uj IS m Q}U {tkj} li i = r^+i,. . . Jk

We will prove that M is an injective model of P by showing that

• M is injective;

• M is a model for P";

• M is a model for P";

• M is a model for P'

.

We have the following elementary lemma.
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Lemma 5.1. For all variables x in W and individuals i,, j, \Mx\ < \ih,j\

Proof. Indeed

\Mx\ < \W\ + 1 < iV,n+i| + m2 + 7m + 7 < |V^ + 2| < |Vh_2| = |u,;|

The preceding lemma implies easily the injectivity of M.

Lemma 5.2. M is injective.

Proof. Assume by contradiction that M is not injective. Let ii be a variable in W of lowest

pseudorank such that Mxi = Mx-, for some Xj distinct from x^. In view of (5.2), we can write

Mil - {My : y e xi is in Q} U h,

Mx2 = {My : 2/ G X2 is in Q} U 7^,,

where /r, (resp. I^:,) is empty or is the singleton of the individual associated with x^ (resp. X2).

Since ij ^ X2, then 7^, n 7^, = 0. Thus by the preceding lemma 7;,, = 7^, = 0. This implies that

Xi and X2 are in V U {x : 2: is trapped} U {x : x is in W}. Therefore, by (13) there exists z in W
such that z e Xi is in Q if and only if 2 G X2 is not in Q. Assume without loss of generality that

2 e xi is in Q and that 2 G Xj is not in Q. Since Mz G Mxi = Mx2, it follows that there exists

a variable z' ^ z such that z' G X2 is in Q and M z' - Mz. But this contradicts the minimality of

the pseudorank of Xi , thus proving the lemma. •

Lemma 5.3. M is a model for P".

Proof: If the literal x e y occurs in P", then by (a) and (3) x G j/ is also in Q. Thus by (5.2)

Mx G My. On the other hand, if x ^ y is in P", by reasoning as in the preceding case it follows

that x ^ y is m Q. Therefore the preceding two lemmas imply that Mx ^ My. This proves that

all conjuncts in P" are correctly modeled by M and in turn that M is a model of P". •

Lemma 5.4. M is a model for P".

Proof: It is enough to prove that for all x in W

Ml — rank{Mx).

Notice that if x is trapped, then A7x = M'x. Thus by (ij) A7x = rank{Mx). So we can assume

that X is nontrapped. Suppose first that x is an ordinal variable. We will show that in this case

(5.3) Mx = height{x).

We proceed by induction on height{x). If height(x) - then x = and by (/) and (5.2)

we have Mx = = height{x). Suppose that (5.3) holds for aU ordinal variables y such that

height{y) < height(x). Observe that by definition Mx = {My : y e x isin Q}. If t/ G x is in

Q, then by (d) y is an ordinal variable. Clearly height(y) < height{x). Thus Mx C height{x).

Conversely, assume that s G height{x). Then there exists an ordinal variable y such that there is a

chain in Q of membership relations leading from y into x and such that height{y) = s. Thus by (h)
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and (6) the literal y e x is in Q and therefore s = height{y) = My € Mx. Hence height(x) C M

x

which together with the previously proved set inclusion yields Mx = height{x). Observe that in

the case in which x is an ordinal variable, (5.3) clearly implies MY = rank{Mx).

Next suppose that x is not an ordinal variable. We distinguish two cases according to whether

X is in V or not. Assume first that x is in V. Let s £ Mx. Thus by (5.2) 5 = My for some

variable y for which y £ x is m Q. From (e) it follows that either y £ x' or y = x'. In any case

My < M'P. Thus, again by (e), s .= My < rank{Mx') < rank{Mx) and in turn Mx C rank{Mx).

Conversely, let s 6 rank{Mx). Then s = rank(My) for some y for which y e x \s m Q. Clearly

prk{y) < prk{x). Thus by induction 5 = My. But y e x; therefore s e Mx which implies

rank{Mx) C MY. In conclusion we proved that Mx = rank(Mx) in the case in which x is in V

too. It only remains to verify that the same equality holds even if x is not in V

.

So, suppose that x is a nontrapped, nonordinal variable which is not in V. By (5.2), Mx =

{My : 2/ € X is in Q}u{ij:}, where rank{i^) = prk{x)-l. If j/ G x is in Q, then by (c) ye x is also in

Q. Thus My G Mx - prk(x) which implies My < prk{x) - 1. Hence, rank{Mx) = prk(x) - Mx.

Summing up, we have proved that MY = rank{Mx) for all x in W . Therefore M is a model

for P". •

Lemma 5.5. M is a model for P'.

Proof: Since P" is a disjunct of P', it follows immediately that M is also a model of P'

.

•

We are now ready to prove that M is a model of P. We do this by showing that every conjunct

C of P is satisfied by M . So let C be any conjunct of P. We can assume that C has the form

(Vxi e 2/1 )...(Vx„ G yn)p,

since all unquantified conjuncts of P are contained in P' . Let Si G Myi, . . . ,s„ G My^. Then

5,- = Mzi for some 2, such that the literal z, G 2/i is in Q, i = 1, . .
.

, n. Thus,

(a^i 6 2/1
-^ (a-2 e 2/2 ^ • • • ^ (a:„ e y„ — p) •))!,'::..:r;

is in P' and therefore it is satisfied by M. In particular, since Mzi G Mt/i, i = 1, ... ,n, it follows

that (pf,'; ;f;)^' = true, i.e p^H^i/^i] bn/>n] _ tp^e. Hence M satisfies C. This proves that M
is a model for P and concludes the proof of the theorem. •

Acknowledgement. This work has been partially supported by Eni and Enidata (Bologna,

Italy) within the AXL project.

17



BIBLIOGRAPHY
[BFOS] BREBAN, M., FERRO, A., OMODEO, E., SCHWARTZ, J. T., Decision procedures

for elementary sublanguages of set theory. II. Formulas involving restricted quanti-

fiers, together with ordinal, integer, map, and domain notions, Comm. Pure Appl.

Math. 34 (1981), pp. 177-195.

[CFMS] CANTONE, D., FERRO, A., MICALE, B., SORACE, G., Decision procedures for

elementary sublanguages of set theory. IV. Formulae involving a rank operator and

formulae involving one occurrence of the set operator T,{x) = {{y]\y 6 x}, Comm.

Pure Appl. Math. 40 (1987), pp. 37-77.

[CFS] CANTONE, D., FERRO, A., SCHWARTZ, J. T., Decision procedures for elementary

sublanguages of set theory. V. Multilevel syllogistic extended by the general union

operator. Journ. Comp. Syst. Sci. 34 (1) (1987), pp. 1-18.

[FOS] FERRO, A., OMODEO, E., SCHWARTZ, J. T., Decision procedures for elementary

sublanguages of set theory. I. Multilevel syllogistic and some extensions, Comm. Pure

Appl. Math. 33 (1980), pp. 599-608.

[Jech] JECH, T., Set Theory, Academic Press, New York (1978).

[Vau] VAUGHT, R. L., Set Theory: an Introduction, Boston: Birkhauser (1985).

18



NYU COMPSCI TR-37 5 c.l

Cantone, D

Decision procedures for

elementary sublanguages of

set theory. XIV.

NYU COMPSCI TR-37 5 c.l

Cantone, D _
Decision procedures for

elementary sublanguages of^

set theory. XIV.

This bTOk may be kept

FOURTEEN DAYS
A 6nc v^-ill be charged for each cl.y the b.ok is k.pt overture.




