Skip to main content

A mathematical modeling of pure, recursive algorithms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 363))

Abstract

This paper follows previous work on the Formal Language of Recursion FLR and develops intensional (algorithmic) semantics for it: the intension of a term t on a structure A is a recursor, a set-theoretic object which represents the (abstract, recursive) algorithm defined by t on A. Main results are the soundness of the reduction calculus of FLR (which models faithful, algorithm-preserving compilation) for this semantics, and the robustness of the class of algorithms assigned to a structure under algorithm adjunction.

During the preparation of this paper the author was partially supported by an NSF Grant.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Backus, Can programming be liberated from the von Neumann style? A functional style and its algebra of programs, Comm. of the ACM, 21 (1978), 613–641.

    Google Scholar 

  2. J. Barwise J., R. O. Gandy and Y. N. Moschovakis, The next admissible set, J. of Symbolic Logic, 36 (1971), 108–120.

    Google Scholar 

  3. S. Feferman, Inductive schemata and recursively continuous functionals, in: Colloquium '76, R. O. Gandy, J. M. E. Hyland eds., Studies in Logic, North Holland, Amsterdam (1977), 373–392.

    Google Scholar 

  4. R. O. Gandy, General recursive functionals of finite type and hierarchies of functionals, Ann. Fac. Sci. Univ. Clermont-Ferrand, 35 (1967), 5–24.

    Google Scholar 

  5. A. S. Kechris and Y. N. Moschovakis, Recursion in higher types, in: Handbook of Logic, J. Barwise ed., Studies in Logic, North Holland, Amsterdam (1976), 681–737.

    Google Scholar 

  6. S. C. Kleene, Introduction to metamathematics, van Nostrand, Princeton (1952).

    Google Scholar 

  7. S. C. Kleene, Recursive functionals and quantifiers of finite types, I, Trans. Amer. Math. Soc., 91 (1959), 1–52.

    Google Scholar 

  8. S. C. Kleene, Recursive functionals and quantifiers of finite types, II, Trans. Amer. Math. Soc., 108 (1963), 106–142.

    Google Scholar 

  9. P. J. Landin, The mechanical evaluation of expressions, Computer J., 6 (1964), 308–320.

    Google Scholar 

  10. J. McCarthy, Recursive functions of symbolic expressions and their computation by machine, Part I, Comm. of the ACM, 3 (1960), 184–195.

    Google Scholar 

  11. Y. N. Moschovakis, Abstract first order computability I, II, Trans. Amer. Math. Soc., 138 (1969), 427–504.

    Google Scholar 

  12. Y. N. Moschovakis, Axioms for computation theories-first draft, in: Logic Colloquium '69, R. Gandy, C. E. M. Yates eds., Studies in Logic, North Holland, Amsterdam (1971), 199–255.

    Google Scholar 

  13. Y. N. Moschovakis, Elementary induction on Abstract Structures, Studies in Logic, North Holland, Amsterdam (1974).

    Google Scholar 

  14. Y. N. Moschovakis, On the basic notions in the theory of induction, in: Logic, Foundations of Mathematics and Computability, R. E. Butts, J. Hintikka eds., Reidel, Dordrecht-Boston (1977), 207–236.

    Google Scholar 

  15. Y. N. Moschovakis, Abstract recursion as a foundation of the theory of algorithms, in: Computation and Proof Theory, M. M. Richter et al eds., Lecture Notes in Mathematics (1104), Springer, Berlin (1984), 289–364.

    Google Scholar 

  16. Y. N. Moschovakis, The formal language of recursion, to appear in J. Symbolic Logic.

    Google Scholar 

  17. D. Normann, Set recursion, in: Generalized Recursion Theory II, J. E. Fenstad, R. O. Gandy, G. E. Sacks eds., Studies in Logic, North Holland, Amsterdam (1978), 303–320.

    Google Scholar 

  18. D. Park, On the semantics of fair parallelism, Proc. Copenhagen Winter School, Lecture Notes in Computer Science (86), Springer (1980), 504–526.

    Google Scholar 

  19. R. Platek, Foundations of recursion theory, Ph. D. Thesis, Stanford Univ., 1966.

    Google Scholar 

  20. D. S. Scott and C. Strachey, Towards a mathematical semantics for computer languages, in: Proc. of the Symposium on Computers and Automata, Polytechnic Institute of Brooklyn Press, New York (1971), 19–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Albert R. Meyer Michael A. Taitslin

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moschovakis, Y.N. (1989). A mathematical modeling of pure, recursive algorithms. In: Meyer, A.R., Taitslin, M.A. (eds) Logic at Botik '89. Logic at Botik 1989. Lecture Notes in Computer Science, vol 363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51237-3_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-51237-3_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51237-0

  • Online ISBN: 978-3-540-46180-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics