
A Specification Language for Static, Dynamic and Deontic Integrity Constraints 

John-Jules Meyer 

Hans Weigand 
Roel Wieringa 

Department of Mathematics and Computer Science 
Vrije Universiteit 

De Boelelaan 1081 

1081 I-IV Amsterdam 

The Netherlands 

uucp addresses: jules@cs.vu.nl, hansw@cs.vu.nl, roelw@cs.vu.nl 

ABSTRACT 

In the proof-theoretic view of knowledge bases (KB's), a KB is a set of facts (atomic 

sentences) and integrity constraints (IC's). An IC is then a sentence which must at 

least be consistent with the other sentences in the KB. This view obliterates the dis- 

tinction between, for example, the constraint that age is a non-negative integer 
(which is mae of the universe of discottrse (UoD) but may be false in a particular 

implementation of a KB), and the constraint that a class must have precisely one 

teacher (which is false of the UoD if a class actually has two teachers). The second 
constraint is called deontic and constrains the UoD; the first constraint is a neces- 

sary truth of the UoD and does not constraint the UoD. Instead, it constrains the 

implementation of the KB. We show that both types of constraints can be specified 
in the single framework provided by a deontic variant of dynamic logic, which has 

the added advantage of being able to specify dynamic constraints as well. We give a 

non-trivial example of a KB specification with static, dynamic and deontic con- 

straints. 

Subject areas: Deductive databases and knowledge-based systems, logical funda- 

mentals of database theory. 



348 

1. Introduction 

Over the past ten years, there has been active research in the specification of static and dynamic 

integrity constraints (IC's), the verification of their internal consistency, and the validation that a par- 
ticular KB satisfies the constraints. (For specification see Dignum et al. [1987], Lipeck [1986], Nico- 

las & Yazdanian [1978], Reiter [1984], Reiter [1988], Semadas [1980], Wieringa & van de Riet 

[1988], for verification see Kung [1985]) and for validation see Ehrich et al. [1984], Fiadeiro & Ser- 

nadas [1988], Lipeck &Saake [1987], Lloyd et aL [1987], Nicolas [1982], Weber et al. [1983].) A 

sharp distinction has been made in this research between static IC's, which limit the set of allowable 

states of a KB, and dynamic IC's, which limit the allowable behavior of the KB. An example of a 

static IC is the statement that the age of a person is always a non-negative number, and an example of 

a dynamic constraint is the statement that a library user must return a book within six weeks after bor- 

rowing it. 

Less clarity exists about the difference between IC's which constrain the allowable states or 

behavior of an implemented KB and IC's which constrain the allowable states or behavior of the 

universe of discourse (UoD). For example, age e N is a truth about the UoD which does not con- 

strain the possible states of the UoD, because it follows from the meaning of the word "age". How- 

ever, it does constrain the allowable states of a KB, because it says that the KB must not have nega- 

tive age fields. It is precisely because we know that a person cannot have a negative age (assuming 
the usual meaning of the word "age") that we know that a KB is in an erroneous state when an age 

field is negative. 

On the other hand, the rule that a library user ought to return a book within six weeks constrains 

the behavior of the UoD, If a KB mathfully represents the fact that a user has not returned a book 
within six weeks, it is not the KB but the user who is in an illegal state, Let us call statements which 

are true of the UoD and do not constrain the allowable states or behavior of the UoD necessary IC's 

and statements which do constrain the allowable states or behavior of the UoD deontic 1C's (Seovxo~ 
(Greek) = "as it should be, duty"). Combining this distinction with that between static and dynamic 

IC's we get four possibilities (table 1). 

analytical 

necessary 
empirical 

deonfic 

static 

age ~ N 

age < 150 

The balance of a 
bank account 
should not be less 

than n. 

dynamic 

An employee must 

be hired before s/he 
can be fired. 

All students follow 

Ct01 before they do 

A105. 

A library user 
should return a bor- 
rowed book after at 
most 6 weeks. 

Table 1 

We have subclassified necessary constraints into analytical and empirical IC's. An analytical IC is a 

statement about the UoD whose truth follows from the meaning of the terms occurring in it. An 

empirical IC is a statement about the UoD whose truth must be empirically verified. All analytical 
IC's are necessarily true, but empirical IC's are not necessarily true. For example, a state of the 



349 

world can be imagined in which people grow over 150 years of age, which contradicts the empirical 

statement that age<150. Empirical IC's in general cannot be used to conslraln the UoD (people are 

allowed to become over 150 years of age) nor to constrain the KB (if an age field has value 151, it 

may well be because there is a person of 151 years of age in the UoD). However, for modeling pur- 

poses we may classify an empirical truth as a necessary truth when during the period of use of the KB 

the statement is true, or can reasonably be expected to be true. So, we do not treat age <150 as a 

necessary truth if we expect to have to represent people of age 150. On the other hand, ff we expect 

no one to become 150 years of age in the near future, we can treat age<150 as a necessary truth. 

Under this provision, ff an age field in a KB has value 151, the KB is in an erroneous state. Note, 

incidentally, that in table 1 "All students follow C101 before they do A105" is deontic ff it is a rule 

which students must obey. In the example we have assumed it is not a nile but an empirical state- 
ment about the behavior of students. 

The distinction between n e c e s s ~  and deontic IC's is important, because the action on discov- 

ering an violation of the IC is different. If a necessary IC is violated, the KB must be corrected, for 

example by the database administrator. If a deontic constraint is violated, a KB must be able to truth- 

fully represent this. The actions to be taken should occur in the UoD and usually concern the correc- 

tion of a violation (e.g. a library user who did not return a book must return it). (If the KB can be 

connected mechanically to objects in a UoD, as in process control systems, the corrective action can 
be enforce mechanically by the KB.) 

Yet, the distinction between necessary and deontic IC's is blurred in much of the literature. 
Examples of deontic IC's treated as necessary truths are 

IC1 "Each car must be registered ha the year of its production or in the following year" (Lipeck 
[t986]), 

IC2 "No company must supply two different departments with item I" (Nicolas [1982]), 

IC3 "Back orders should be processed ~t the prices valid when they were first received" (Sernadas 
[1980]), 

IC4 "Everybody, whose qualification is not less than 50, has to earn more than $20,000 per year" 

(Weber et aL [1983]). 

It is, of course, possible to Ireat these constraints as necessary truths and let the KB constrain the 

UOD in an absolute way. But such a decision should be made consciously by the appropriate people 

in the UoD and in the presence of an alternative. In this paper we present such an alternative in the 

form ofa  deontic variant of dynamic logic (Meyer [1987], [1988], [to appear]). The language we use 

to express deontic IC's is called Loeon and contains symbols for predicates (with an initial uppercase 

letter) and symbols for actions (with an initial lowercase letter). Actions are either permitted or for- 

bidden and may also be obliged, meaning that it is forbidden not to perform the action. The four IC's 

just mentioned can be expressed as deontic constraints in LDeon as 

II21 Vx[Car(x) ~ [produce(x)]O(register(x)(~)], 

"If x is a car, then after it is produced there is an obligation to register it within 2 time 
units." 

I(22 VC,dl ,  d2[Company(c ) ^ Dept(dl) ^ Dept(d2) ^ d l ;~d  2 ^ Perf:supply(c,dl,  I ) 

F (supply (c , d 2,1)], 

"if company c is supplying 1 to department dl ,  it is forbidden for c to supply 1 to a different 

department d 2." 

IC3 V p , q , d , m , c  [Product(p) ^ Number(q) ^ Date(d) ^ Number(m) ^ Customer(c) ^ 



350 

O r d e r ( p , q , d , c )  ^ Pr ice (p ,d ,m)  ~ [O(se l l (p ,q ,c ,m)]  ], 

"if p had price m at date d andthere is an order of q items p by c on date d, then there is an 

obligation to sell q items o fp  to c for price m." 

IC4 Ve, q, s, lEtup(e) ^ Qualification(e, q) ^ q~50 ^ Salary(s) ^ s<_20,O00 

F ( init-salary ( e , s ) ) ^ F (change -salary ( e , s))], 

"if e has a qualification of 50 or more, it is forbidden to initialize or change e ' s  salary to 

less than 20,000." 

The rest of this paper has the following structure. In section 2 we define more precisely what we 

mean by KB's, IC's and IC satisfaction and validation. In section 3 we introduce a simple language 

for static constraints and define a Kripke structure to interpret this language in. In section 4 we 

extend this language with dynamic constructs and in section 5 we show how to formulate deontic 

constraints in this language. In section 5 we sum up the results, compare our approach to deontic 

constraints to other approaches and list some topics for future research. The appendix contains a 

non-trivial example of a KB with dynamic and deontic constraints. 

2. A model-theoretic view of KB's, IC's and IC satisfaction 

We view a KB as an abstract conceptual model of the UoD, to be distinguished from the UoD on the 

one hand and the data model of an implementation on the other. A KB is an abstract representation 

of actual and possible facts in the UoD, of the way these facts may change, and of the way these facts 

ought to change. If one wishes, the representation of actual and possible facts can be regarded as an 

abstract database, the representation of the way these facts may change as an abstract knowledge 

base, and the representation of  the way these facts ought to change as an abstract law for the UoD. A 

data model, on the other hand, is a representation of these facts, knowledge, and norms in a finite 

machine. Since a KB is an abstract conceptual model, it may be inf'mite and in this paper we will 

define it as an infinite set of possible states. A data model, on the other hand, is always finite. 

A KB is not only a model of the UoD, it is also a structure into which sentences in a formal 

language can be interpreted. We view any sentence true of the KB as an IC, and if  we ¢onecfly 

specified the necessary and deontic constraints obtaining in the UoD as a set T of sentences, then the 

KB is a model of T in the standard logical sense. An IC is thus a sentence which is true of the KB. 

A theory of the KB is a specification of knowledge in the form of necessary IC's and of norms in the 

form of deontic IC's, but in ore' view does not contain any specification of actual or possible indivi- 

dual facts. This contrasts with the usual proof-theoretic view of KB's (Reiter [1984]). Our view has 

the advantage of considerably simplifying the treatment of predicate completion, as will be explained 

below. 

Turning now to IC satisfaction, there are at least two views of satisfaction of an integrity con- 

straint by a KB (Reiter [1988]). Continuing to view a KB as a model of a set of sentences, according 

to the consistency view of IC satisfaction, KB satisfies IC iff KB can be extended to a model of IC. 

In the entailment view, on the other hand, KB satisfies IC iff it is a model of  lCt. As Reiter notes, 

the problem with the consistency view is that in this view the constraint 

Vx[Emp(x) ~ 3y[ss#(x, y)]] IC0 

would be satisfied by a KB where the predicate Emp has extension Mary and the extension of ss# is 

1. Viewing K_B as a set of sentences, the consistency view is that KBL)tC is satisfiable and the esmilment view is 
that any model of KB must be a model of IC. 



351 

empty. This model can be extended to a model of IC0 by adding an unnamed object o such that the 

tuple (Mary, o) is in the extension ofss#, However, like Reiter [1984], we do not accept unnamed 

objects. 

The problem with the entailment view is that the empty model is a model of IC0, for trivially all 
employee objects in that model have a social security number. In our model-theoretic view of KB's it 

is natural to define IC satisfaction as satisfaction (in the standard logical sense) of a formula by a 

structure. We eliminate the problem of empty models by requiring the KB to be a non-empty model 

of IC. 

Definition 1. 

For a given logical language L with a class .~ of intended models, let IC be (the conjunction of) a col- 
lection of integrity constraints expressed in L. 

1. The constraint satisfiability problem is the problem of checking whether IC is satisfiable, i.e. 

whether there is a non-empty model dZ e ~g such that At ~ IC. 

2. The constraint validation problem for a KB At e .~ is the problem of checking whether 
At ~ lC. r~ 

Thus the constraint satisfiability problem is a general problem about the internal consistency of a set 

of constraints, whereas the validation problem concerns the issue whether a particular KB is a model 

of IC. The problems exist for analytical, empirical and deontic constraints and for each of these, for 

static as well as dynamic constraints. It depends on the choice of language L which of these types of 
constraints can be expressed. 

The constraint satisfiability problem is usually called the constraint verification problem in the 
literature. We do not use this term because, first, there already is a perfectly acceptable term from 

logic and, second, in our view verification should be construed as the problem of checking whether 

the KB is an accurate abstraction of the UoD, just as in natural science verification is testing a model 
against a UoD. 

Note that with respect to an implementation of a KB in a finite machine, we may want to take 

the consistency view of IC satisfaction and view some IC's as derivation rules for the implementa- 

tion. A derivation rule is used to derive new information from stored information and can therefore 

be used to save on storage (Nicolas & Gallaire [1978], Nicolas & Yazdanian [1978]). Because our 

abstract model is potentially infinite but any implementation is finite, we require of an implementa- 

tion merely that it can be extended to a model of the theory. The implementation must be consistent 
with the IC's but need not (and often cannot) itself be a model of the IC's. 

3. Static necessary constraints 

Static necessary constraints can be expressed in the usual way in any first order language. In order to 

prepare for the dynamic and deontic extensions later on, we now fix a language Lsta: by giving its 

syntax, a semantics, proof rules and axioms. 

Syntax 

We do not actually give the variables of Ls:at but use the letters x, y and z (possibly indexed) as 

metavariables over the variables. Constants are A 101, 1234 .... and the letter c (possibly indexed) is 

used as metavariable over the constants. There are infinitely many variables and constants. There 

are finitely many transparent function symbols (see below), with metavariables f, g .... Supplier, 

Emp .... are predicate symbols and the letters P, Q, R are used as metavariables over the predicate 



352 

symbols. Each predicate symbol has an arity >0. Two special predicates are the unary predicate E 
(existence) and the binary predicate = (equality). There is a class of unary predicates, not including 

E, called type predicates. Type predicates are used to indicate basic kinds of things, like Emp, Book, 

Dept etc. (cf. Reiter [1984], p.195). Formulas are built in the usual way using ^ ,  v ,  -~, ~ ,  V, 3, 

and punctuation symbols (,), [ and ]. We use infix notation for =. Metavariables over formulas are 

and ¥. The following abbreviations are used: 

V~x[~(x)] ¢# Vx[E(x) ~ ,(x)] and 

3~x[,(x)] ~ 3x[E(x) ^ ~(x)]. 

Definition 2. 

A function symbol f of arity n > l  is called transparent if for any constants c 1 . . . . .  Cn, there is a con- 

slant c o such that f ( c  1 . . . . .  cn) = c o. D 

I f f  is transparent then if the arguments of a particular application are known (in the sense of having a 

name), then the result of application is known, In any expression, function applications to constants 

can thus be eliminated. 

Semantics 

Although we have given the syntax of a first-order language without modal operators, we give a 
semantics in terms of a Kripke structure. In order to eliminate problems with uunamable objects in 

models, which may exist in the consistency view of IC satisfaction, we use universes in which all 

objects are named. Such universes can be built from the constants in the language by a Herbrand 

construction. 

Dermition 3. 

For any language L, 

1. the Herbrand universe U L of L is the set of constants of L. (Since we consider only languages 

with transparent function symbols, it is sufficient to consider a Herbrand universe without func- 

tion symbols.) 

2. The Herbrand base ~ L of L is the set of all ground atoms (closed atomic formulas) of L. 

3. A Herbrand model ~ z is a subset,/~ L C 5~ L" Truth in ~ m is defined for ground atoms as 

A 

d£L ~ P(Cl  . . . . .  Cn) ~'> P(Cl  . . . . .  Cn) ~ "{£L and E(c i )  E ,2~ L, i = 1 . . . . .  n. 

For an arbitrary closed ~, truth i n ~ L  is defined in the usual way (e.g. see Lloyd [1984]). ra 

Intuitively, we may think of a Herbrand model as a set of KB-tuples, i.e, a single KB state. If we 

would want to describe the true facts in a Herbrand model by a theory, we would need a completion 
axiom for each predicate, stating that all and only the true facts in the Herbrand model are derivable 
(Reiter [1984]). In our model-theoretic view, the above truth definition plays an analogous role, for it 

says that all and only the tuples in the Herbrand model are true. 

Dermition 4, 

An $5 Herbrand-Kripke structure X L of a language L is a collection of Herbrand models which are 

called the worlds or states ofX c. Truth of a ground atom in ~m is defined as 

A 

X L ~ P ( c  1 . . . . .  cn) ¢ ~ w  ~ P ( c  1 . . . . .  cn) for aU w e X t .  

Truth of a closed formula ¢~ in XL is then defined in the usual way. The collection of all Herbrand- 



353 

Kripke structures of L is called ~.  rn 

We will drop the qualification "$5" from the definition from now on. A Herbrand-Kripke structure 

may be thought of as the collection of all possible KB states. This collection is the state space 

through which the KB moves during its existence. Each constant c denotes an object in a possible 

state of the KB and in each possible world w of the structure the existence predicate E denotes the set 

of existing objects in that world. 

Static KB theories 

Definition 5. 

The theory T of,C4 ~ ~ is the set of sentences which are rose ind4. [] 

Note that a theory of d4 is just a set of IC's of d4. We do not emphatically include statements of 

ground atomic facts in our theory; in our possible worlds model, the axioms of T axe necessary truths 

of  the states of a model of T, whereas ground atomic facts vary per state. 

We now define KB theories as theories which contain 1. the theorems of predicate logic, 2. 

axioms common to all KB domains, 3. axioms specific to a particular KB domain. The axioms com- 

mon to all KB domains are an adaption of Reiter's [1984] well-known closure axioms to Kripke- 

structures and single out, for each L,  a Herbrand-Kripke structure as unique model (up to isomorphy) 

of the theory. 

Definition 6. 

Given a language L and a model ~ E ~ ,  a theory T of d,t is called a static KB theory if 

T = F O L u H B u D ,  where: 

1. FOL is the set of all theorems of fn~t order predicate logic, 

2. l ib  is a set of closure and equality axioms defined below, 

3. D is a set of  sentences called a domain theory. 

D is the set of IC's for a particular KB, while the other axioms are shared by all KB's. liB consists 

of the following sentences. 

1. A domain closure axiom Vx [x=c 1 v x=c 2 v. . . ] ,  where all and only the constants of L appear 

among the c t. 

2. Unique name axioms -1 (c 1=c2) for all constants c I and cj, i ~ j .  

3. Equality axioms 

3.1. Vx[x=x]. 

3.2. Vx,  y[x=y =~ y=x]. 

3.3. V x , y , z [ x = y  ^y=z  ~ x = z ] .  

4. For each predicate P a substitution axiom V~', 37[P(x-')^ x l=y 1 ̂ . . .  ^ xn=y n ~ P(y~], where 

~ = X l  . . . . .  xn a n d ~ = y l  . . . . .  Yn" 

5. For each unary predicate, excluding E and type predicates, the existence axiom for an n-ary 
predicate P is 

VxP(x 1 . . . . .  xn) ~ E(xl)  ^ . . .  ^ E(xn). n 

Comments: 

1. The domain closure axiom forces us ~o choose our objects from the Herbrand universe o f L .  tn 

the tuples of a KB we will thus find only constants from L. The unique name axiom eliminates 



354 

confusion between named objects and the equality axioms define = to be an equivalence rela- 
tion which according to the substitution axiom is a congruence with respect to the pr~icate 

symbols. These axioms tell us that when we find several occurrences of the same constant in 
different tuples, we can expect these constants to denote the same object. 

2. Reiter [1984] also has predicate completion axioms, which for each predicate state that a panic- 
niar set of constants is precisoly the extension of that predicate. Obviously, no such axiom is 

true in our Kripke structure, for in different states of the structure a predicate will have different 

extensions. Our definition of truth in a state of the structure ptays the role of predicate comple- 

tion in that state, for it says for each predicate that there is a set of tuples of constants (i.e, 

nameable objects) which is precisely the extension of that predicate. 

3. The existence axioms are meant exclude models with states tike {E(cl), P(cl ,  c2)}, of which it 

is false to say that c 2 exists hut it is true to say that P(c  l, c2). 

4. Our inclusion of FOL in any KB theory is meant to imply that we use modus ponens as a proof 
rule 

MP 

5. To show that a KB theory is satisfiable, we construct a universe from the constants in the 

language and define extensions of E and other predicates in different worlds of the structure. 

Note that in general, if a theory has a Herbrand model then it has a model, hut oniy for theories 

in clausal form (universally quantified conjunctions of disjunctions, possibly with Skolem func- 
tions) the implication works the other way as well. A theory in clausal form has a Herbrand 

model if it has a model at all. Since we do not bother to put our theories in clausal form, we 

explicitly construct Herbrand models. 

We now distinguish the three different types tof heories described in this paper. 

Definition 7. 

1. IfL is Lstat and 

T = FOL u H B  u D  with 

D = Stat, 

where Stat is a set of sentences in Lstat called static lC's, then T is called a static KB theory 

and D a static domain theory. 

2. If L is LDy n (the language defined in the next section) and 

T = F O L w H B u D L u D  with 

D = StatwDyn, 

where DL is the set of axioms of dynamic logic introduced in the next section and Dyn a non- 

empty set of sentences in LDyn, then T is called a dynamic KB theory and D a dynamic domain 

theory. Dyn is the set of dynamic IC's of D. 

3. I fL is LDy n and 

T = F O L w H B ~ D L u D  with 

D = Stat uDyn uDeon,  

where Deon is a non-empty set of sentences in Loy n using violation predicates (defined in sec- 

tion 3), then T is called a deontic KB theory and D a deontic domain theory. Deon is the set of 

deontic IC' s ofD.  [] 



355 

4. Dynamic necessary constraints 

We choose a variant of dynamic logic (DL, Harel [1984]) to express dynamic constraints because this 

will allow us to express deontic constraints as well. Temporal logic (TL), which has been used for 

dynamic constraint specification as well, has the drawback that it is not compositional. To give a 
semantics to a TL formula in terms of the process which the formula is talking about, one must 
"unroll" the process and quantify over the objects occurring in this unrolled process (e.g., Ehrich et al. 

[1984], Lipeck & Saake [1987]). If ~1 and • 2 are two temporal logic formulas interpreted in two 

processes, then ff two processes are combined, e.g. in a parallel composition, the universe of objects 

into which the combined formula is interpreted differs from the two universes into which each for- 

mula is interpreted separately. This means that we cannot simply compose the semantics of the 

separate formulas but must unroll the combined process anew. Compositionality is a basic desidera- 

ram for any formalism to reason about processes. The axioms of DL and TL are both syntax-directed 

in the sense that they are given by breaking down the syntactic structure of a formula. But because 
the syntactic constructs of DL formulas describe the composition operations of processes (e.g. 

sequential, alternative, parallel composition), DL is compositional with respect to processes. The 

syntactic constructs of TL on the other hand do not correspond to composition operations on 

processes, which leads to the lack of compositionality of TL. 

We start by deriving a language for actions and then use this to extend the language Ls~ z to a 

dynamic language Loy n. 

Actions 

We keep the language of actions as general as possible so as to accommodate diverse applications. 

We therefore assume that a countable set A of unspecified primitive actions, with metavariable a 
(possibly subscripted) ranging over A. We build composite actions out of primitive actions as fol- 

lows. 

Definition 8. 

The language Lac t of actions, with typical elements ct, is given by the following BNF: 

a ::= a Icquot  2 1 c q & a  2 1 ~ l a n y l f a i l  

where a e A. oq~ff¢ 2 is a non-deterministic choice of the actions a 1 and ov2; oq&a, z is the parallel 

execution/performance of the actions oq and ¢z2; ~ is the non-performance of the action or; any 
denotes the unspecified action; fail denotes the failing (empty) action, ra 

Actions may change the world, and if they do, they do it instantaneously, i.e. there are no intermedi- 
ate worlds during the execution of an action. The execution of an action is also called a step. If a 

UoD event spans a number of states, it must be represented by a transaction consisting of two or more 
steps (see below for transactions). In terms of our (Herbrand-)Kripke models, an action maps possi- 

ble worlds to possible worlds, and an execution of an action in a world is the transition from that 

world to another world. The action fail has no successor worlds and the action any executed in a 

world has an arbitrary world as successor. For a formal semantics we refer to Meyer [1988]. Here it 
is sufficient to require that the domain of interpretation ofLAc t is a Boolean algebra with respect to v ,  

&, and_  with fail as zero and any as unit. 

Actions are instantaneous in that they have a duration of one step. Transactions, on the other 

hand, can take more steps because they consist of sequences of actions. 

Definition 9. 

The language LTran s of transactions, with typical elements ~, is given by the BNF: 



356 

: :=  ( t  I 6 1 ; ~ 2  [ c l o c k  

where o~ E LAc t. n 

Intuitively, 131; ~ is the sequential composition of the transactions 61 and ~2 and clock is a transaction 

of the duration of one time unit. We assume that a time unit has been chosen for the UoD, giving an 
intuitive interpretation to one tick of the clock. If the time unit is one day, then clock is the passing 

of one day, if the unit is one minute, then clock is the passing of one minute. During a tick of the 

dock, any is executed one or more times. 

Definition 10. 

The following abbreviations are used: 
/t 

6" = 6;...; 6 (n times) 
A 

~n)  = any"; a (note: c%-=~) 

C~d) = 0 % u  .,. Ua~d) 
A 

~n)  = clockn; ~ 
6 

Thus, in a library administration where return is a the action of returning a book and the time unit is 

one calendar week, return(<_3 ) is the action of returning the book at the latest 3 weeks after now (= 

the moment that return( <_3) is executed), return(3 ) is the action of not returning the book in the third 

week from now, and return(>3) is any transaction not containing the action of returning the book 

within three weeks. 

Dynamic constraints 

We now extend the language for static constraints to a language for dynamic constraints. The 

language we define below is a variant of what is called PDL (Propositional Dynamic Logic) in the 

literature (Harel [1984]). 

Definition 11. 

The language Loy n of dynamic constraints, with typical elements • and u/, is given by the BNF: 

• ::= ~ I O1vO 2 I ~ O  I • 1/, • 2 I • 1 ~ • 2 I (%) 1 ¢~ • 2 I [~]O I DONE:or 

where ~ is a formula of Lstat. [] 

A dynamic constraint ( a formula in LDyn) is thus a smile constraint, or a logical combination of 

dynamic constraints, or has the form [1~]O orDONE:et. [~]O is true in all those states where execu- 

tion of transacilon 6 necessarily leads to a state where dynamic constraint • holds. It is thus the 

weakest precondition of 13 with respect to the postcondition O. DONE :ct expresses that the action o~ 

has been performed. It is true in all worlds where ct has just been performed. 

We use 

<1~)o 

as an abbreviation of ~[1~]~O, read intuitively as the statement that the execution of tramaction t3 
may lead to a state where • holds. Again, for a formal semantics we refer to Meyer [1988], [to 
appear]. Here, we limit ourselves to the following. Remember that ,~ is the set of all $5 Herbrand- 

Kripke structures of L. 



357 

Definition 12. 

Let wed4 e ~uyn" Then w satisfies [~]~, written w ~ [~](I), iff 

w" ~ q~ for every w ' e K  L such that the execution of ~ in w yields w'. rn 

In order to reason about dynamic constraints, we have to extend our domain theory. 

Definition 13. 

Given a model ~ e ~Dyn, a theory T of J4 is called a dynamic KB theory i f T  =FOLk)HBk)DLwD, 

where FOL and HB are as in definition 6, D is a dynamic domain theory and DL is the set 

DL1 

DL2 

DL3 

DIA 

DL5 

DL6 

DL7 

DL8 

DL9 

DL10 

DL11 

DL12 

DL13 

DL14 

DL15 

[0~](cI)1==~¢I)2) ~ ([O~]¢~l=~[a]q~2) 

[a lu~lO ¢* [a11~^[o~]¢ 

[oh& ohIO ~ [txII(DONE : o h ~ )  

[ (a ,~oh)]¢ ~ [~l& E21¢ 

[ (a~& (h)]O <=} [~uChl¢ )  

[fail]~ ¢~ true 

[~;132]¢ ~ [1~11([1~2]¢) 
DONE :(oqk;tx2) ¢=} DONE 3xl vDONE : ~  

DONE :(a 1 & {x 2) ¢:* DONE :txlADONE :oh 

DONE :Ct ¢~ --~DONE :t~ 

DONE :any ¢:~ true 

DONE :fail ¢~ false 

[ tx]DONE :¢¢ 

[Oq]~ =~ [O~](DONE : a l ~ )  

t = n ~ [elock]t = n+1 

Derivation rules are 

MP ~ ,  ~ W  ~ 

N ~ I- [ a ] ~  

[3 

Remarks: 

1. The axioms are schemata, to be instantiated for each metavariable a,  [3 . . . . .  ~ ,  

2. DL2 says that a nondeterministic choice between a I and c h is guaranteed to lead to • iff both 

a 1 and oh necessarily lead to ~ .  

3. DL3 holds because actions are instantaneous. If actions would have a duration of more than one 

step, then DL3 would hold only ff ~1 and ~ have the same duration. 

4. DL6 is valid because • is vacuously true after the performance of fail, because fail has no suc- 

cessor states. 

5. DL14 is valid because if cx 1 necessarily leads to ~ ,  then if any action ~ has been performed, 

holds if o h has been performed as well, 

6. In DL15 t is a distinguished variable which is increased by 1 every time the clock ticks. We 

intuitively interpret this as real time. Real time is included in order to express obligations in 



358 

deontic constraints (this is explained in the next section). 

7. Rule N should be distinguished from the formula • ~ [~]~, which is not valid in general. 
This formula expresses that • is an invariant under the execution of ct, while N merely 
expresses that a valid formula • holds everywhere, so also after the performance ofcc 

8. For this system to be sound, we must require that atomic actions axe unique in the sense that 
every atomic action leaves a unique marking in the world immediately resulting from its execu- 

tion, such that it can be uniquely determined whether the action has just been performed. We 

do this by means of the predicate DONE :co, which is true in worlds which result from the exe- 

cution of ~ and false in other worlds. (So in practice, several occurrences of the "same" atomic 

action must be labeled in order to distinguish them.) 

We left open the structure of the set A of primitive actions. Usually primitive actions will be 
parameterized, so that executions with different actual parameters will have different effects on the 
state of the world. For example, let Salary(e, n) express that employee e has salary n, then 

SO Vee, s, n[Salary(e, s) ~ [change-salary(e, n )]Salary(e, s+n)]. 

says that for each value ofp  and n, change-salary (p, n) is a primitive action which has the effect of 
adding n to the salary ofp.  Note that the effect of the action is only defined for existing objects. We 

can add typing information to the axiom as a precondition, 

S1 VZe, s, n[Emp(e) ^ Salary(n) ^ Salary(e, s) ~ [change-salary(e, n)]Salary(e, s+n)]. 

Alternatively, we can add the axiom 

Ve e, s, n[Salary(e, s) ~ Emp(e ) ^ (Salary(s)] 

and omit typing information from the dynamic axiom. 

5. Deontic constraints 

We need no extensions to LDy n tO be able to express deontic constraints. The deontic concepts of 

obligation and permission can be reduced to the concept of prohibition, which in turn can be reduced 

to the concept of an action leading to a violation of a rule. Instead of expressing the rules explicitly, 

we thus state when they are violated. We do this by defining, for each action ct, one or more viola- 

tion states V~: ct, one for each of the reasons why the execution of ct is forbidden. For each violation 

state, we usually define a corrective action which allows one to get out of that state. The necessary 

reductions are then effected by the following definition. 

Definition 14. 

The following abbreviations are used. 
A 

F(ct) ¢ ,  [~]V~:t~ for an i, 

P(¢0 ~ -4~(oq and 
A 

O(o0 <:~ F(~--'). 

F(e0 is pronounced "co is forbidden", P (~) is pronounced "~ is permitted", and O (¢0 is pronounced 

"~ is obligatory." m 

We thus consider an event forbidden if it necessarily leads to a violation state of that action. The 

reduction of prohibitions to actions has been first proposed by Anderson [1967] and has been first for- 
malized in the context of dynamic logic by Meyer [1988]. The use of dynamic logic enables the 
separation of actions from states, which allows one to solve numerous paradoxes of deontic logic 



359 

(Meyer [19871, [1988]). 

An action is pemfitted iff it is not forbidden, which is equivalent to saying P (a )  ¢:~ <~>-~ V:o~. 

An action is permitted if there is at least one instance of doing it which leads not to a state of viola- 

tion. Finally, an action is obligatory iff not doing it is prohibited, i.e. iff [~--']V:~. 

Note that there is a practical difference between a prohibition and an obligation. The violation 

of a prohibition can be observed immediately: if one is forbidden to steal a book from a library, the 

violation of this prohibition can be established as soon as theft is committed. On the other hand, 

when one is obliged to return a book borrowed from a library, the violation of such an obligation can- 

not be determined when no term is set in which the performance of the obliged action, cq. the return 

of the book, has to occur. Therefore, in our examples, we shall only use obligations which must be 

fulfilled within a specific interval of time after the obligation is incurred. 

Def'mltion 15. 

Given a model d~ ~ :goyn and a theory T = F O L ~ H B u D L u D ,  where FOL, l iB,  DL and D are as 

in definition 13, then T is called a deontic KB theory D =Sta t~DynuDeon,  with Stat and Dyn 

(possibly empty) defined as in definitions 6 and 13 and Deon a non-empty set of dynamic formulas 

containing violation predicates V i ;(x. ra 

An example of a deontic axiom is 

$2 V~e, s, n[Salary(e, s) ^ n >s ~ [change-salary(e, n)]Vl:salary-change(e, n)]. 

This axioms says that it is forbidden to double a salary in one action. If such an action is attempted, a 

violation state is entered. Note that the action parameters are also parameters of the violation state, 
so that sufficient information is available for a corrective action. Assuming that $1 is also present, 
execution of salary-change (el, I000) in state Salary(el, 300) leads to a state 

Salary(e 1, 1300) ^ Vl:salary-change(e 1, 1000). A possible corrective action to this state could be 

$3 Salary(e, s) ^ Vl:salary-change(e, n) ~ [salary-change(s, -n)]-~ Vl:salary-change(e, n). 

S1 guarantees that after this corrective action the salary has been changed appropriately. 

Using violation states, one has the choice of modeling rules for the UoD as necessary truths or 

as deontic constraints. For example, if a bank account may not be negative, we can represent this in 

the domain theory in one of the following two ways: 

Balance (a, n) ^ n +m <0 ~ [update -balance (a, m)]Balance (a, n ) 

Balance (a, n) ^ n +m _>O ~ [update-balance (a, re)]Balance ( a , n + m ) 

Balance (a, n ) ~ [update -balance (a, m )]Balance (a, n +m ) 

Balance ( a, n) ^ -~ V :update-balance (a, m 1) ̂  n +m2<0 ~ [update-balance ( a, m2) ] 

V :update-balance (a, m 2) 

A2.3 Balance(a, n) ^ V:update-balance(a, ml) ^ n+m2<0 ~ [update-balance(a, m2)] 

V :update -balance (a, m 1 +m 2) 

A2.4 Balance (a, n) ^ V:update-balance (a, m l) ^ n+m2_>O ~ [update-balance (a, m2)] 

-~ V :update-balance (a, m 1) 

A1 never allows a balance to drop below zero, A2 allows it to drop below zero (A2.1) but signals that 

this is a violation state when it occurs (A2.2), remembers the extent of the violation (A2.3) and pro- 

vides a way of correcting it (A2.4). 

In practice, banks combine A1 and A2 by allowing an account to be negative but not less than a 

AI,1 

AI.2 

o r  

A2.1 

A2.2 



360 

certain amount. In that case A2.2 and A2.3 are modified by adding the test 
Permissible-overdraw (a, o) ^ o <n +m 1 as a precondition and adding A3: 

A3 Balance (a, n) ^ Permissible-overdraw (a, o) ^ n +m <o ~ [update-balance (a, m)] 

Balance (a, n) ^ 0 (refuse (a, m )). 

refuse (a, m) is the explicit action of refusing an account update. 

We end by making some philosophic observations about the system Deon. First, note that there 

are three important reductions in this system, which need not be made at the same time. The first 

reduction is that of deontic logic to dynamic logic. Given this reduction, we can distinguish between 

actions and states and make the second reduction to reduce prohibitions, which are properties of 

actions, to violations, which are properties of states, tt is this second choice which makes oar system 

a reduction#tic value system (cf. Huisjes [1981]). Another choice would have been possible, in 

which an action is not forbidden because it leads to punishement, but because it is intrinsically bad. 

For example, it may be forbidden because the scripture says it is one of a set of prohibited actions, or 

because it contradicts the golden rule "do as thou would be done to," or because it is not performed in 

the proper way. In all these cases, prohibition is a property of the action itself and not of the state 

resulting from the action. 

Independently of the first two choices, we can thirdly choose to reduce nonpermissions to prohi- 
bitions. This choice results in a closed value system, by which is meant that every action is deonti- 
cally determined: for each a,  

FPc~vFo~. 

This is not a default assumption about which of the two is true, P{z or F~ .  Addition of such an 

assumption would lead to nonmonotonic phenomena (e.g. Etherington [1988]). 

6. Conclusion 

In the introduction we distinguished necessary from deontic constraints and noted that empirical con- 

straints, if formulated weak enough, can for the purpose of KB design be treated as necessary con- 
straints. Violation of necessary constraints is impossible in the UoD and, when they occur in the 

implementation, are implementation errors. Deontic constraints must be treated differently from 

necessary constraints. Violation of a deontic constraint does occur in the UoD and must be 

represented by the KB. In sections 2-5, a particular formalism for describing necessary as well as 

deontic truths about the UoD was presented. In general, the deontic variant of dynamic logic has the 

merits that it avoids certain paradoxes in deontic logic. For the specification of KB's it has the addi- 
tional advantage of allowing to specify static, dynamic and deontic constraints in a single coherent 

framework. 

The implementation of integrity constraints is not covered in this paper. An attempt to imple- 
ment a conceptual language that includes deontic operators is reported in (Dignum et al. [1987]). In 
this implementation, a distinction is made between deontic constraints whose satisfaction can be 

enforced by the system and those which cannot be so enforced. For example, a bank account system 
can enforce the constraint that a client is not allowed to withdraw any money from an account when 
the balance has fallen below a certain negative amount, but it cannot enforce the obligation that the 

customer must pay in sufficient money for the balance to be positive again. 

The distinction between necessary and deontic constraints, and within deontic constraints 

between enforcable and non-enforcable constraints, is also made in the ISO report on conceptuai 

schema terminology (Griethuysen [t982], section 2.5) However, the ISO report does not use the 



361 

results of contemporary analytic philosophy to explicate these concepts clearly and offers no logic to 

express the different types of constraint, as we do (cf. Hospers [1953],/Closer [1987], Munitz [1981]). 

Deontic logic is used by Lee [t988] to specify obligations, prohibitions and permissions in an 

office environment. Lee also stresses the pefformative aspects of office information systems. How- 
ever, he employs a deontic logic based on Anderson's reduction to alethic modal logic (Anderson 
[1967], Hilpinen [1988a, b]), which has been shown by McArthur [1981] to contain a number of para- 
doxes. The deontic variant of dynamfic logic which we use does not suffer from these paradoxes 

(Meyer [1987], [1988]) and has the added advantage that it can be embedded smoothly in our 
language for dynamic constraints. 

One topic left open in our research is the inheritance of conslraints in taxonomic hierarchies. 

Are all prohibitions, permissions and obligations of members of a superclass also prohibitions, per- 

missions and obligations of members of a subclass? Does a manager have more or less obligations 
than an employee? 

A second cluster of open problems circles around constraint satisfiability. The satisfiability 
problem for IC's is the question 

1. Is there a non-empty set of closed Herbrand models such that all axioms of the domain theory 
are satisfied in that set? 

We have not shown how this question can be answered in general. Other, more interesting questions 
for KB modeling are 

2. Is there a model such that in each world there is at least one executable action, i.e. an action 
leading to a world? If not, there are "black holes," worlds from which there is no escape. 

3. For each action, is there a world in which it can be executed? If not, the action is redundant. 

4. For each predicate, is there a world in which it has a non-empty extension? If not, the predicate 
is redundant. 

5. For any world in which at least one violation predicate has a non-empty extension, is there an 
action applicable which will diminish this extension? If not, some violations, once committed, 
cannot be undone. 

We plan to tackle these questions in the future. 

References 

Anderson A.R. [1967] 

"Some Nasty Problems in the Formalization of Ethics," Nods, Vol. 1 (1967), 345-360. 

Dignum F., T. Kemme, W. Kreuzen, H. Weigand, 1LP. van de Riet [1987] 

"Constraint Modelling Using an Conceptual Prototyping Language," Data & Knowledge 
Engineering, Vol. 2, 213-254. 

Ehrich H,-D., U,W. Lipeck, M. GogoUa [1984] 

"Specification, Semantics, and Enforcement of Dynamic Database Constraints," Proc. of the 
Tenth International Conference on Very Large Databases, Singapore, August 1984, 301-308. 

Etherington D.W. [1988] 

Reasoning with Incomplete Information, Pitman. 

Fiadeiro J, A. Semadas [1988] 

"Specification and Verification of Database Dynamics," Acta lnformatica 25,625-661. 



362 

Griethuysen J.J. van (ed.) [1982] 

Concepts and Terminology for the Conceptual Schema and the Information Base, ISO 
TC97/SCS/WG3 Report. 

Harel D. [1984] 

"Dynamic Logic," in: D.M. Gabbay, F. Guenther (eds.), Handbook of Philosophical Logic, VoI. 
2, Reidel. 

Hilpinen R. (ed.) [1988a] 

Deontic Logic: Introductory and Systematic Readings, ReideL 

Hilpinen R. (ed.) [1988b] 

New Studies in Deontic Logic, Reidel. 

Hospers L [1953] 

An Introduction to Philosophical Analysis, Prentice-Hall. 

Hughes G.E., MJ. Cresswell [1968] 

An Introduction to Modal Logic, Methuen. 

Huisjes C.H. [1981] 

Norms and Logic, Ph.D. Thesis, Rijksuniversiteit te Groningen. 

Kung C. [1985] 

"A Tableaux Approach for Consistency Checking," in: A. Sernadas, L Bubenko, A. Oliv6 
(eds.), Information Systems: Theoretical and Formal Aspects, North HoUand, 191-207. 

Lee R.M. [1988] 

"Bureaucracies as Deontic Systems," Trans. on Office Information Systems, Vol. 6, no. 2, 87- 

108. 

Lipeck U.W. [1986] 

"Stepwise Specification of Dynamic Database Behaviour," Proc. SIGMOD, 387-397. 

Lipeck U.W., G. Saake [1987] 

"Monitoring Dynamic Integrity Constraints Based on Temporal Logic," Information Systems, 
Vol. 12, no. 3, 225-269. 

Lloyd J.W. [1984] 

Foundations of Logic Programming, Springer. 

Lloyd J.W, E.A. Sonenberg, R.W. Topor [1987] 

"Integrity Constraint Checking in Stratified Databases," Journal of Logic Programming, 4, 
331-343. 

McArthur R.P. [1981] 

"Anderson's Deontic Logic and Relevant Implication," Notre Dame Journal of Symbolic Logic, 

Vol. 22, 145-154. 

Meyer L-J Ch. [1987] 

"A Simple Solution to the "Deepest" Paradox in Deontic Logic," Logique et Analyse, Vol. 30, 

81-90. 

Meyer J.-J. Ch. [1988] 

"A Different Approach to Deontic Logic: Deontic Logic Viewed As a Variant of Dynamic 



363 

Logic," Notre Dame Journal of Formal Logic 19(1), 109-136. 

Meyer J.-J. Ch. [to appear] 
"Using Programming Concepts ha Deontic Reasoning," to appear in: R. Bartsch, J. van 
Benthem, P. van Emde Boas (eds.), Semantics and Contextual Expression, FORIS Publications, 
Dordrecht-Riverton. 

Moser P.K. (ed.) [1987] 

A Priori Knowledge, Oxford University Press. 

Mtmitz M.K. [1981] 

Contemporary Analytic Philosophy, MacMillan. 

Nicolas J.M. [1982] 

"Logic for Improving Integrity Checking in Relational databases," Acta lnformatica 18, 227- 
253. 

Nicolas LM., H. Gallaire [1978] 

"Data Base: Theory vs. Interpretation," in Gallaire & Minker [t978], 33-54. 

Nicolas J.M., K. Yazdanian [1978] 

"Integrity Checking in Deductive Databases," in Gallaire & Minker [1978], 325-344. 

Reiter R. [1984] 

"Towards a Logical l{econstraction of Relational Database Theory," in: M. Brodie, J. Mylo- 
poulos, J. Sehmidt (eds.), On Conceptual Modelling, Springer,191-233. 

Reiter R. [1988] 

"On Integrity Constraints," in M.Y. Vardi (ed.), Proc. of the Second Conf. on Theoretical 
Aspects of Reasoning about Knowledge, Morgan Kaufmann, 97-111. 

Semadas A. [1980] 

"Temporal Aspects of Logical Procedure Definition," Information Systems, 5, 167-187. 

Weber W., W. Stucky, J. Karszt [1983] 

"Integrity Checking in Data Base Systems," Information Systems, 8, 125-136. 

Wieringa R.J., R.P. van de Riet [1988] 

"Algebraic Specification of Object Dynamics in Knowledge Base Domains," in Proc. of the 
IFIP TC2/WG 2.6 and TCS/WG8.] Working Conf. on the Role of Artificial Intelligence in Data- 
bases andlnformation Systems, Canton, China, 4-8 july, 1988. 

Wright, G.H. yon [1963] 

Norms andAction, Routtedge and Kegan Paul. 

Appendix: A Library KB 

The UoD of this example is a library which contains 2000 works and has 750 members. A member 
can borrow or return one or several works by applying to one of the library wickets. S/he also has the 
possibility to reserve a work if none of its copies are available. In that case, his or her reservation is 

placed at the end of a queue of reservations made for the same work. As soon as a copy is returned, 
the first member in the queue is informed that the work is available. The book is then kept during one 
week for this member, after which it is free again to be borrowed by the next member in the queue or, 
if the queue is empty, by any member of the library. 



364 

A library member cannot have more than 3 books at a time and each loan has to be returned at 

the end of 3 weeks. If the book is not returned, the library will send a reminder. As long as the book 

is not returned, the member cannot borrow other works. The charge for returning a book too late is 

$2. 

Signature 

Constants: [Self, $2, B I, B 2 . . . . .  B2o00, P1, P2 . . . . .  P750, 0, 1, 2, 3 . . . .  } 

Type predicates (for each type predicate a typical variable is given): 

Natural (n), n is a natural number 

Person (p ), p is a person 

Library (1), 1 is a library 

Book(b), b is a book 

Money(m),m is an amount of money 

Other predicates: 

Available (b), b is not borrowed and not reserved 

Present(b),b is not borrowed 

Member (p), p is a member of the library 

PERF :a  for each of the actions below except reserve : A has been performed in the past 

PERF :reserve (p, b, n), p is n th in the list of reservers of b 

V:c~ for each of the actions below below) 

Functions: 

max(x, y), a function which gives the maximum of two numbers, (Note that this is a transparent 

function.) 

Actions: (We use the convention that the agent of an action, if there is any, is the first argument of 

the action and is separated from the other arguments by a semicolon). 

borrow(p ;b ), p borrows b 

return (p ;b ), p returns b 

reserve (p ;b ), p reserves b 

notify ( l ;p ,b ), the library notifies p that b is available 

pay (p ;m ,b), p pays m concerning a book b 

If X = {x t P (x) } and x e X is another way of writing P (x), we use the following abbreviation for the 

cardinality of X in a world, 

A 

card(X)=n ¢:~ 3ff x e X .  

3En x e X  means that there are precisely n different elements in X, 

3~ x Px ¢o 

SEY t,...,Yn: Y 1 ~. ..(pairwise )...~Yn ^ VEx [Px ¢:~ x=y I v ... v x--yn]. 

Assuming that we start with an empty extension for E,  all reachable worlds will have a finite exten- 

sion for E ,  so that the existential quantifier in the last formula can be written as a finite disjunction. 



365 

Necessary static constraints 

IC0 Library (Self), Money ($2) . . . . .  Book (B 1) . . . . .  Natural (0) . . . .  

IC1 Vb [Available(b) ¢:> Vp, n (Present(b) ^ --.~ERF :reserve (p,b, n)] 

IC2 Vp l,b [firstreserver (p 1,b ) ¢:> 
3n [PERF :reserve (p l,b ,n ) ^ Vp2,n" : PERF :reserve (p2,b ,n') ~ n" = max(n', n )] 

IC0 introduces the constants. It also specifies that the UoD is described from the perspective of the 

library. The constant Self has no special logical meaning, but gets a special operational meaning 

when the specification is used as a prescription for the action component of the Library Information 

System. 

Necessary dynamic constraints 

IC3 DONE :oL ~ [~]PERF :o~ 

IC4 PERF :o~ ~ [[~]PERF :~ for ~ ~ reserve 

These two axioms say that if an action has been done, it has been performed, and that once it has been 

performed, it remains in the state of having been performed. Contrast this with DONE :~, which is 

only true in worlds resulting from ~ and false in other worlds. 

IC5 Vp ,b --~ERF :borrow(p ,b ) ~ [return(p ;b )] false 

I(26 Vp,b -~resent(b ) ~ [borrow(p ;b )lfalse 

IC7 Vp,b, n [borrowfp;b)] -,PERF:reserve (p,b, n) ^ --,Present(b) 

IC8 Vp,b [return(p;b)] Present(b) ^ -d~ERF:borrow(p,b) 

IC9 Vp,b,n card({p213n' PERF:reserve(p2,b,n')} ) = n 

[reserve (p ;b ) ] PERF :reserve (p ,b ,n + t) 

~/p ,b ,n [notify (Self ;p ,b )] [clock (7)] --~ERF :reserve (p ,b ,n ) IC10 

Remarks: 

1 IC5 and IC6 describe necessary preconditions. The other constraints all deal with the effects 

(postconditions) of actions. 

2 According to IC10, a reservation is automatically cancelled when someone has failed to come 

and borrow the reserved book. This is an application of the performative hypothesis. When the 
reservation is cancelled in the data base, it is cancelled in reality. Therefore we do not need an 
extra action "cancel_reservation". 

3 The implicit assumption of IC10 is that the communication between library and members is per- 

fect so that the act of sending a notification is equivalent to the act of notifying. 

Deontic constraints 

IC l l  For each action c~, O(~(<_n)) ~ ~(m) ̂  m>n ~ V:c~. 

IC12 Vp,b 1 P(borrow(p;bt)) ¢=~ [Member(p) ^ --ab 2 V:return(p,b2) 
^ card({b 3 I PERF:borrow(p,b3)}) < 3 
^ ((Available (b 1) v first_reserver (p ,b 1))] 

IC13 Vpt,b,n P(reserve(Pi;b )) ¢=~ gember fp l )  ^ --~4vailable(b ) 

IC14 Vp,b [borrow(p;b)] O(return(p;b)(<_21d)) 

IC15 Vp,b [borrow(p;b)] [clock (21)] 

--~PERF :return (p ,b ) ~ 0 (remind (Self ;p ,b )) 



366 

IC16 

IC17 

IC18 

IC19 

IC20 

Remarks: 

1. 

Vp ,b f irs treserver(p,b ) ^ Present(b) ~ O(notify(Self ;p ,b )) 

V p ,b V :return (p ,b ) ~ O (pay (p ;$2,b ) ) 

Vp,b [borrowfp;b )] [clock ~21~] [--~PERF :return(p ,b ) ~ V :return(p, b)] 

Vp ,b [return (p ;b ) ] ~ V  :return (p , b) 

Vp,b [pay(p;$2,b)] ~ V  :return (p , b) 

IC12 and IC13 define the permissions of the members of the library. IC12 says when it is per- 

mitted that someone borrows a book and IC13 says when it is permitted that someone reserves a 
book. Another reasonable permission would be that someone may only pay the library when he 
must pay: O(pay) ¢~ P(pay). However, this constraint was not in the original description. 

2. IC14-15 state several obligations. IC14 says that someone is obliged to return the book in three 

weeks (we assume the time unit of this UoD is one calendar day; see comment on definition 

14). IC15 and IC16 state some obligations of the library: that the library should notify a 

reserver when the book becomes available and that it should send a reminder when a book is not 

returned in time. IC17 shows how the failure to perform an obliged action can lead to another 

obligation: if someone has not returned the book in time, he must pay a fine. 

3. IC18-IC20 describe postconditions of actions as far as liability is concerned. IC18 specifies that 

someone is liable if he has not returned a book in time. This liability has some consequences 

(IC12: he can not borrow a new book). Note that this liability is cancelled (IC19) as soon as he 

returns the book (be it too late). However, when he returns the book too late, he performs a for- 
bidden action (IC14) which leads to a liability V:return(p,b).  This liability is cancelled, 

according to IC20, when the offender pays a fine. 

4. Note that the specification is not in all senses complete. For example, it is not said what happens 

when someone fails to pay the fine (IC17). 


