
A SHORT REV ~ EW OF H I eH S P E E D COI ' IP I L A T i ON

We~ner A[gmann

Academy of Sciences of the (~.D.R.
Institute of Info~matics and Computin~ Techniques

~ l b s t r a c t :

S t a r t i n g w i t h s o m e c o n s i d e r a t i o n s a b o u t t h e need .:[or" a h i g h e r
speed of pro6~am development the t e r m "'H~gh Speed Compilation'"

~ll be introduced. H i g h speed c o m p i l e r s should haue u speed o f
more t h a n 30,000 l i n e s per m i n u t e . H ~ g h speed programming sg~-
t o m s m u s t b e a b l e t o Pun t h r o u g h t h e ed~t/compile/linA/load/
run/debu~ phases ~th a u~it~ng ttme less than xo seconds.

S t a r t i n ~ ~ i t h t h i s definitions some demand:9 o n the components

036 c a m p ' S . l o P s and pro~ramm~n6 ~ ~ y s t e m s Ore der~ueu. Current /enOCh
a n d a p p l i c a b l e m e t h o d s t o P e a c h t h i s g o a l a p e d{scusxed. Yhia~
m e t h o d s a ~ e d i v i d e d i n " 'Tinning'" a n d " B e t t e ~ A t ~ o r i t h r r ~ " . T h e
e f f e c t o f i n c r e m e n t a l compilation as a n e t h e r , c o m p i l a t i o n t e c h -
n i q u e ~s sho~n ,b~ the INDI~ pro~amming ~ s t e m .

I . THE NEED FOR HIGH SPEED COMP ILAT I ON

The latest (and sometimes longest) stage of program development
takes place in the life cycle phases

edit - compile - linl~ - ~oad - run - debu~.

A big per, lion of the time needed fop one cycle is only waiting
time. The following example will demonstrate this situation.

T o Pun t h r o u g h t h e a b o u e p h a s e s w e n e e d e d i n c a s e o f t h e
I N D I A e d i t o r 6 e 3 3 o l i n e s M O D U L A - ~) a s a p a r t o f t h e I N D I A
p r o g r a m m i n ~ s M s t e m C c o n s i s t i n g o f 6 5 m o d u l e s , c o d e s ~ z e
~ 7 o K) i n a p r o d u c t i o n e n u i r o n m e n t (m a n ~ a n d b i ~ d i r e c t o - .
Pies, c o m m e r c i a l F I O D U L A - e compiler9 o n a ~ I T - C o m p a t i b t e t h e
f o t l o t ~ I n g t i m e s :

E d i t o r (~ v i t h o u t a n y a c t i o n s) :
C o m p i l e r :
L i n k e r :
S t a r t (t ~ t t h o u t a n y a c t i o n s) :
D e b u g g e r (~ i t h o u t a n ~ a c t i o n s) :

T o t a l . .

z 5 ' s a c .
z 5 6 s a c .
;22I s a c ,

2 2 S e c ,
r 3 9 s a c .

5 5 3 s a c .

T h a t m e a n s t h a t i n t h e a b o v e e x a m p l e t h e w a t t i n ~ t i m e a m o u n t s
t o m o ~ e t h a n 9 m i n u t e s - l o s t t i m e ! I t ' s w o l - t h m e n t i o n i l ~ t h a t
t h i s s i t u a t i o n d i d n ' t o c c u l - i n t h e p a s t w i t h i t s b a t c h p m o c e s s -
i r ~ e n v i m o n m e n t s .

R e a s o n t : B e c a u s e o f w o r k i n g i n i n t e r a c t i v e e n v i r o n m n t s t h e
w a i t i n g t i m e s m u ~ t b e r e d u c e d t o a m i n i m u m : W a ~ t i n g
time is l o s t t i m e !

We have two other ~easons to want. high speed compilation. The
permanently encr, easin~ complexity of tasks solved by computers
leads to much bigger procrams and program systerr~. On the other
hand the technolo~icai evolution ~ate demands a hicher evolu-
tion rate o f some kinds of proCpams too. Clearly we must force
up the efficie,~cy of pro~'~ammin C.

Reason 2: The tendency to bi~er pr-o~z-~ and a hi~her evo|u-
tlon Pate.

Last not least we must have a look on the used procramminc lan-

guages. The newer pro~rammin~ lan~uaEes such as MODULA-2 cause
a much higher effol-t in the compiler (and in the other compo-
nents of the pro~rammin~ systems>. U s i n g the traditional tech-
niques would lead to compilation times not acceptable by the
users. This development will continue in the next time. The
chan~e-ovel- to descriptive proEParruning techniques will compli-
cate the compilin~ task another one. To solve this problem new
compilation techniques m u s t be developped. Compare under this
aspect the symbol table handling in FO~T~AN and MODULA-2!

Reason S: The applica%ion of hi~her developped pro~a~n~ lan-

guages.

2. WHAT MEANS "'HZ6H SPEED OOMPILA]'ION"'?

C l e a r l y n o e x a c t d e f i n i t i o n o f t h e t e r m i n u s " H i g h S p e e d C o m p i -
l a t i o n " c a n b e ~ i v e n . T h e i d e a s o f t h e u s e r s a b o u t h i g h s p e e d
w i l l b e v e r y d i f f e r e n t t o o . T h e r e f o r e a v e r y p r a g m a t i c d e f i n i -
t i o n i s o n l y p o s s i b l e T h e s t a r t i n ~ p o i n t , i s t o m a k e s o m e a s -
s e r t i o n about the maximal waltin~ tlme for the result of a com-
p i l a t l o n ,

Our rather arbitrary definition of" high sp, ,d compilation pre-
scribes t h a t t h e c o m p i l a t i o n t i m e T o p a m e d i u m s i z e d m o d u l e o f
2 ,~00 l i n e s s h o u l d n o t e x c e e d a p e r i o d o f ~ s e c o n d s . T h i s i s
e q u i v . a l e n t t o :

C e m p i | . a t i o n s p e e d >= 30~000 l i n e s p e w m i n u t e .

But the above example shows that high speed compilation is o n t y
a p a z , t t o r e a c h s h o r t c y c l e t i m e s i n t h e p r o g r a m d e v e l o p m e n t
p r o c e s s . By i n c l u d i n C a l l t h e o t h e r c o m p o n e n t s o f a p r o g r a m m i n g
system such as editor~ linker, loader~ and debu~er we can ~Ive
an extended definition:

The w a i t i n ~ t i m e in a " H i g h Speed P l ~ o ~ e a m m t n ~ System" fop a
full cycle mu~t be <= iO seconds.

The conclusion is the need not only fo~ high speed compilers
but also for

- High Speed LoadeP~
- High Speed Linker,
- High Speed Debugger, and last not least
- H i g h S p e e d F i l e System

a s the bottleneck of a l l the s y s t e m components.

Because the power of the used computer has ~ bi~ influence of
the needed time ~nother slight different vel~sion of this defi-
nition will be ~Iven. The use of this definition lies in better
possibilities comparin~ different products oP to analyse the
effort of dlfferent al~orithms. The idea is the reduction to
machine cycles. Usin~ a computer with a clock rate of 25 MHz
and a average numbe~ o f 5 machine cycles per operation we get a
maximal numbel" of operations per line for the compile~:

Compilation effol~t (= ~O,fMM) operations pe~ llne.

3. DEMANDS ON" COMP!LER COMPONENTS

If we suppose the traditioned (lo~ical) subdivision of a compi-
lem into the components

- Lexical analysis (25M)~
- Syntactical analysis (ISZ),
- Symbol table handlin~ (2SM),
- Context checking (I0~>, and
- Code ~ene~ator (25~)

we can f i n d OUt the necessary speed o f a l l the components con-
side~in~ thei~ share on the total effort:

- Lecical analysis:
- Syntactical analysis:
- Symbol table handling:
- Context checking:
- Code ~enerator:

>= 120,000 lines per minute
>= 200,000 lines per minute
>= 120,000 lines per minute
>= 300~000 lines per. m~nute
>= 120,000 lines per, minute

o r a c c o r d i n ~ t o t h e s e c o n d d e f i n i t i o n :

- Lexical analysis: <= 2,500 operations pe~ llne
- Syntactical analysis: <= I,SC~ opemations pelf- line
- Symbol table handling: <= 2,500 operations per line
- ~ontex~ checkln~: <: 1,000 operations per line
- Code ~enerator: <= 2,500 operations per- fine.

The pe~centual effort of the compiler components is estimated
for pro~ammin~ languages like MODULA-2. Fore other languages
and other compiler architectumes other figures are possible so
that more oi- less different results will be obtained. But es-
sential is only the order of magnitude which can be used for
statements about the quality of components.

T o ~ o a l i t t t e m o p e i n t o d e t a i l s twe l o o k t o ~the F . e X i c a Z
anal~is, If ~e s~ppoxe a number of 40 characters per line
~ e h a u e ~ o p e r f o P m t h e ~ o r ' ~ o f l e x i c c r Z a n a l y s i s ~ t ~ h <= 6 2
o p e r a t i o n s p e r c h a P o c t e r .

T h e l e x i c a l a n a ~ y x i s o ~ t h e I I ~ D I i s g s t e m n e e d x f o p a m o d u l e
o f 8 9 ~ l i n e s P e s p e c t i u e ~ 9 2 ~ 5 2 z c h a r o c t e r s 3 . 3 0 0 s e c o n d s o n
a c o m p u t e P ~ i t h 6 M H z . T h i s m e a n s a e f f o P t o f z 4 9 o p e r ' ~ -
tion:9 per c h a P a c t e r . This is suPprisin~I9 not so lap a~p
.fPom t h e ~ o a l f l ~ u P e e s p e c i a [~) b e c a u s e n o x p e c i 6 t l t u n i n ~
w a s u s e d t i l t n o w .

4. REVIEW OF METHODS IN GENERAL

Three nearly orthogonal methods to increase the speed of compi-
lers (and other p r o g r a m s too) exist:

- Faster hardware,
- Tuning, and
- Intelliffent al~orlthrns and data structures.

No further comment to the first method - faster hardware - will
be made. Not to mention technological and economical bounds it
seems unsatisfactoryly to software developpers to spent comput-
er time without a n y need.

4.. 1. TUNING

T h i s t e r m w i l l b e u s e d f o r m e t h o d s : t o o p t i m i s e c o m p o n e n t s o f a
p r o g r a m m i n g s y s t e m s u c h a s a c o m p i l e r w i t h o u t G e n e r a l c h a n c e s .
I n p r i n c i p l e t h i s m e t h o d c a n b e a c c o m p l i s h e d b y p e r s o n s w i t h o u t
a n y k n o w l e d g e a b o u t t h e f u n c t i o n o f t h e p r o g r a m f o r i n s t a n c e b y
c o d e i n s p e c t i o n .

O n e s i m p l e m e t h o d o f t h i s c l a s s i s O p t i ~ i s a t i o n o f t h e p r o g r a m .
I n p r i n c i p l e a l l m e t h o d ~ k n o w n u n d e r t h i s t e r m f r o m c o m p i l e r s
c a n b e u s e d . T h e p r o b l e m o f t e n l i e s i n t h e c o n t r a d i c t i o n t o
p r i n c i p l e s o f s t r u c t u r e d p r o g r a m m i n g . B u t s o m e t i m e s a o p t i m i s a -
t i o n i n s p a c e , t i m e , a n d s t r u c t u r e c a n b e r e a c h e d b e c a u s e s o m e
procrams tends to disorder after a certain life time. Such op-
tlmisations can be:

- L o o p o p t i m i s a £ i o n
The elimination of unaffected statements from the loop is
we]/ known. The same holds for the computation of as much
as possible before enterin C the loop. Sometimes addi-
tional variables solve some problem. All kinds of inter-
p~eter loops must be optimIsed in this way.

- Pr, o c e d u r ~ e c a l l o p t i m i s a t i o n
The call of procedures causes in languages with ~ecursive
procedures a lot of additional actions. Another critical
point is the tranfer of parameters. Therefore often
called procedures should be changed to inline code or
work on the base of ~lobal variables.

- Location of variables
Unseen mostly by the procrammer the use of imported vari-
ables and o f vamlables declared in nested procedures i s
much more expensive as the use of local or global de-
clared variables.

- A r r , a y o p t i m ~ s a t i o n
Multidimensional arrays cause a lot of, work to compute
the target address. The bette~ way is ~eduction to one-
dimensional arrays or substituation b y pointers. The last
way i s the most effective one 5ut sometimes a little dan-
gerous.

- R e d u c t i o n o f run-time checks
eood compilers insert a lot of Pun-time checks into the
code. This arrangement increases the security of the pro-
grams considerable. But in many cases these checks can be
eliminated after a cert~dn ste~'e of program correctness
on the base of semantic information about the domain of
variables and so ,on.

The effect of program optimisation in this way can be estimated
by analysis of the machine code of the compiler component. Some
interesting insights into the properties of the used compiler
(to compile the components of the programming system) &re pos-
sible. The result is Assembler-like pro~rammln~:

- Use of efficiently compilable constructions only.
In dependence on the properties of compiler and machine
code only such constructions of the implementation lan-
guage will be used which will be translated to very effi-
cent code. A good example is the problem of using a CASE-
statement or a IF-ELSIF-ELSIF-...-sLatement.

- Adaption to t h e u s e d hardware.
The undeP lyin{~ components such as file system and screen
handler must use vel-y efficient access methods to reach a
sufficient speed. Portability is in a direct opposition
to this point.

Other methods must be used in case o f interpreter techniques.
-By O p t i m i s a t i o n o f a b s t r a c t m a c h i n e s a n d a b s t r a c t m c h i n e c o d e
(as another word for the pairs of interpreter and associated
control table) very surprising results can be reached:

- Optimisation of contr, ol tables.
Interpreter techniques are in general use for the syn-
tactical analysis by the LR(1) or LALR(1) method but also
for some other components. By optimisation and/or compac-
tion of these control tables the same effects as in a
"normal" optimisation <of code for a real machine) can be
reached.

- Translation into direct executable machine code.
By this method the abstract .machine code (the control Ca-
ble) will be transformed into diPect executable machine
code. The interpretation o f the table by the abstract ma-

chine is omitted. The big size of the generated programs
i s a little problematic b u t together with optimisation
very good results ate Deachable (see [7]; [I0], [16]).

4.~. INTELLIGENT ALGORITHNS AND DATA STRUCTURES

Computer. science is a relatively youn~ field. Big efforts are
made in development of effective al~orithms. Clearly the end o f
t h i s d e v e l o p m e n t i s n o t r e a c h e d a l r e a d y . S o m e t i m e s t h e s k i l f u l
c o m b i n a t i o n o f k n o w n p r i n c i p l e s h a s a m u l t i p l e e f f e c t , s o m e -
t i m e s a l o t o f r e s e a r c h i s n e c e s s a r y t o f i n d o u t a g o o d s o l u -
t i o n f o r a g i v e n p r o b l e m . I n t h e f i e l d o f p r o g r a m m i n g s y s t e m s a
lot of work was done in the last years to increase the comfort
<integrated progpammin~ systems, multi-window techniques and so

on). Only a few methods are characteristic of high speed
efforts:

- Use of f a s t search methods.
Hash search seems to be the fastest search method, The
final result on this fieJd is minimal perfect hash search
using such a hash function that only one attempt for the
search is necessary ("perfect") and there are no gaps in
the hash table ("minimal"). Using this technique in the
lexical analysis for the decision whether keyword Or
identifier should be the optimum. Sometimes the use of
hash search is not possible without special precautions
(sym- bol table handling in incremental compilers!),

- Use of straightforward al~orithm~.

Algorlthnts without the need of decisions which branch to
choose or without the need to transform data from one
structure to another one are clearly better because the
r(dnor overhead. The use of minimal perfect hash functions
is a good example for such algorithms.

- Use of better system architectures.
Integrated p~ogramming systems working o,~ a common data
base can reach a much higher speed as systems divided
traditionally into a lot of independent components. Som~
systems use syntax-orlented editors with a data structure
which makes the task of iexical analysis superfluous,

- Use of incremental techniques.
This method is the newest and "host interesting one, The
principle is not to throw awa: the results after doing
some computation but to save al, reusable data. These da-
ta will be used if the same computation task (with
slightly different input data) ~=',ises a second time, The
work of such sB~tems is clearly more complicated but the
effects are substantial. Compilers are very good candida-
tes for t h i s technique because of t h e frequent l-ecompila-
tion of programs with only a few changes,

The effects of incremental compilation techniques can be shown
by the first results of the I~)IA programming system (see [I]
for fur, them information):

The ~ront-end cornpile~ o~ INDIA ~or~s o~read~ incremental,
the bac~-end compiler ~enerates code lop the ~ho[e pr.o~rom
o n ~) . F o r t h e c o m p i l a t i o n o f o small klODULA-2 m o d u l e o f 6 o
lines (he]Ol~o~ng :[i~res were measured (on a 6 MHz com-
puter):

Normal (f u Z l) c o m p i l a t i o n :
r o . z 6 o s e c . r e s p . $ '54 l i n e s p e r . m i n u t e .

Incr.emental deletion o] one line (assign statement):
i.SDo mec. reap. ~ 6 lines per. minuSe
Co.2~o sec, r.exp, r6o9 z lines per minute for. fr.ont-end).

Incr.emental c h a n ~ i n g of one li~e (assign s t o t e m e n i : ;
deletion a n d][allowing c o m p i l a t i o n of t h i s l i n e D :

2~25o s e c . r . e s p . ~ d S 3 l i n e s p e r . m i n u t e
(0.880 ~:ec. Pesp. 4o9I lines per minute for fr.ont-end).

F~om this example we can learn that by incremental compilation

techniques compilation times proportional to the mount of the
program changes and not proportional to the program size can be
reached. That also means that in a Good integrated programmin G
system the compiling process can be done during the editin~
process (during the waitin~ time for the next input>. From the
user's point of view the compilation time is exactly null in
such a system - a ~ood contmibution to a high speed programn~n~
system!

5. REVIEW OF SPECIAL METHODS FOR S;OME COMPONENTS

T h e m o s t m e t h o d s r e f e r e n c e d a b o v e c a n b e u s e d i n a l l t h e c o m p o -
n e n t s of a compiler or a whole programming system, But for some
components very special methods are usable. In the followin G
the attempt w i l l be made to Gather some of such methods without
any pretensions to completeness.

The Ppo~Pamdng System Architecture has nearly the biggest in-
fluence. The best way should be an

- InteGrated programming system with a
- Commonly used internal program representation.

The Compiler Arc~dtecture should take into consideration the
followin~ points:

- Very few passes (but sometimes dependent on the language>
- No overlays (problem of available memory).
- Incremental work,

The Lexical Analysis should use

- Clever input meditun <if every possible the editor data
base, situated in the memory).

- Few touches of the input characters (the best solution is
only once!).

- Keyword decision by MPHF (minimal pemfect hash function>,
- Transfer of the whole lexical analysis (or of parts) to

the editor or to the syntactical analysis.

In the Syntactical Analysis two basic methods are available:

- LALRfl)/LR(1) or recursive descendent procedures. Newer
~esults show that LALR(1) should enable high speed to-
~ether with the other advantages.

- Elimination of chain productions (if LALR(1) method).
- Clever expression handlinG,

As always there are scarcely general methods for the Semmantic
Analysis:

- Limited numbem oe "action points" durln~ the syntactical
analysis.

- Handling of impomted objects (if there is a intemmodule
context checkin G) as "direct loadable" data structures
(no additional data trar~formation!).

In the SyruP)el Table AdmJrnls%ra4&ion search methods are the most
important point:

- Use of hash search methods.

- No division into name and symbol table (double search!).

The ~ode (~eneratoP should work on the base of

- Direct code ~eneration

because template techniques are mostly to slowly. Another solu-
tion could be the use of very fast pattern techniques.

A few statements about the othel- components of a pmo~ramn~in~
system can be made. The Editor should use:

- Syntax-oriented techniques to reduce the input time and
to increase the reliability.

-Data structures which reduce the work of lexica9 analy-
sis.

The only possibility for the Linker seems to be

- Incremental linking.

To seduce the effol~t of the Debu~em to ~ather all the necessa-
ry information about the pmo~Dam to test only one possibility
exist:

- Use of "direct loadable data stPuctul~es ''

At l a s t a remark to the underlyin~ F i l e $ y s t e r ~ L I f the clever-
ness of the file system is not high enough to handle bi~ sys-
tems some effort is necessary such as

- Own directory handlln~ on the base of hash search tech-
niques.

- Own buffer administration (transfer directly into the
compiler data areas).

- Use of basic access functions to the file store.

6. RESULTS AND CONCLUSION

Cumrently some results about high speed components a~e availa-
ble. In [8] a fast lexical analyse~ i s described with a speed 6
times faster than LEX. The scanner ~enerator Rex described in
[7] ~enerates scanners with a speed of 180,000 to IQS,000 lines
per minute runnin~ on a MC 68020 processor. Much faste~ parsers
are available: the LALR(I> pa~ser ~enerated by the Lai~ tool of
[7] has a speed of 400,000 lines per minute, another LL(1) par-
set ~enerated bei Ell [Z] on the base of recu1~sive descendent
procedumes even 900,000 lines per minute. The LR(I> pa~ser of
[10] reaches a speed of 500,000 lines per minute on a VAX ~I/
Z80 mesp. 240,000 lines per minute on an Intel 80286. In [16] a
LR(1) parser with a speed of 450,000 lines per minute ~unnln~
on a SUN workstation is described.

These results show clearly that the available methods enable
the implementation of truly high speed components. On the other
hand the results mentioned above about the possibilities of
incremental compilation techniques show that integrated h i g h
speed pro~rammin~ syste,~ will be available an the next time.

L ~ t e r a t u r ' e :

[t] %4. ABmann
The INDIA System for Incremental Dialog Programming
Proceedings of 14ork-~hop on Compiler Compilers and
Incremental Compilatlon, Berlin, 1986
IIR-Informationen 2(1986)12~1~-34

[2] C.C. Chang
An Ordered Minimal Perfect Hashin~ Scheme Based upon
Euler's Theorem
Information Sciences 32(1984),165-172

[31 N. Cercone, M. K~ause, J, Boates
Minimal and Almost Minimal Perfect Hash Function Search
with AppLication to Natural Language Lexicon Design
Comp.& Math. with Appl. 9(~983>1,21S-231

[4] O.V. Cormack, R.N.S. Horspool, M. Kaiserswerth
Practical Perfect H a s h i n g
The Computer Journal 28(198S)I,$4-58

[5] P. Fritzson
Incremental Symbol Processin~
PPoceedin~s of Workshop on Compiler Compiler and High
Speed Compilation, Berlirt, 1988 (to appear in this issue)

[6] R. Oerardy
Experimental Comparison of Some Parsin~ Methods
SIOPLAN Notices 2?.(1987)8,79-88

[7] J. G t o s c h
Generators fop Hi~h-Speed P~ont-Ends
Proceedings of Workshop on Compiler Compiler a n d High
Speed Compilation, Berlin, ~988 (~ o appear in this issue>

[8] V.P. Heurir~
The Automatic Generation of Fast Lexical Analysers
Software-Practice and Experience 16(i986)9,80i-808

[9] R.N. H o ~ s p o o l
H a ~ h i r ~ a s a C o m p a c t i o n T e c h n i q u e f o r LR P a ~ s e ~ T a b l e s
S o f t w a r e - P r a c t i c e and E x p e r i e n c e 17 (1987)6 ,413-416

[lO] T.J. P e n n e l l o
V e r y P a s t LR P a ~ s i n ~
1986 ACM 0 - 8 9 7 9 1 - 1 9 ' 7 - 0 / 8 6 / 0 6 0 0 - 0 1 4 5 75c

[11] D.J. R o s e n k r a n t z , H.B. H u n t
E f f i c i e n t A l ~ o r l t h m ~ f o r A u t o m a t i c C o n s t r u c t i o n a n d
C o m p a c t i f i c a t i o n o f P a ~ s ~ n g O r a m m a ~ s
ACM T r a n s a c t i o n s o n P ~ o g ~ a m m i n ~ L a n g u a g e s and S y s t e m s
9 (~987) 4 , B 4 3 - 5 6 6

t 0

[t 2]

[13]

[1 4]

[13]

[16]

[173

T.J. Sager
A Polynomial Time Oene~atol- fox- Minimal PePfect Hash
Functions
Communications of the ACM 28(1985)5~23-532

T.J. Sage~
A Technique for G~eatin~ Small Fast Gompiler Fmontends
SIf~PLAN Notices 20(1985)I0,87-94

L. Schmitz
On the CoP1-ect Elimination of Ghain Productions from LR
P a r s e r s
InLel-n. J. Gomputer ~4ath. 15(1984),99-116

W.M. Waite
The Cost of Lexical Analysis
Software-Practice and Experience 16<1986)5,473-488

M. Whitney, R.N. Horspool
Extremely Rapid LR Parsin~
PPoceedin~s of Womkshop on Gompiler Compiler and High
Speed Compilation, Berlin, 1988 (to appear in this issue)

D.A. Wolverton
A PePfect Hash Function for Ada Reserved Words
A d a Letters 1V(1984)1,40-44

