A SHoOrRT Review ofF HicH SPEED COMPILATION

Werner ABmann

Academy of Sciences of the G.DR.
Institute of Informatics and Computing Techniques

Abstract :

Starting with some considerations about the need jfor a higher
speed of program developmernt the term "High Speed Compilation”
will be introduced. High speed compilers should have a speed of
more than zo,0o00 tines per minute. High speed programming sys—
tems must be able to run through the edit/compileslinksload/
runsdebug phases with a waiting time less than 1o seconds,
Starting with this definitions some demands on the components
of compilers and programming systems are derived. Current known
and applicable methods to reach this goal are discussed. This
methods are divided in “Tuning” and "Better Algorithms’”. The
effect of incremental compilation as a newer: compitlation tech-
nique is shown by the INDIA programming system.

1. Tue NeeD For HigH SPEED COMPILATION

The latest (and sometimes longest) stage of program development
takes place in the life cycle phases

edit - compile - link — load — run ~ debug.

A big portion of the time needed for one cycle is only waiting
time. The following example will demonstrate this situation.

To run through the above phases we needed in case of the
INDIA editor (2330 lines MODULA-z2) as a part of the INDIA
programming system (consisting of 65 modules, code size
270K2> in a production environment (many and big directo-
ries, commercial MODULA-2 compiler? on a AT-Compatible the
Following times:

Editor (without any actions): I5 sec.
Compiler: I56 sec.
Linker: 221 sec.
Start (without any actions): 22 sec.
Debugger (without any actions): 3o sec.
Total: 553 sec.

That means that. in the above example the walting time amounts
to more than 9 minutes - lost time! It’s worth mentioning that
this situation didn’t occur in the past with its batch process-
ing environments.

Reason 1: Because of working in interactive envirornments the
waiting times must be reduced to a minimum: Waliting
time iz lost timel

We have two other reasons to want high speed compilation. The
permanently encreasing complexity of tasks solved by computers
leads to much bigger programs and program systems. On the other
hand the technological evolution rate demands a higher evolu-
tion rate of some kinds of programs tLoo. Clearly we must force
up the efficiency of programming.

Reason 2: The tendency to bigger programs and a higher evolu-
tion rate.

Last not least we must have a loock on the used programming lan~
guages. The newer programming languages such as MODULA-2 cause
a much higher effort in the compiler C(and in the other compo-
nents of the programming systems?» Using the traditional tech~
nigques would lead to compilation times not acceptable by the
users. This development will continue in the next time. The
change~over to descriptive programming +fechnigues will compli-
cate the compiling task another one. To solve this problem new
compilation techniques must be developped. Compare under this
aspect the symbol table handling in FORTRAN and MODULA-2!

Reason 3: The application of higher developped programming lan-
guages.

2. WHAT MEans "HicH SPEep ComMPiLAaTION™?

Clearly no exact definition of the terminus "High Speed Compi-
lation” can be given. The ideas of the users about high speed
will be very different too. Therefore a wvery pragmatic defini-
tion is only possible The starting point is to make some as-
sertion about the maximal walting time for the result of a com-
pilation.

Our rather arbitrary definition of high sp d compilation pre-
scribes that the compilation time for a medium sized module of
2,300 lines should not exceed a period of 5 seconds. This is
equivalent. to:

Compilation speed >= 30,000 lines per minute.

But the above example shows that high speed compilation is only
a part to reach short cycle times in the program develppment
process. By including all the other components of a programming
system such as editor, linker, loader, and debugger we can give
an extended definition:

The waiting time in a "High Speed Programming System” for a
full cycle must be (= 10 seconds.

The conclusion iz the need not only for high speed compilers
but. alzo for

- High Speed Loader,

- High Speed Linker,

~ High Speed Debugger, and last not least
~ High Speed File System

as the bottleneck of all the system componsnts.

Because the power of the used computer has a big influence of
the needed time another =light different version of this defi-
nition will be given. The use of this definition lies in beiter
possibilities comparing different products or to analyse the
effort of different algorithms. The idea is the reduction to
machine caycles. Using & computer with a clock rate of 25 MHz
and a average number of 5 machine cycles per operation we get a
maximal number of operations per line for the compiler:

Compilation effort <= 10,000 operations per line.

3. DeMANDS o COMPILER COMPONENTS

If we suppose the traditional ddogical) subdivision of a compi-
ler into the components

- Lexical analysis 253,

- Syntactical analysis (1820,
Symbol table handling (252>,
- Context. checking <10%>, and
~ Code generator (252

we can find out the necessary speed of all the components con—
stidering their share on the total effort:

- Lecical analysis: >= 120,000 lines per minute
- Syntactical analysis: >= 200,000 lines per minute
- Symbol table handling: >= 120,000 lines per minute
- Context. checking: >= 300,000 lines per minute
~ Code generator: >= 120,000 lines per minute

or according to the second definition:

- Lexical analysis: <= 2,300 operations per line
- Syntactical analysis: <= 1,5C73 operations per line
= Symbol table handling: {= 2,500 operations per line
- {ontext checking: <= 1,000 operations per line
- Qode gensrator: <= 2,500 operations per line.

The percentual effort of the compiler components iz estimated
for programming languages like MODULA-2. For other languages
and other compiler architectures other figures are possible =o
that more or less different results will be obtained. But es-
sential is only the order of magnitude which can be used for
statements about the quality of components.

To go a tittle more into details we look to the lexical
analysis. If we suppose a number of go characters per line
we have to perform the work of lexical analysis with <= 6=z
operations per character.

The lexical analysis of the INDIA system needs for a module
of 8¢gz lines respectively 26521 characters 3.300 seconds on
a computer with 6 MHz, This means a effort of rgo opera—
tions per character. This is swurprisingly not so far away
from the goal figure especially because no special tuning
was used till now.

4. REVIEw OF METHODS IN GENERAL

Three nearly orthogonal methods to increase the speed of compi~
lers <(and other programs tood exist:

- Faster hardware,
= Tuning, and
- Intelligent algorithms and data structures.

No further comment. to the first method - faster hardware - will
he made. Not to mention technological and economical bounds it
seems unsatisfactoryly to software developpers to spent comput-
er time without any need.

4.1, TUNING

This term will be used for methods to optimise components of a
programming system such as a compiler without general changes.
In principle this method can be accomplished by persons without
any knowledge about. the function of the program for instance by
code inspection.

One simple method of this class is Optimisation of the program.
In principle all methods known under this term from compilers
can be used. The problem often lies in the contradiction to
principles of structured programming. But sometimes a optimisa-
tion in space, time, and structure can be reached because some
programs tends to disorder after a certain life time. Such op~
timisations can be:

= Loop optimization
The elimination of unaffected statements from the loop is
well known. The same holds for the computation of as much
as possible before entering the loop. Somelimes addi-
tional wvariables solve some problem. Al kinds of inter-
preter loops must be optimised in this way.

- Procedure call optimizsation
The call of procedures causes in languages with recursive
procedures a lot of additional actions. Another critical
point. is the titranfer of parameters. Therefore often
called procedures should be changed to inline code or
work on the base of global variables.

- location of variables
Unseen mostly by the programmer the use of imported vari-
ables and of variables declared in nested procedures is
much more expensive as the use of local or global de-
clared variables.

- Array optimisation
Multidimensional arrays cause a lot of. work to compute
the target address. The better way is reduction to one-
dimensional arrays or substituation by pointers. The last
way is the most effective one but sometimes a little dan-
gerous.

- Reduction of run—-time checks
Good compilers insert a lot of run-time checks into the
code. This arrangement increases the security of the pro-
grams considerable. But in many cases these checks can be
eliminated after a certain stage of program correctness
on the base of semantic information about. the domain of
variables and =o'on.

The effect of program optimisation in this way can be estimated
by analysis of the machine code of the compiler component. Some
interesting insights intce the properties of the used compiler
{to compile the components of the programming system? are pos~
sible. The result is Assembler-like programming:

- Use of efficiently compilable constructions only.
In dependence on the properties of compiler and machine
code only such constructions of the implementation lan~
guage will be used which will be translated to very effi-
cent code, A good example is= the problem of using a CASE-
statement or a IF-ELSIF-ELSIF-. ~statement.

- Adaption to the used hardware.
The underlying components such as file system and screen
handler must use very efficient access methods to reach a
sufficient speed. Portability is in a direct opposition
to this point.

Other methods must be used in case of interpreter techniques.
By Optimisation of abstract machines and abstract machine code
{as another word for the palrs of interpreter and associated
cont.rol table)> very surprising results can be reached:

- Optimisation of control tables.
Interpreter +techniques are in general use for the syn-
tactical analysis by the LRU> or LALRX) method but also
for some other components. By optimisation and/or compac-
tion of these control tables the same effecus as in a
"normal” optimisation (of code for a real machine) can be
reached.

- Translation into direct executable machine code.
By this method the abstract machine code (the control La-
ble> will be transformed into direct executable machine
code. The interpretation of the table by the abstract ma-
chine iz omitted. The bhig size of the generated programs
iz a little problematic but together with optimisation
very good results are reachable (see (7] [101, [161>.

4.2, INTELLIGENT ALGORITHMS AND DaAaTA STRUCTURES

Computer science is a relatively young field. Big efforts are
made in development of effective algorithms. Glearly the end of
this development is not reached already. Sometimes the skilful
combination of known principles has a multiple effect, =some-
times a lot of research is necessary to find out a good solu-
tion for a given problem. In the field of programming systems a
lot. of work was done in the last years to increase the comfort
dntegrated programming systems, multi-window technigues and so

on>. Only a few methods are characteristic of high speed
efforts:

- Use of fast search methods.

Hash search seems to be the fastest search method. The
final result on this field is minimal perfect hash search
uging such a hash function that only one attempt for the
search is necessary 'perfect”> and there are no gaps in
the hash table Cminimal”. Using this technique in the
lexical analysis for the decision whether keyword or
identifier should be the optimum. Sometimes the use of
hash search iz not possible without special precautions
{sym- bhol table handling in incremental compilersi.

- Use of straightforward algorithms,
Algorithms without. the need of decisions which branch to
choose or without. the need to transform data from one
structure to another one are clearly better because the
minor overhead. The use of minimal perfect hash functions
i a good example for such algorithms,

- Use of better system architectures.
Integrated programming systems working o.n a common data
base can reach a much higher speed as systems divided
traditionally into a lot of independent components. Some
systems use syntax-oriented editors with a data structure
which makes the task of lexical analygis superfluous.

- Use of incremental technigues.

This method iz the newest and wost interesgting one. The
principle is not to throw awa' the results after doing
some computation but to save al. reusable data These da—
ta will be wused if the same computation task (with
slightly different input. datad orises a second time. The
work of such systems iz clearly more complicated but the
effects are substantial. Compilers are very good candida~
tes for this technique because of ithe frequent recompila—
tion of programs with only a few changes.

The effects of incremental compilation techniques can be shown
by the first results of the INDIA programming system d(see [
for further information):

The front-end compiler of INDIA works already incremental,
the back-end compiler generates code for the whole program
only. For the compilation of a small MODUL A~z module of So
lines the following Figures were measured (on a ¢ MHz com~
puterl:

Normal {fulld compilation:
ro.réo sec. resp. 354 lines per minute.

Incremental deletion of one line {assign statementi:
I.500 sec. resp. 22206 tines per minute
(o220 sec. resg. réoor lines per wminute for front-endl.

Incremental changing of one line (assign statement;
deletion and following compilation of this linel:

zes0 sec. resp. 1653 lines per minule

(o0.880 sec. resp. goor lines per minute for front-enrd).

From this example we can learn that by incremental compilation

f.echniques compilation times proportional to the amount of the
program changes and not proportional to the program sgize can be
reached. That also means that in a good integrated programming
system the compiling preocess can be done during the editing
process {(during the waiting time for the next inputd. From the
user’s point. of view the compilation time is exactly null in
such a system - a good contribution to a high speed programming
system!

5. REVIEW OF SrEciaL METHODS FOR sOME COMPONENTS

The most methods referenced above can be used in all the compo-
nents of a compiler or a whole programming system. But for some
components very special methods are usable. In the following
the attempt will be made to gather some of such methods without
any pretensions to completeness.

The Programming System Architecture has nearly the biggest in-
fluence. The best way should be an

- Integrated programming system with a
- Commonly used internal program representation.

The Compiler Architectoure should take into consideration the
following points:

- Very few passes (but sometimes dependent on the language>
- No overlays {(problem of available memoryd.
- Incremental work.

The Lexical Analysis should use

- Clever input medium if every possible the editor data
base, situated in the memory).

- Few touches of the input characters (the best solution is
only oncel).

- Keyword decision by MPHF C(ninimal perfect hash functiond.

- Transfer of the whole lexical analysis ¢(or of partsd to
the editor or to the syntactical analysis.

In the Syntactical Analysis two basic methods are available:

- LALRUDZLRUD or recursive descendent procedures. Newer
results show that LALR{1> =should enable high speed to-
gether with the other advantages.

- Elimination of chain productions (f LALR{) methodd.

-~ (lever expression handling.

As always there are scarcely general methods for the Semantic
Analysis:

~ Limited number of “action points" during the syntactical
analysis.

~ Handling of imported objects df there is a intermodule
context. checking) as ‘“direct loadable" data structures
(no additional data transformation!®.

In the Symbol Table Administration search methods are the most
important point:

- Use of hash search methods.

- No division into name and symbol table (double searchbD.
The Code Generator should work on the base of
- Direct code generation

because template techniques are mostly to slowly., Another solu-
tion could be the use of very fast pattern technigques.

A few statements about the other components of a programming
syst.em can be made. The Editor should use:

- Syntax~oriented techniques to reduce the input time and
to increase the reliability.

- Data structures which reduce the work of lexical analy-
sis.

The only possibility for the Linker seems to be
- Incremental linking.

To rediuce the effort of the Debugger to gather all the necessa~
ry information about the progeram to test only one possibility
exist:

- Use .of “direct. loadable data structures"

At last. a remark to the underlying File System If the clever—
ness of the file system is not high enough to handle big sys—
tems some effort iz necesgsarv such as

- Own directory handling on the base of hash search tech-
niques.

= Own buffer administration C(transfer directly into the
compiler data areasd.

- Use of bamic access functions .o the file store.

6. REsuLTs anD CONCLUSION

Currently some results about 'high speed components are availa-
ble. In [8] a fast lexical analyser iz described with a speed 6
times faster than LEX. The scanner generator Rex described in
[7) generates scanners with a speed of 180,000 to 195,000 lines
per minute running on a MO 68020 processor. Much faster parsers
are available: the LALR(1) parser geénerated by the Lalr tool of
[7] hasr a speed of 400,000 lines per minute, another LL{1> par-
ser generated bei Ell 7] on the base of recursive descendent
procedures even 900,000 lines per minute. The LR parser of
[101 reaches a speed of 500,000 lines per minute on a VAX 11/
780 resp. 240,000 lines per minute on an Intel 80286. In [161 &
LERC(1> parser with a speed of 450,000 lines per minute running
on a SUN workstation is described.

These results show clearly that the available methods enable
the implementation of truly high speed components. On the other
hand the results mentioned above about the possibilities of
incremental compilation techniques show that integrated high
speed programming systems will be available in the next time.

Litergture:

[13

21

31

[4}

1s3]

[631

{71

{8l

[91

{10}

[11]

W. ABmann

The INDIA System for Incremental Dialog Programming
Proceedings of Workshop on Compiler Compilers and
Incremental Compilation, Berlin, 1986
IIR-Informationen 2(1986>12,12-34

C.G. Chang

An Ordered Minimal Perfect Hashing Scheme Based upon
Euler’s Theorem

Information Sciences 32(1984),165-172

N. Cercone, M. Krause, J. Boates

Minimal and Almost Minimal Perfect Hash Function Search
with Application to Natural Language Lexicon Design
Comp.& Math. with Appl $(1983)>1,215-231

a.V. Cormack, RN.S. Horspool, M. Kaiserswerth
Practical Perfect Hashing
The Computer Journal 28(1985)>1,54-58

P. Fritzson

Incremental Symbol Processing

Proceedings of Workshop on Compiler Compiler and High
Speed Compillation, Berlin, 1988 {(to appear in this issue)

R. Gerardy
Experimental Comparison of Some Parsing Methods
SIGPLAN Notices 22(1987)>8,79-88

J. Grosch

Generators for High-Speed Front-Ends

Proceedings of Workshop on Compiler Compiler and High
Speed Compilation, Berlin, 1988 (t.o appear in this issue)

V.P. Heuring
The Automatic Generation of Fast Lexical Analysers
Soft.ware-Practice and Experience 16(1986>9,801-808

R.N. Horspool
Hashing as a Compaction Technigue for LR Parser Tables
Software-Practice and Experience 17(198756,413-416

T.J. Pennello
Very Fast LR Parsing
1986 ACM 0-89791-197-0./806-0600~0145 T75¢

D.J. Rosenkrantz, H.B. Hunt
Efficient Algorithms for Automatic Construction and
Compactification of Parsing Grammars

ACM Transactions on Programming Languages and Systems
9198754 ,543-866

[12}

[131

[14]

[151

(163

£171

10

T.J. Sager

A Polynomial Time Generator for Minimal Perfect Hash
Functions

Communications of the ACM 28(1985>3,523-532

T.J. Sager
A& Technique for Creating Small Fast Compiler Frontends
SIGPLAN Notices 20(1983>10,87-94

L. Schmitz

On the Correct Elimination of Chain Productions from LE
Parsers

Intern. J. Gomputer Math. 15(1984),99-116

WM. Waite
The Cost of Lexical Analysis
Software-Practice and Experience 16(198635,473-488

M. Whitney, RN. Horspool

Extremely Rapid LR Parsing

Proceedings of Workshop on Compiler Compiler and High
Speed Compilation, Berlin, 1988 (to appear in this issued

DA, VWolverton
A Perfect Hash Function for Ada Reserved Words
Ada Letters IV(198451,40~-44

