
Type Checking in the Large 

Michael R. Levy 
Department of Computer Science 

University of Victoria 
P.O. Box 1700 
Victoria, B.C. 

Canada V8W 2Y2 

1 Introduction 

The larger a software system, the more important it is to maintain 
consistency between module interfaces and the use of modules. Type 
checking is an important technique for ensuring this consistency. Static 
type checking (that is, type checking prior to run-time) is especially 
attractive because it allows errors to be detected with no run-time cost. For 
this reason, most program-language designers pay very careful attention to 
their type system. The ideal is to design a type system which is flexible 
enough to support algorithm development but which is secure. Secure 
means that it is possible to guarantee that a procedure will not be given an 
invalid type of data. 

Type checking is straight-forward for most reasonable consmacts if the 
entire program source is available at type-checking time. However, in the 
presence of separate compilation, this requirement is not reasonable. Some 
languages therefore abandon any attempt to type-check across module 
boundaries. 

An alternative to supplying the entire source is to provide at least the 
interface (and perhaps some type definitions) to the type-checker of the user 
of a module. One of the disadvantages to this approach is the addition to 
the system of an extra object to be maintained (the interface). Care has to 
be taken to ensure that the user and the module itself agree on the interface. 
Polymorphism introduces an extra complications which will be described 
later in the paper. 



138 

We present here a new strategy for static type checking. This strategy 
ensures type security but removes from the programmer the need to include 
interface source in user programs. 

2 A brief description of the strategy 

A large piece of software can be represented as a directed, acyclic graph 
where nodes represent modules and edges represent a relationship between 
modules. The relationship is called 'uses' and the the edge is from the user 
to the used module. For example, if a module A contains calls to 
procedures in a module B, then this can be represented by the simple graph 

A ~ B  

We say "A uses B". Objects such as variables within a module can be 
classified as being free or bound. Objects are bound in a module if there 
is a declaration of the type of the object within the module. All other 
objects are free. Given a module A it is simple to determine the set of free 
objects in the module. The types of the bound objects and the use made of 
the free objects impose constraints on the possible types of the free objects. 
For many programming languages there exists an algorithm that can infer 
the set of free objects in a module together with constraints on the types of 
each free object in the set. The output of this algorithm is called the 
imports list of the module. The type information about all bound objects 
within a module is called an exports list. Type checking is performed 
by attempting to unify the imports list of a module with the union of the 
exports list of all the modules it uses. Failure to unify is a type error. 

This strategy is useful because it does not require the maintenance of 
common include files. It is also makes it possible to use type information 
for the purpose of creating software versions. It diminishes compile time 
because it can reduce the need to recompile modules that use modules that 
have been changed. 

An algorithm for creating imports lists for Pascal has been previously 
reported 1. Interesting questions are raised, however, by programming 



139 

languages that support generic modules or polymorphic data types and 
modules. 

It is not possible to compile generic modules efficiently because the size of 
the parameters is unspecified. However, it is reasonable to compile 
instances of a module, since any particular project is likely to use a 
manageable number of instances. The type checking algorithm therefore 
assumes that all 'imported' generic types are known before unification is 
attempted. In practice this is done by proceeding top-down from the top- 
level program. 

3 A type description language 

A type description is defined as follows: 
There is a set of objects B called base types, a set of objects V called 
Variables and a set of objects U called unknowns. Each b e B and each 
u ~ U is a type description. If/'1 and 7"2 are type descriptions and t e V 
then 

Tax T2, T1---> T2, At. T1, bt 

are type descriptions. 

&-notation is used to denote the types of objects if they are generic (or 
polymorphic). For example, 

f :  At. l is t  t --> t 

is a proposition saying thatf  is a polymorphic function, list in this 
example is a type constructor. 

4 Separate type checking without polymorphism 

Type checking is performed at ~ time. Associated with each module is 
an imports list and an exports list. Type checking succeeds if each 



140 

module's imports list can be unified with the exports list of all the modules 
it uses. 

Example 

Suppose that 

A---~B 

and that A has imports list 

f : a ×  ]J -+ char 
g:int  --> o~ 

g:int ~ fl 

Also, suppose that the exports list of B is 

f:int x int --->char 
g:int ---)real 

g:int --->char 

g:int ---~ int 

Clearly the unifier is 

(~ ~ int 

1 3 ~  int 

This algorithm is a simplified version of Milner's type-inference 
algorithm 2. The differences are that 
1. No inference is taking place - we assume that the types of routines are 

fully declared; and 
2. The variables in Milner's algorithm are type variables. Here they are 

more like 'unknowns' .  This distinction becomes more obvious when 
polymorphic procedures are allowed. 

A key question is this: Can modules be compiled without access to 
complete type information of the imported procedures? If the answer to the 
question is no, then the language cannot properly support separate type- 



141 

checking. For the programming language C, the answer to the question is 
yes. One construct in the programming language Pascal does create a 
problem, namely var parameters. The difficulty is that in expressions like 
f(x) it is not possible to determine whether x denotes an expression or a 
variable without access to the formal heading off. One possible solution to 
this problem is to modify the syntax of Pascal so that call-by-variable is 
noted at the actual call, by using the keyword var, for example. This 
would in any case increase program readability. 

The algorithm for determining the requirement is dependent on the grammar 
of expressions. For our purposes, assume 

e : : =  c / v  / f (  ) / f ( e ) / f ( e , e  ) 

where c is a literal constant, v an identifier andf  a procedure name. Then 
we can define a procedure Req(e) as follows: 

1. I fe  i sc  o r v ,  then 
Re q(  e ) = { e : o~ } 

where a is a variable ranging over type descriptions. The result 
type o f  e is a. 

. 

. 

2. I fe  i s f O , t h e n  
Re q(  e ) = { f : void ~ o~ } 

The result type of e is a. 

If el is f(e2) then 

Re q(  e~ ) =  { f : o~ o ---) % }  

where a0 is the result type of e2, and al is a new unknown. The result 
type of el is al. 

Re q( f ( e 1 ,e  2 ) ) = { f  : o: o x oc 1 ~ a2}  u Re q (  e 1 ) ~  Re q(  e 2 ) 



142 

where a0 is the result type of el, al is the result type of e2 and a2 is 
new. The result 
type is a2. 

The 'accuracy' of the type information determined by Req can be improved 
by using symbol table information. 

5 Separate type checking with polymorphism 

Our approach to polymorphic procedures is to regard them as templates for 
a family of possible instantiations. If f:)~t.T, and u is a type, them we wilI 
denote by fu the instantiation of f of type [u/t]T. Only instances of 
polymorphic procedures are compiled. When a module is compiled, it is 
possible to determine which instances of its imported polymorphic 
procedures are required provided that the module being compiled has been 
fully instantiated. This suggests that initial compilation must proceed top- 
down, with instance requests being generated after each module 
compilation. Whenever a module is recompiled, new instance requests 
must be generated. Further instances may then need to be compiled. In 
practise, type parameter changes are not very common during software 
development, so there is not a frequent need for instance compilation. 

If the requirement that only instantiated modules be compiled is met, then 
imports lists can be built using the algorithm given in the previous section. 
The unification step is, however, more complicated, because exported 
types may be polymorphic. For example, suppose that a module A has this 
imports list: 

f : list a---) int 

g : char ~ o~ 

and that a module B, used by A, has this exports list: 

f : ~ t  .list t --~ t 

g : char ---> char 

g : char ---> int 

In this case, f must be instantiated to 



143 

f ~, : list int ---> int 

before unification can be applied (getting ~z ~ int ). 

The type-checking process can be described in the following way: 

The order  of a procedure p of type T is the number of outer-most ~.- 
bindings of T. A non-polymorphic procedure has order 0. If p:T and p 
has order n, then it is possible to find an instance p' of order 0 of type 
T(al,a2 ..... ak) where each ai is a type description. 

If E = ( Pl : 7"1 . . . . .  p~ : T~ ) is an exports list, then there is an obvious 

way to extend the notion of instanfiation to the entire list. We will denote 
the instantiation of E that uses (al,a2,...,an) by E(al,a2 ..... an). 

A module is type correct with respect to an export list E iff there is an 
instance I=E(al,a2,...,an) of E such that the imports list of A unifies with I. 

6 Abstractions 

If a programming language supports an abstraction mechanism, such as 
type in Pascal, then each variable in a program has an abstract type and a 
concrete type. The above algorithms can be modified to deal with concrete 
types in a fairly simple way. The details are somewhat tedious, so the 
algorithm will only be outlined here. Firstly, the definition of type 
expressions is extended so that base types have two parts: an abstract type 
and a concrete type. For example 

A: Matrix{Sparse} 

Then we define a 'concretize' function on type expressions as follows: If 
p :  R --> T is an abstraction and t is a type description, then Cp is the 

function that extends 

C p ( T  { R }  )=  R 

and 

c p ( u { s )  )= u { s )  



144 

to arbitrary type descriptions. 
Before seeking the match between a requirement and an environment, all 
procedures supplied by a module are concretized with respect to the 
abstractions they provide. The rest of the algorithm proceeds as before. It 
is also possible to look for an abstract match if the concrete one fails, 
thereby allowing a module to provide procedures that work at either the 
concrete level or the abstract level. 

7 Conclusions 

The algorithm presented here belongs to the class of type-inference 
algorithms. It is a very generous algorithm in the sense that it will allow 
type matches where most other systems would not. Consider the following 
example3: Suppose that 

G :At  .)~u .t x ( u  ---> int ) --> int 

Furthermore, suppose that the body of G contains the expression f(x) 
where x and f are the formal parameters of G. A system that validates the 
types of procedures independently of their use must fail because of a call 
such as G(3,g) where 

g :char - - , i n t  

This call appears to satisfy the type requirement of G, but execution of G 
will fail since the actual call g(3) is not correct. In the system presented 
here, an instance of the module containing G is checked for each actual call 
of G. The instance for G(3,g) will fail because 

f : char -~  int 

does not unify with 

f : int ---> int 

However, if the type of the actual parameter g was 

int --> int 

the corresponding module instance would pass the type-checking test. 



145 

This strategy presented here is useful because it does not require the 
maintenance of common include files. It also diminishes compile time 
because it can reduce the need to recompile modules that use modules that 
have been changed. 

Acknowledgement 

This research was supported by a grant from The Natural Sciences and 
Engineering Research Council of Canada. 

References 

1Michael R. Levy Type checking, separate compilation and reusability. In Proc. of the 
SIGPLAN "84 Conf on Compilers, pp 285-289, June 1984,Montreal. 

2R. Milner. A theory of type polymorphism in programming. J. Computer and 
Systems Sciencces, 17:348-375, 1978. 

3Sophia Drossopoulou. Private Communication. 


