
A

for Attribute

Compiler Generator

Evaluation During LR Parsing

Jorma Tarhio

University of Helsinki

Department of Computer Science

Teollisuuskatu 23, SF-00510 Helsinki, Finland

Abstract

A compiler generator called Metauncle is introduced. Metauncle produces one-pass
compilers in which all attributes are evaluated in conjunction with LR parsing. The
description of a language is given to Metauncle as an L-attributed grammar, and the system
transforms it before generation of an evaluator to another attribute grammar satisfying the
requirements for evaluation. The transformed grammar belongs to the class of so-called
uncle-attributed grammars. Besides general information about the system, the definition of
uncle-attributed grammars, the idea of the grammar transformation and the default rules of
the specification language are presented.

1. Introduction

The evaluation of inherited attributes is difficult in conjunction with

LR parsing because the upper part of the derivation tree is incomplete during

parsing and thus the tree structure cannot be used to convey values of

inherited attributes. There are several methods [Wat77, JoM80, Tar82,

Poh83, Met84, SIN85] to cope with the situation. In the following, we will

consider one of these, the uncle method introduced in [Tar82]. The uncle

method requires that all the semantic rules for inherited attributes are copy

The work was supported by the Academy of Finland.

147

rules, which simplifies evaluation considerably, because then the attribute

evaluator will be able to refer to the values of inherited attributes as copies of

values of synthesized attributes associated with the roots of the completed

subtrees.

We will introduce a new compiler generator Metauncle [Tar88b],

which generates analyzers that evaluate all attributes during LR parsing

according to the uncle method. The description of a language is given to

Metauncle as an L-attributed grammar, and the system transforms it to

another attribute grammar suitable for generation of an evaluator. The

transformed grammar belongs to the class of so-called uncle-attributed

grammars [Tar82, Tar88a].

The Metauncle system has been implemented using the compiler

generator HLP84 [KNP88, KEL88]. A prototype of Metauncle was

operational on a Burroughs B7800 in December 1986; the present version is

now running on a VAX 8800/8300 under VMS.

The rest of the paper is organized as follows. In Section 2, general

information of Metauncle is given. Default rules of the specification language

are explained in Section 3. Uncle-attributed grammars are defined in Section

4, and the details of the grammar transformation are explained in Section 5.

Finally, experiences of the system are described in Section 6.

2. General description

Metauncle consists of two processors: one performs the grammar

transformation and the other generates an attribute evaluator from the

transformed grammar. These processors have been implemented using the

compiler generator HLP84 [KNP88, KEL88] by describing both of them as

an attribute grammar. The implementation language of Metauncle and the

generated compilers is Pascal.

148

The specification language for Metauncle has a traditional form.

Attributes, grammar symbols and names of external types are declared

before the attributed productions. Productions are given in the BNF-form.

Present version of the specification language is slightly modified from the

form presented in [Tar88b].

The example grammar in Fig. 1 is written in the specification language

and it describes a simple block-structured language. A block consists of two

lists: a declaration list and a use list. The function INIT initializes the symbol

table, CONC stores a new identifier to the symbol table and CHECK

examines whether a used identifier has been properly declared.

TYPES

SYMBOLID;

SYMBOLTABLE

ATTRIBUTES
ID: SYNTHESIZED SYMBOLID;

EI: INHERITED SYMBOLTABLE;
ES: SYNTHESIZED SYMBOLTABLE

GRAMMAR SYMBOLS
P; B(EI); DL(EI;ES); D(EI;ES); SL{EI); S(EI); IDENT(ID)

PRODUCTIONS
P = B RULES B.EI :=

B = 'BEGIN' DL ';' SL 'END'

INIT() END;

RULES DL.EI := B.EI;

SL.EI := DL.ES E~;

DL = D RULES D.EI := DL.EI;

DL.ES := D.ES END;

DL = DL ',' D RULES DL 2.EI := DL.EI;

D.EI :=

DL.ES :=

D = 'DECL' IDENT RULES D.ES :=

SL = S RULES S.EI :=

SL = SL 'I' S RULES SL 2.El
S.EI :=

S = B

S = 'USE' IDENT

DL 2.ES;

D.ES END;

ADD (D.EI, IDENT. ID) END;

SL.EI END;

:= SL.EI;
SL.EI END;

RULES B.EI := S.Ei END;

RULES CHECK(S.EI, IDENT.ID) END

Fig. 1. Example grammar.

When generating a compiler for a language, the user gives to

Metauncle an attribute grammar, external declarations containing constants,

variables and semantic functions (in Pascal) and a lexical description. From

the attribute grammar Metauncle produces an attribute evaluator. While

compiling of a target compiler, the evaluator and the external declarations

149

are merged with a skeleton compiler, which is a modification of that one used

for target compilers in the HLP84 system. A parser for the target compiler is

produced with the same parser generator used in the HLP84 system. The

default type of a parser is a table-driven LALR(1) parser, but the generator is

also capable to make some other kinds of LR parsers, see [KEL88]. The

lexical description is given in a separate file in the form used in HLP84

[KNP88].

In a compiler generated by Metauncle, attribute evaluation is directed

by an LR parser. All evaluation actions are carried out in conjunction with

reductions. To save space, storage areas for attributes are deallocated after

the last reference to them.

3. Default rules

In the specification language, all copy rules of a grammar need not to

be presented. So the list of productions with semantic rules in Fig. 2 is

equivalent with the complete form given in Fig. 1. This is a new feature

added to the latest version of Metauncle.

P = B RULES B.EI := INIT() END;

B = 'BEGIN' DL ';' SL 'END';

DL = D

DL = DL ', ' D

D = 'DECL' !DENT RULES D.ES := ADD(D.EI,IDENT.ID) END;

SL = S

SL = SL ', ' S

S = B

S = 'USE' IDENT RULES CHECK(S.EI, IDENT.ID) END

Fig. 2. Productions without default rules.

The principles for default rules are based on the L-attributedness of the

input grammar and on the following name convention. An inherited and a

synthesized attribute symbol are assumed to represent the same global

structure, if their names are the same except the last letter, which is i for an

inherited symbol and s for a synthesized symbol. Thus inherited envi and

synthesized envs are, for example, assumed to be used for the same purpose.

150

The right-hand side of a default copy rule for an output occurrence is the

previous input occurrence of the same kind in the standard evaluation order

for L-attributed grammars.

More formally, let us consider a production Xo~XIX2. . .X .. If Xk,

k > O, has an inherited attribute Xk.<a>i with no explicit semantic rule, the

right-hand side of the default rule for Xk.<a>i is the first existing attribute

occurrence of Xk.l.<a>s , Xl.<a>s and Xo.<a>i. If Xo has a synthesized

attribute X0.<a>s with no explicit semantic rule, the right-hand side of the

default rule for Xo.<a>s is the first existing attribute occurrence of X,,<a>s,

..., X1.<a>s and Xo.<a>i.

In practical L-attributed grammars, the default rules seem to cover 75

% of all semantic rules.

4. Uncle-attributed grammars

The Metauncle system transforms an L-attributed input grammar to an

uncle-attributed grammar from which an attribute evaluator is generated.

We will define uncle-attributed grammars following mainly the notations of

[Tar88a]. An introduction to the subject can be found in Section 3.1 in

[Tar82].

In uncle-attributed grammars, the semantic rules for inherited

attributes are restricted to copy rules, and then the values of inherited

attributes are available as copies of values of synthesized attributes associated

with the roots of the completed subtrees. Let us consider the situation

described in Fig. 3. Just after the LR parsing of the subtree B has been

finished, the nonterminal B will be in the parsing stack until the reduction by

A ~ B C is performed, and the value of the synthesized attribute B.b can be

used for the values of inherited attributes C.c and E.e provided that the

relevant semantic rules for C.c and E.e are copy rules. The synthesized

attribute B.b can be used even ifB were not just on the top of the stack like in

the situation described.

151

A
**~ ".%

B b c

1L
D d e E

Fig. 3. Use of uncles.

We define a copy relation, denoted C, on the set of the attribute

symbols of the grammar as follows: b C c, if there is a semantic rule Xi.c :=

Xj.b in a production Xo~X1..X,, where c is an inherited attribute symbol.

When b C_. + c, we say that c is copy-dependent on b. Let b and d be inherited

and s be synthesized. If s C d C* b and Xi.d := Xi.s is a copy rule in

Xo~XI..X ., we say that the grammar symbol Xj is an uncle symbol of b and

Xj.s is an uncle attribute of b. In Fig. 3, the nonterminal B is an uncle symbol

of the inherited attribute symbol e, and B.b is an uncle attribute of e. In Fig. 3

an explanation can be seen for the term "uncle", for the uncle symbol of e is a

left brother of an ancestor of the node with which e is associated.

The evaluation strategy can be described with these concepts. All the

evaluation actions are applied to synthesized attributes and carried out in

conjunction with the reductions. Let us study a parsing situation (13~, u),

where the reduction by A~ a is the next parsing action. In conjunction with

this reduction we will evaluate all the synthesized attributes of A using the

values of the synthesized attributes associated with o~ (we assume those

attributes have been evaluated before the current situation) and the values of

the inherited attributes of A. The value of an inherited attribute A.b is got

from a synthesized attribute associated with the rightmost uncle symbol of b

in B (i.e. the topmost uncle symbol of b in the parsing stack). Note that the

inherited attributes themselves are never evaluated; their values are available

only as copies of the values of synthesized attribute instances.

152

Defini t ion. An L-attributed grammar G is uncle-attributed, if the

conditions U1, U2 and U3 are satisfied.

U1. All semantic rules for inherited attributes are copy rules.

U2. If Xo-~X1...Xn is a production with a copy rule Xi.b := Xi.c,

where 0 < i < j < n, then for every inherited attribute symbol d,

such that b C_* d, none of the grammar symbols Xi+ 1 Xi_ 1 is an

uncle symbol of d.

U3. An inherited attribute symbol is copy-dependent on only one of

the synthesized attribute symbols associated with its uncle

symbol.

The first condition fixes the form of semantic rules for inherited

attributes, and the last condition ensures that we can use the values of uncle

attributes unambiguously. The second condition deats with two kinds of copy

rules for inherited attributes, where the right-hand side Xi.c is either a

synthesized attribute occurrence when i > 0 or an inherited attribute

occurrence when i = 0. q~is condition guarantees that the topmost uncle

symbol of d in the parsing stack will be used. In Fig. 4 there is a counter-

example, where the grammar symbol B is an uncle symbol of d. The attribute

C.d gets its value from an uncle attribute attached to the occurrence of B

which is not the topmost (rightmost) one.

B

B d"C

Fig. 4. Conflict against U2.

153

Theorem. All the attributes of an uncle-attributed LR(k) grammar G can be

evaluated during LR parsing.

Proof. See [Tar88a].

5. Uncle transformat ion

An L-attributed grammar must be transformed to the uncle-attributed

form before the generation of an evaluator. In this transformation called the

uncle transformation, the conflicts against conditions U1, U2 and U3 are

removed one at a time. This requires insertions of new marker nonterminals

generating the empty string into the grammar.

Though the uncle transformation can make every L-attributed LR

grammar uncle-attributed, it is not guaranteed that the grammar is any more

LR after the transformation because of the marker nonterminals. For

example, we cannot enter such a nonterminal in front of the right-hand side

of a left-recursive production. However, the parsing conflicts do not seem to

be very usual in the case of practical grammars. We will return to this subject

later on.

The transformation consists of five phases. The first phase makes an

L-attributed input grammar satisfy U1, i.e. all semantic rules for inherited

attributes will be copy rules.. The technique used is well-known (see e.g.

[ASU86]): a nontrivial rule for an inherited attribute is moved to a rule for a

synthesized attribute associated with a marker nonterminal inserted in front

of the nonterminal occurrence involved with the original inherited attribute.

Let us consider an example. Let a semantic rule C.c := F(A.a, B.b) be

associated with a production A~BC. The transformed structure will be:

154

A - ~ B X C
X.a := A.a
X.b" := B.b
C.c := X.c"

X - , e

X.c" := F(X.a, B.b')

The example structure before and after transformation is described in

Fig. 5. In the following we call this kind of a local transformation a rule

t ransfer .

a . A %..--...
B B

a ~ , A

, , ,_\j
Fig. 5. A rule transfer.

The optional second phase eliminates a part of the conflicts against

condition U2. This phase is explained in detail later.

A

B b c C
I :

|

d
Fig. 6. A conflict against U3.

The third phase eliminates the conflicts against condition U3. Let us

consider the situation in Fig. 6. If c C* d for some inherited d, c is copy-

dependent on b and B is an uncle symbol of d. There is a conflict against U3,

if d is also copy-dependent on another synthesized attribute symbol associated

with B. The solution is to perform a rule transfer for the copy rule C.c :=

B.b. The transformed production is shown in Fig. 7.

155

A

B'i~'/;~'N b' X

Fig. 7. A solution to the conflict against U3

The elimination of conflicts against U2 is trickier because it must be

done in two phases. Let us consider an example where the semantic rule

C.c := A.a is associated with the production A~BC, and B is an uncle symbol

of c. In the fourth phase a nile transfer is performed for C.c := A.a . The

modified structure is shown in Fig. 8.

B "'" a' x c,F e'"c
k.2

Fig.8. Rule transfer in the fourth phase

If B is not an uncle symbol of a, the conflict has been eliminated.

However, the conflict may still be present like in Fig. 9 (a), where B is an

uncle of a and a', and so the conflict against U2 is still present. This conflict

will be recognized and eliminated in the fifth phase of the transformation

where the rule X.a" := A.a is transferred in front of B this time (Fig. 9 (b)).

B '"a' X c("'X c"C
k_2

(a)

a' X 2 " a ~ a ')~ c' "c ' 'C
k j

(b)

Fig. 9. Solution for an inherited conflict.

156

Now we retum to the second phase. All the conflicts against condition

U2 can be removed in the fourth and fifth phase of the uncle transformation,

but this approach may produce parsing conflicts. For example, if we replace

the nonterminal A by B in the example described in Figures 8 and 9, the

resulting structure would cause a parsing conflict, because B is then left-

recursive. In some cases a parsing conflict can be prevented by performing

another kind of a transformation depicted in Fig. 10, where the uncle symbol

B has been hidden.

B c C B' c C

B
Fig. 10. Hiding of an uncle symbol.

This kind of hiding of uncle symbols does not, however, solve all the

conflicts against U2. It is possible that the copy chain starts from the same

production where the conflict against U2 is detected and then the hiding of an

uncle symbol does not help.

It is easy to show that the uncle transformation removes all conflicts

against U1 - U3 [Tar88a].

6. Experiences

To test the Metauncle system several attribute grammars have been

processed. One of them describes a large subset of the static semantics of

Pascal [Tuu87]. To give a view of the effect of the uncle transformation on

the size of an attribute grammar, statistics of the L-attributed grammar for

Pascal given as input and of the uncle-attributed form produced by the uncle

transformation are given in Fig. 11.

Grammar symbols
Attribute symbols
Productions
Semantic rules

157

L-attributed
148
19

297
700

Uncle-attributed
183
47

332
807

Fig. 11. Figures about two Pascal grammars

Evaluation conflicts appear always as parsing conflicts caused by

marker nonterminals inserted by the uncle transformation. Because the

changes made to the grammar are always local and they correspond to the

conditions for uncle-attributed grammars, it is quite easy to infer the reasons

for the conflicts by comparing the transformed grammar with the original

one, because the transformed grammar is an ordinary attribute grammar

written in the very same specification language as the original one. However,

the conflicts are not very common in practical L-attributed grammars. In

preparing the Pascal grammar mentioned above about ten evaluation con-

flicts were encountered. The solving of the conflicts took for a graduate

student about 2 % of the total work time of the project.

The present version of Metauncle produces an analyzer of Pascal in 80

seconds of processor time on a VAX 8800 starting from the L-attributed

description. The total time would be smaller, if the uncle transformation and

the generation of an evaluator were merged. However, there are advantages

in having two separate processors. Namely, the system is conceptually

simpler to control and it is easier to understand reasons for evaluation

conflicts as explained above. A separate transformation also offers flexibility

and possibilities to make experiments. For example, a grammar may be only

once augmented with the default rules (using an option of the first processor),

and the augmented form is then developed further to optimize the coding

time and to prevent possible errors in repeated augmentations.

To evaluate the overall efficiency of a compiler generated by

Metauncle, the Pascal processor produced by Metauncle was compared on a

VAX 8800 with a Pascal processor produced by HLP84. The processor

generated by Metauncle was slightly faster than the other processor. As a

158

comparison, the same tests were also mn by the standard Pascal compiler of

VAX (the times for this compiler include the code generation, too). The

hand-written processor of VAX was typically about 2-3 times faster than the

processor generated by Metauncle.

Another grammar written for Metauncle is a description of the

specification language for input grammars [Ran88]. The processor generated

from that grammar is used as a tool in developing new descriptions. One

reason for making such a self description is the unsatisfactory error recovery

of a processor generated by HLP84. The description could be easily extended

so that the uncle transformation and the generation of a evaluator could be

performed by processors generated by Metauncle itself.

One characteristic feature of the uncle method is the search for uncle

symbols in the parsing stack. (Conceptually, it is slightly misleading to speak

about a stack, because every item of the data structure should be accessible in

our approach.) This feature is theoretically time-consuming, because the

evaluation algorithm may need O(n 2) time in the worst case for an input of

length n [Tar82]. However, the uncle symbols are always close to the top of

the parsing stack in the case of practical grammars. The search time was only

1 % of the total compilation time in experiments done with compilers

generated by Metauncle.

The experiments support the fact that the uncle method combined with

the uncle transformation offers an easy way to generate practical compilers

for a large class of L-attributed grammars. This class is competitive with the

classes accepted by related compiler generators [Tar88a]. The ease of

implementing Metauncle using the HLP84 system was also a nice example of

the power of compiler writing tools.

159

References

[ASU8N

[JoM80]

A. V. Aho, R. Sethi and J. D. Ullman: Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, Mass., 1986.

N. D. Jones and C. M. Madsen: Attribute-influenced LR Parsing. In: Aarhus
Workshop on Semantics-Directed Compiler Generation (ed. N. D. Jones),
Lecture Notes in Computer Science 94, Springer-Verlag, Berlin-Heidelberg-
New York, 1980, 393-407.

[KE~8]

[KNP881

[Me184]

K. Koskimies, T. Elomaa, T. Lehtonen and J. Paakki: TOOLS/HLP84 report
and user manual. Report A-1988-2. Department of Computer Science,
University of Helsintd, 1988.

K. Koskimies, O. Nurmi, J. Paakki and S. Sippu: The design of a language
processor generator. Software Practice & Experience 18, 2 (1988), 107-135.

B. Melichar: Evaluation of attributes during LR syntax analysis. In: Vortriige
des Problemseminars Attributierte Grammatiken und ihre Anwendungen,
Pruchten. WPU Rostock, 1984.

[Poh83] W. Pohlmann: LR parsing for affix grammars. Acta Informatica 20, 4
(1983), 283-300.

[Ran88]

[SIN85]

[Tar82]

[Tar88a]

[Tar88b]

[Tuu87]

DVat771

O. Rannisto: Revisions for the Metauncle system (in Finnish). Draft.
Department of Computer Science, University of Helsinki, 1988.

M. Sassa, H. Ishizuka and I. Nakata: A contribution to LR-attributed
grammars. Journal of Information Processing 8, 3 (1985), 196-206.

J. Tarhio: Attribute evaluation during LR parsing. Report A-1982-4.
Department of Computer Science, University of Helsinki, 1982.

J. Tarhio: Attribute grammars for one-pass compilation. Report A-1988-11.
Department of Computer Science, University of Helsinki, 1988.

J. Tarhio: The compiler generator Metauncle. Report C-1988-23, Department
of Computer Science, University of Helsinki, 1988.

H. Tuuri: An attribute grammar checking the semantics of Pascal for the
Metauncle metacompiler (in Finnish). Report C-1987-59. Department of
Computer Science, University of Helsinki, 1987.

D. A. Watt: The parsing problem for affix grammars. Acta Informatica 8, 1
(1977), 1-20.

