Optimizing Implementation of Aggregates m the Compiler
Specification System MAGIC !

A. Poetzsch-Heffter

Technische Universitit Miinchen
Institut fir Informatik
Arcisstrafie 21
8 Munchen 2
Federal Republic of Germany
poetzsch @lan.informatik.tu~muenchen.dbp.de

Abstract

The paper describes the implementation concept including optimizing transforma-
tions of the aggregate handling in the MAGIC System. The MAGIC System is a sys-
tem for specification and rapid prototyping of compilers developped at the Technical
University of Munich. One of its main features is a powerful functional specification
language based on an extension of attribute coupled grammars [GaG84]. For the
specification of structured symboltables, the language provides the generic abstract
datatype aggregate.

As the user may handle aggregates like any other values, the system must provide
the mapping of aggregate values to objects in the storage and of functions to storage
changing procedures. This optimizing implementation mapping consists of three
parts. First, all aggregate occurrences are determined and their dependencies are
analysed. Then the algorithm tries to refine the attribute dependencies, so that reading
operations to an aggregate-valued attribute preceed writing operations to this attribute.
Finally, the functions are replaced by the corresponding operations that operate on a
shared hashtable.

1. Introduction

The paper describes the implementation concept including optimizing transforma-
tions of the aggregate handling in the MAGIC System. The MAGIC System is a sys-
tem for specification and rapid prototyping of compilers developped at the Technical
University of Munich. Its main features (compared with other compiler generating
systems) : It has a graphical user interface to support the specification process and to
visualize compilations, a functional specification language based on an extension of
attribute coupled grammars [GaG84], and an interpreter to allow high-level debug-
ging. A short overview of the system (as far as needed for this work) is given in
chapter 2; a more detailed description can be found in [KLP88].

1 Support for this research was provided by the Siemens AG Miinchen ZTI SOF 2

191

1.1. The Problem

The major task in the development of a compiler front end is the design of a
suitable symboltable; this especially holds for big languages like Ada or Chill where
the front end is about half of the whole compiler {c.f.[Bj680] p.IX) and a high-level
specification with an efficient implementation of symboltables is particularly necessary.
The existing compiler generating systems don’t provide special means for the specifica-
tion of symboltables:

— Either the user has to program imperative semantic actions getting efficient but
very complex solutions which often even violate the paradigm of the specification
formalism (cf.[BaT84])

~ or the user specifies the symboltable by using functional list structures loosing
efficiency (cf.[{UDP82)).

The MAGIC Specification Language provides the generic abstract datatype aggre-
gate with functions like enter, lookup, etc.. Aggregates are mainly used to specify
structured symboltables (e.g. in a block structured language, the symboltable is a list
of aggregates). As the user may handle aggregates like any other values (figure 1
shows a typical situation, where an aggregate value is used for the calculation of two
attributes), the system must provide the mapping of aggregate values to objects in the
storage and of functions to storage changing operations (implementation mapping).

Symbtab_In BLOCK

pei's sTus

figure 1

The paper describes this implementation mapping and demonstrates how to use
and refine attribute dependencies during generation time to get efficient implementa-
tions.

1.2. Informal Qutline of the Approach

The user specifies the symboltable as a structure of aggregate types and uses the
symboltable values as any other values in a purely functional manner. The system
implements the aggregates by a shared datastructure with hashed lookup. In contrast
to functional languages like ML [Har86], where the dynamic behaviour of a program
is in general unknown, so that copy actions can’t be avoided, functional attribute
grammars allow effective optimization : The attribute flow can be calculated and even
be influenced; and as the main application of aggregates is known, we can use heuris-
tics where necessary,

The optimizing implementation mapping consists of three parts. First, all aggre-
gate occurrences are determined and their dependencies are analysed. Then the algo-
rithm tries to refine the attribute dependencies, so that reading operations to an
aggregate-valued attribute preceed writing operations to this attribute. Finally, the
functions are replaced by the corresponding operations that operate on a shared hash-
table. Aggregate values are represented by access information to the hashtable. The
algorithm for the implementation mapping is presented in chapter 3.

192

1.3. Related Work

The work is related to different papers in the area of functional languages and
attribute grammars. Especially, four aspects in the treatment of attribute grammars
have influenced our work, namely storage optimization [Gan79], nonlocal attribute
handling [R#i86], lifetime analysis for attributes [Kas87], and incremental evaluation
for aggregate values [HoT86].

2. The MAGIC System and its Specification Language

2.1. The MAGIC System

The MAGIC System is a tool for the interactive specification and development of
compilers. Compared with other compiler generating systems, it stresses the specifica-
tion and testing process. For this purpose, the MAGIC System provides :

- a modular and powerful high-level specification language based on attribute

grammars (introduced in section 2.2).
~ a graphical and interactive user interface to most components of the system sup-

ported by a consistency check mechanism.
~ generator, interpreter and a graphical debugger enabling fast and high level test-

ing of the specification as well as a rapid prototype implementation of the com-
piler.
The following figure gives a rough overview of the system:

/ user Interface \

4 L
S B AT
A A

| example) sxample
specification generator programms
‘L..\ \
translator interpreter »
] F_J

generator
optimizer

_"'"'7

3
generated 7| combinator | ly| information for
information i interpreter

epaesiflication fest
environment envirenment

193

The user interface supports the specification process by enabling users to directly
edit graphical representations of attribute grammars and the testing phase by debbug-
ing attribute evaluation on the same level. The main aspects of the graphical
representation of attribute grammars will be introduced together with the specification
language in the following section.

2.2. The MAGIC Specification Language

This section introduces those features of the MAGIC Specification Language
(MS) needed for the following central chapter of this paper; a complete description can
be found in [Poe88].

2.2.1. The Type Concept

MS has a uniform type concept to describe syntax trees and attribute values.
Besides standard types and subtypes thereof, there are structured types (for the
description of syntactical productions and variant records resp.), list types, and aggre-
gate types. To illustrate the usage of types and their values, we stepwise introduce a
miniature programming language minPL and specify a function simple sem _analyse.
This function computes a table that records the number of all occurences of an iden-

tifier where it was not visible. The following figure gives the abstract syntax of
minPL :

prog: PROGRAM

block: BLOCK
DCLS STMS
DCL ST™
e Y ' N
varint: varbool: assign: blockstm: .
fivure | | /\
gure 2 IDENT IDENT IDENT EXP BLOCK

As shown in the figure, a minPL program consists of a block that itself consists
of a declaration list and a statement list. minPL provides integer and boolean vari-
ables. Every used identifier must have been declared as in known block structured
languages. For brevity, we ommit other statements and the specification of expres-
sions.

Figure 2 defines the grammar types PROGRAM, BLOCK, DCL, STM, and the list
types DCLS and STMS, as well as the constructors (in figure 2 prog,varint,varbool,..)
to construct the trees/terms of those types, to name the productions, and as discrimina-
tors of the defined type.

2.2.2. Lists and Aggregates

As shown in figure 2, the abstract syntax of a programming language can be
defined by grammar types and list types. The manipulation of lists is done by func-
tions like emptylist { denoted by <>), concatenation (.+.), and makelist (<.>).

194

For the specification of symboltable mechanisms and comparable tasks, the system pro-
vides aggregate types [BaW81]. E.g. to specify the function simple sem_analyse, we
need a symboltable that records the declarations. Figure 3 shows the definition of the
type SYMTAB. Values of type SYMTAB are lists of aggregates of type
LOCAL_SYMTAB. Each local symboltable is an aggregate with keytype IDENT and
entrytype VARTYPE. VARTYPE is a type with the two constants vint and vbool to
record the type of the found declaration.

SYMTAB

LOCAL_SYMTAB OCCtIJRTAB
! l " IDENT i K
IDENT ~» VARTYPE > integer

——
figure 3 vint vbool

Aggregates are constructed and handled by the following functions: empty_grex
(denoted by []), enter (. &(.,.)), lookup (.[.]), isdefined, etc.. Their usage is illus-
trated in the following section.

2.2.3. Functional Abstraction
In the MAGIC Specification Language, there are four kinds of functions:

- Standard functions: They are provided by the language to bandle the standard
and generic datatypes.

-~ External functions: They are an interface to the programming languages C and
Pascal. They are not further discussed in this paper (c.f.[Poe88]).

—~ Applicative functions: They are recursively defined functions as rec_isdefined in
the example below.

- Attributive functions: They are defined by means of an attribution as the func-
tion simple sem_analyse in the example. They are an generalization of attribute
coupled grammars [GaG84].

To continue the example and the illustration of aggregates, the foliowing figure
shows the specification of the function simple sem_analyse consisting of the func-
tionality and the corresponding attributions:

function simple_sem_analyse (PROG p) OCCURTAB:

T El ‘ PROG CoeTh
@ block: [sym |[0ccTbin | BLOCK | aeeTbont |

[sy]rOechM BLOCK | OoeThomI

(SyTb!nJ poLs ! SyThOut ! { SyTh ”Occhln} STMS {owrboml

185

! SyTb HOcchan STM {Oeemoml P LOcchln] STM { o:moﬂ

yeript: [symoin] per [Tsymsour |

)

IDENT { sy |[occToin] EXP [occtoout |

IDENT

figure 4

For brevity, the trivial attribution schemes for DECLS and blockstm are left out;
the attribution scheme for varbool is like that for varint.

By this kind of functional abstraction, attribute grammars become a flexible means for
modular function specification. They can be used in all places where syntax-directed
computation is needed: For the specification of a whole compiler phase as well as for
the specification of semantic actions (not shown in the example).

Finally, we give the definitions of the predicate rec_isdefined that checks whether
an identifier has been declared and the function update occ that updates the
occurrence table if the is_decl parameter is true:

function rec_isdefined (SYMTAB st; IDENT id) boolean:

if is_<>(st)
then false
else if isdefined(first(st), id)
then true
else rec_isdefined(rest(st), id)
end

end

196

function update_occc { boolean is_decl; OCCURTAB ot; IDENT id) OCCURTAB:
if is_decl
then ot
else if isdefined(ot, id)
then ot &(id, otlid}+1)
else ot &(id, 1)
end
end

3. Implementation of Aggregates

The following four sections describe the implementation of aggregates in the
MAGIC-System. First, the target datastructure for aggregates is presented. Then, we
explain the analysis of attribute equations and the algorithm for a slightly restricted
language. Finally, we show the extensions for the unrestricted case.

3.1. Implementing Functions by Storage Changing Procedures

To implement the specification language of MAGIC, each function expression in
an attribute equation has to be substituted by a storage changing procedure or func-
tion call and additional operations. Furthermore, datastructures must be given for the
types of the language.

We implement aggregates by a shared hashtable. The following dependency graph
gives an idea of what can be shared and motivates the chosen datastructure.

mpgrex empty_grex) imp_empty_grex
NG entery imp_entery
entery lookup entery lookup imp_anter k’_..impﬁlookup
enterg entler3 ragion1) imp_enterg
/\ — T

e$nter4 eiters / \ ;:‘roiect1 prolectz

enter,
entery ‘5 imp_entery imp_enterg
‘ region2 j{ region3

figure 5

As illustrated in figure 5, every aggregate value is computed by the function
enter starting from an initial value (here empty _grex). If we can execute the lookup-
operation before the entery-operation, then enter;, lookup, enter, and enter; can
operate on the same table, whereas the resulting table has to be protected from the
entries of entery and enters in order to get correct tables after these entries; i.e. son
nodes always share the table of their father. Figure 5 shows the corresponding parti-
tion of the dependency graph reflecting the sharing. E.g. the table after enter, consists
of region 1 and region 2. The third part of figure 5 shows the dependency graph with
the corresponding imperative procedures. Before we give their definitions, we describe
the underlying datastructures and functions :

197

- A global hashtable HashTable and a global region counter RegCount

- A injective function code key: KEY DOMAIN x NAT —-—> HASH_KEY that
codes the aggregate key and the region number into a key for the hashtable

- For each aggregate value a record AGGR with two components: One that records
the corresponding list of region numbers (RegList); the other holds the boolean
value IsProtected that records whether the aggregate value is protected (see below)

The functions are implemented by the following imperative procedures:

enter:
procedure imp_enter { AGGR a; KEY k; ENTRY ¢) AGGR:
if a.IsProtected
then hash_tab_enter(code_key(k,RegCount) , e };
var AGGR avar := new(AGGR);

avar.RegList := append(RegCount, a.Reglist);
avar.IsProtected := false ;
RegCount = RegCount + 1 ;
avar Lop{ o Reglist)
else hash_tab_enter(code_key(k, , €)
a
end
empty_grex:

procedure imp_empty_grex ()} AGGR:
var AGGR avar := new(AGGR);

avar.RegList = make_list{ RegCount);
avar.IsProtected := false ;
RegCount := RegCount +.1 ;
avar
end
lookup:

procedure imp_lookup (AGGR a; KEY k) ENTRY:
imp_rec_lookup(a.RegList, k) ;

procedure imp_rec_lookup (REG_LIST regl; KEY k) ENTRY:
if isempty(regl)
then not_found
else vare : ENTRY TYPE;
e = hash_tab_lookup(code_key(k,first(regl)) };
if e == not_found
then imp_rec_lookup(rest(regl), k)
else e
end
end

The operation to protect hashtable states:
procedure protect (AGGR a) AGGR:
a.IsProtected := true ;
a

198

3.2. Analysis of Attribute Equations

The aim of the approach is to replace the expressions on the right hand side of
the attribute equations by the corresponding operations of the previous section and to
refine the attribute and functional dependencies. As we want to perform static opti-
mizations (i.e. at generation time), the actual dependency graph of the aggregate
values is not available. But in contrast to functional programming languages like ML
(cf.[Har86]), we posssess a very good approximization of it, namely the patterns it
consists of: The dependency graphs of the grammar productions.

To concentrate on the main ideas, we introduce some simplifications; the general case
will be discussed in section 3.4 :

~ nested expressions in attribute equations are assumed to be broken off by using
auxiliary attributes

- output attributes may not be used in the production

~ structured types based on aggregate types are not allowed (e.g. a type like
SYMTAB (see figure 2) is then forbidden)

With these restrictions, we get the following central definition :

Definition:

The production dependency graph (PDG) Gp = (V,E) of an attributed grammar
production P consists of a set V of labelled vertices, a set E of labelled edges, and the
functions

source,target : E —> V
to denote the incidence relation:

-~V equals the set of attributes labelled by:
attr kind : V —> {in, out, aux } , telling the kind of the attribute;
has_aggr type: V —-> boolean , telling whether the
attribute will hold an aggregate value or not;

-~ E, source, and target express the attribute dependencies; E is labelled by:
dependency kind : E —-> { i/o_attr_dep, aggr_passing_dep,
aggr_using_dep, other_dep },
in the following way:
1) dependency_kind(e) = i/o_attr_dep
if source(e) is an output attribute and
target(e) 1is an input attribute of the same nonterminal.
i) dependency_kind(e) = aggr_passing dep
if has aggr type(source(e)) and
has_aggr_type(target(e)) and
the value of source(e) is passed to target{e)
either without change or by an enter operation.
iil) dependency kind(e) = aggr_using dep
if the function that yields the value of target(e) has the aggregate valued
attribute source(e) as a parameter and performs only lookup and/or isdefined
operation on it.
iv) dependency kind(e}) = other_dep in all other cases.
o
With the restrictions given above and because of strong typing in MS, the com-

putation of V, attr_kind, and has_aggr_type is straightforward. The computation of E,
source, target and dependency_kind proceeds as follows:

199

— compute the functional dependencies local to the production, and label the
corresponding edges as described in the definition of PDG’s. This is no problem
for functions like enter, lookup, etc. or user defined functions that are not recur-
sive. For recursive or attributive functions we compute a simple, but effective and
of course correct static approximation of the dynamic dependencies:

i) If the function has parameters and results of the same aggregate type, then
label the corresponding edges by aggr passing_dep.

ii) If the function has parameters of aggregaté type but the result is of another
type, then label the corresponding edges by aggr_using dep.

iti) If the function has no parameters of aggregate type, then label the
corresponding edges by other_dep.
(cf. the discussion in chapter 4).

~ compute the input/output-graph of the production as described in [KeW76] and
label the resulting edges by i/o_attr_dep;

The production dependency graph is the abstract notation of the information that
we need for the "value”-flow analysis in the following section.

3.3. The Algorithm

The algorithm has two parts. First, it refines the partial order given by the PDG
in order to place aggregate using functions before aggregate passing functions with the
same input aggregate (cf. lookup and enter, in section 3.1.). The second part of the
algorithm labels those edges of the PDG where the procedure protect has to be
inserted. Finally, the global frame of the algorithm will be discussed.

3.3.1. Refining the production dependency graph

The refinement of the PDG’s is done to minimize the number of protect opera-
tions, i.e. to keep the region lists as short as possible. The refinement of one PDG
proceeds as follows:

Let "<” be the partial irreflexive order implied by the PDG, i.e. v<v’ if there is a
sequence of edges that starts at v and ends at v’;

1. Compute the set
Skone =1 (v,e,U) € VX E x (set of E) |
has_aggr type(v)
and { e is the only edge with source(e) = v
and dependency_kind(e) = aggr passing dep)
and € ¢ U <==> (source(e’)=v
and dependency_kind(e’) = aggr_using dep) }
2. Delete all tuples from Sig, where at least one element of the using set U
depends on the value produced by the passing edge:
SZne = { (v,e,U) € Slgn | there is no €’ ¢ U: target(e) < target(e’) }
(In these cases the protect operation can’t be avoided.)
3. Reduce the using sets in the tuples as follows:
Sine =1 (v,e,U) € VX E x (set of E) | there exists a (v',¢’,U’) € S2s. :
v=v" and e=¢ and U contains exactly the edges of U’
that have maximal target vertices in target({fe}vU’) w.r.t. 7¢<” }
(As we want to add dependencies between target vertices of the using edges and
the target vertex of the passing edge e, we only have to consider “independent

200

edges”).

4. Take one element (v,e,U) from S2;, and add other_dep edges between the ver-
tices in target(U) and the vertex in target(e).

5. Delete the chosen element (v,e,U) from SZz,. and proceed with step 2 until
Sisne is empty.

u]

Remarks:

i) The refinement process seems perhaps quite costly; but it is not, as even in big
compiler front end specifications S3;, and the using sets rarely contain more
than two elements.

ii) The choice of the element in step 4 is guided by heuristics which partially depend
on issues concerning the extensions of the outlined algorithm (see section 3.4.).
The main idea is to minimize the number of added dependencies. So we prefer
elements with small using sets if a choice is necessary at all {cf. (i) above).

iii) Correctness of step 4: We have to show that adding dependencies doesn’t destroy

the partial order. This is proved by the following two lemmata.:

Lemma 1

For each element (v,e,U) of Sis,. holds that the targets of {e}uU are not mutu-
ally comparable w.r.t "¢”, i.e.:

for all v, v’ ¢ targef{{eluU) : — vev’ A —viev .,

Proof: Let v, v’ be two targets of {e}ulU with v < v’ ;

Case v = target(e) : contradicts step 2.
Case v = target(U) : contradicts the reduction of the using set in step 3.

]
Lemma 2

Let PO(<) be a partial irreflexive ordering of V, UcV, and p,ue V\U so that the
elements of Uu{p,u} are mutually incomparable
(for all v,v’ « Uulp,ul 1 —vev’ A —vev);
let PO’(<) be the transitive closure of PO(<)uf{(u,p)}, i.e. the refinement of PO()
by putting u before p.
Then PO’(<) is a partial irreflexive ordering of V and for all v,v’ ¢ Uu{p} :

~ VKV A VY

Proof: i) PO’(<) is transitive by construction;

il) PO’(<) is irreflexive: Suppose there is an element v with v < v ; this unplies

p<v and v < u;so we have p < u in contradiction to the presupposition of

this lemma.

iii) Suppose there are v,v’ ¢ Uuip} with v < v’ ; this implies v < u and

(p=v or p<v'), which again contradicts the presupposition of this lemma.
[m|

Finite induction over U yields the desired result.

3.3.2. Insertion of the Protection Operation and Global Frame of the algorithm

After the refinement of a PDG, protection operations (see section 3.1.) have to be

inserted where an aggregate value is passed to different attributes or where an aggre-
gate value is possibly passed before it is used. In our formalism, we denote the inser-
tion as the set of edges in question:

201

Let Grgye be the refined PDG; the set Ejrpmec (Gregne) 15 defined as follows:
Eprotect (Gtcﬁnc) =
{ e € E| dependency kind(e) = aggr_passing_dep
A (3 €’¢E: source(e’) = source(e)
A~ { (dependency_kind(e’) = aggr passing dep A e # e’)
v { dependency_kind{e’) = aggr_using dep
A — target(e’) < targete))))}

Finally, the refined and augmented PDG is translated back to attribute equations
whereby the functions of the functional specification are replaced by the corresponding
imperative procedures, the protection operations are inserted, and control statements
are added to respect the refinements.

Thus far, we have only discussed the treatment of single productions. It remains
the problem, how to process the production list. As the refinement of one PDG causes
a refinement of the i/o-graphs of the other productions, an efficient algorithm would
be needed to incrementally recompute these i/o—graphs and to choose the next produc-
tion to be refined.

Up to now, we can’t give a really satisfactoring answer to this problem. We
tackle it by starting with the root production, continuing with the productions of the
sons, while recomputing the i/o-graphs as usual.

3.4. Raising the Restrictions

In section 3.2, we restricted the problem in order to concentrate on the main
issues. The described algorithm is powerful enough to master aggregates like the
occurence table in the example of chapter 2 : As it is never necessary to open a new
region, the resulting occurence table implementation is as almost efficient as a hand
coded implementation. But so far the algorithm can’t deal with lists of aggregates like
the symboltable of the example.

Whereas the first two restrictions are merely chosen to avoid technical overhead,
the restriction to plain aggregates is a real simplification. In the general case, the
PDG becomes quite more complex, as the attributes may contain several aggregates -
in most cases a list of aggregates — so that the "value”-flow analysis has to keep track
of sets of aggregates. To illustrate this, we shortly discuss two different cases:

i) In the varint production of the example, the incoming aggregate list is splitted in
its first element and its rest; so the aggregate sets belonging to the first vertex
and the rest vertex are disjoint and no protection operation has to be inserted.

i1) The following figure shows an attributed production where the first and last ele-
ment of a list of aggregates are passed through. In this case, the aggregate values
have to be protected, as they could be the same.

Aggrlist] NONTERMINAL1

NONTERMINAL2

A more detailed and formal treatment of this problem can be found in [Ple88].
However, we expect further optimizations by using a more powerful ”value”-flow
analysis,

202

4. Conclusion

4.1. Summarizing Epilogue

We described the usage and implementation of aggregates in the compiler
development systern MAGIC and pointed out that having aggregates in the specifica-
tion language has two seemingly contrary advantages:

- a convenient and powerful high-level specification facility
- efficient implementation

By closing this gap, we again realized the importance of a carefully designed typing
mechanism for good language implementation.

Many details and improvements of the presented algorithm could not be discussed
in this paper. Some of them should at least be mentioned:

e further optimization to avoid even more protect operations by taking advantage of
the expression nesting

e treatment of enter operations in expressions that only ”temporarily” change
aggregates
treatment of delete operations

e improvements to the analysis of recursive and attributive functions, especially if
they have more then one aggregate as parameter

. storage management

4.2. Future Work

For the future, we envisage three other related topics:

-~ A better integration of this approach and other optimization techniques (and
where possible a statistical support to guide the decisions).

~ A careful analysis of the dependency between attribute evaluation strategy and
aggregate optimization.

- A combination of this approach and globalizing transformations as described in
[R&i86]. This would be particularly interesting to isolate certain classes of linearly
behaving aggregate computations. For such classes, even more efficient imple-
mentations could be provided.

Acknowledgements

Thanks are due to A. Liebl and J. Knopp for helpful discussions, to Prof. J. Eickel
for initiating and supporting the MAGIC Project and to F. Plenk; his diploma thesis
was the basis for this work.

203

References

[BaT84]

[Bawg1]

[Bjs80]

[Gan79]

[GaG84]

[Har86]

[HoT86]

[Kas87]

[KeW76]

[KLP88]

[Ple88]

[Poe88]

[R3i86]

iuDP82]

G. Bartmuf,, S. Thirmel: MUG-Tutorial; Internal Report; Technical
University of Munich; 84

F.L. Bauer, H. Wéssner: Algorithmische Sprache und Programmentwick-
lung; Springer Verrlag; 81

D. Bjorner: Towards a Formal Description of Ada; LNCS 98; Springer
Verlag; 80

H. Ganzinger: On Storage Optimization for Automatically Generated Com-
pilers; LNCS Vol. 67, pp 132-141

H. Ganzinger, R. Giegerich, et al.: Attribute Coupled Grammars; SIG-
PLAN 84 Symp. on Compiler Construction; 84

R. Harper: Introduction to Standard ML; Dep. of Computer Science,
University of Edingburgh; Technical Report ECS-LFCS-86-14

R. Hoover, T. Teitelbaum: Efficient Incremental Evaluation of Aggregate
Values in Attribute Grammars; ACM Proc. of the 86 SIGPLAN Sympo-
sium on Compiler Construction

U. Kastens: Lifetime Analysis for Attributes; Acta Informatica 24; 1987,
pp.633-651

K. Kenedy, S. Warren: Automatic Generation of Efficient Evaluators for
Attribute Grammars; 3rd ACM Symposium on Principles of Programming
Languages, Atlanta; 76

J. Knopp, A. Liebl, A. Poetzsch-Heffter: MAGIC - An Interactive Com-
piler Specification System; Internal Report; Technical University Munich;
88

F. Plenk: Optimierende Implementierungstransformation fiir funktionale
Attributgrammatiken; Diplomarbeit; Technical University of Munich; 88

A. Poetzsch-Heffter: Report on the MAGIC Specification Language; to
appear december 88

K.-J. Riiha: A Globalizing Transformation for Attribute Grammars; ACM
Proc. of the 86 SIGPLAN Symposium on Compiler Construction

J. Ubl, et al.: An Atuibute Grammar for the Semantic Analysis of Ada;
LNCS 139; Springer Verlag; 82

