
GENERATION OF INCREMENTAL I N D ~ E C T THREADED CODE
FOR

LANGUAGE-BASED PROGRAMMING ENVIRONMENTS 1

KHALID AZIM MUGHAL 2

Abstract

We present an approach to generating incremental threaded code for language-based

programming environments from the specification of the runtime semantics of the programming

language. Language-based environments (LBEs) that support incremental code generation have

usually done so using ad hoc techniques for incremental recompilation. Our aim is to provide

one uniform operational model based on attribute grammars that allows the specification of the

mntime semantics, and thus code generation, to be incorporated with the specification of the

syntax and static semantics of the language.

The proposed semantic model of incremental code generation allows specification of compact

code. It severely limits the repropagation of semantic information in the program tree due to

changes in the code caused by modifications to the source program. Extended with interactive

execution, this representation also facilitates the implementation of such debugging features as

control-flow tracing, single-stepping and value-monitoring at the source level.

We have demonstrated the feasibility of the proposed model by implementing a program

editor for Pascal. The specification is written in the Synthesizer Specification Language (SSL)

and forms the input to the Cornell Synthesizer Generator (CSG).

1 Introduct ion

We are interested in providing code generation to support program interactive program and

debugging. The main problem is mapping of the internal representation of the program

maintained by the LBE to an executable form. The techniques are implemented in the

incremental framework provided by CSG [Reps & Teitelbaum 1988].

1 This work was partially supported by the Norwegian Research Council of Sciences and Humanities.
2 This paper is based on excerpts from the author's dr.scient thesis [Mughal 1988].
Author's address:
UNIVERSITY OF BERGEN
DEPARTMENT OF INFORMATICS
ALLt~GT. 55, N.5007 BERGEN, NORWAY.
Phone: 47-5-212879 Telefax: 47-5-212857
Internet: khalid%eik.ii.uib.no@ uunet.uu.net

231

We are concerned with formal specifications for generating complete LBEs. There are

primarily three schools of formalisms for such specifications. The semantic actions approach as

exemplified by the GANDALF editors [Habermann et al. 1982]. The attribute grammar [Knuth

1968] approach as exemplified by CSG [Reps & Teitelbaum 1988] and POEGEN [Fischer et

al. 1984]. The third approach is based on denotational semantics [Stoy 1977] and is primarily

employed in compiler generators: SIS [Mosses 1976], [Paulsen 1981]. EDS [Pal 1986] is a

denotational semantics based generator for LBEs. However there are systems that employ a

more hybrid approach for such formal specifications: PSG [Bahlke & Snelting 1985], PECAN

[Reiss 1984a]. Action equations are advocated for such specifications in [Kaiser 1986]. A

parallel development in this direction of tool generators can be seen in the field of compiler-

compilers: GAG [Kastens et al. 1982], HLP [R~iih~ 1984], SIS [Mosses 1976].

2 Incremental Recompilation

In order to provide efficient execution facilities, we have to address the problem of incremental

recompilation: minimize the amount of computation necessary to generate and maintain

executable code in the face of source program modifications. We would like to reuse as much of

the old code as possible after a program is modified. Before we look at some approaches to the

incremental problem, it will be useful to distinguish between the granularity of recompilation

and extent of recompilation [Reps & Teitelbaum 1988]. By granularity of recompilation we

mean the size of program fragment which can be modified before recompilation is necessary to

reflect the source program change in the generated code. The extent of recompilation refers to

the amount of code that must be recompiled to reflect the change made to the program.

Hand-crafted LBEs that provide runtime facilities vary in their approach to providing

incremental recompilation. In the Cornell Program Synthesizer [Teitelbaum & Reps 1981]

incremental recompilation is dependent on the language construct modified. The granularity of

recompilation coincides with the extent of recompilation for a control construct, an assignment

or an expression. However modification of declarations requires more extensive reanalysis of

the program. The extent of recompilation can thus be the entire procedure.

The DICE (Distributed Incremental Compiling Environment) system [Fritzson 1984]

supports incremental recompilation at the statement level in a host-target machine configuration.

DICE provides statement level granularity of recompilation and supports source-level

debugging. The extent of granularity is primarily updating the code for the statement on the

target machine. In the MAGPIE system [Delisle et al. 1984] [Schwartz et al. 1984], the

granularity of recompilation coincides with the extent of recompilation which is the entire

procedure. PSEP [Ford & Sawamiphakdi 1985] uses again a different approach to incremental

recompilation where editing and code generation are concurrent processes. In the PSG system

232

only incremental compilation is possible, not incremental recompilation. PSG performs

incremental compilation during top-down derivation of the abstract syntax tree (AST) by series

of refinement steps. PECAN editors [Reiss 1984b] limit the recompilation to what is called a

compilation unit which may be a statement or a procedure depending on the context.

In CSG, its attribute evaluation mechanism can be employed for incremental recompilation.

Code can be defined as instances of attributes attached to nodes of the AST. After program

modification, the attribute-updating mechanism also updates the code attributes that need

reevaluation. Consequently the extent of recompilation in our model is dependent on the number

of code attributes that need updating. CSG provides two (limited) ways for controlling the

granularity of recompilation for creating editors with execution facilities. One is to specify that

certain program fragments can only be edited as an entire unit. The second method makes use of

demand attributes. Such attributes are given values only when a demand is placed on them. For

example when such an attribute is an argument to another attribute which needs evaluation. We

present ways in which to limit the extent of recompilation due to changes in the value of code

because of program modifications. [Reps & Teitelbaum 1988] and [Reps & Teitelbaum 1987]

are the authoritative references on CSG. [Reps & Teitelbaum 1988] and [Reps 1984] describe

efficient methods for incremental attribute evaluation in LBEs.

3 Incremental Indirect Threaded Code

Our code generation model is based on incremental semantic analysis. [Reps 1983] is a

discussion of static semantic analysis in LBEs. We are interested in applying the power of this

incremental model for implementing runtime facilities for LBEs. Any efficient implementation

realizing this goal must take the following two factors into consideration: it must minimize the

change propagation affecting code generation due to program modifications, and secondly, it

must provide an efficient execution of the generated code. The execution paradigm is

interpretation of generated code on a v o n Neumann machine. Thus we provide immediate

program translation and interactive execution.

Since we want to make use of the incremental attribute mechanism for code generation, we

can define an attribute that represents the code for a node in the AST. The code for the program

is thus fragmented and attached to various nodes of the AST as attribute values.

One scheme for maintaining this fragmented code would be to synthesize the code for the

root of the AST from the code fragments at the subordinate nodes in the AST. Thus the attribute

value of the code at the root of the AST would represent the code generated for the program

under development. This approach is used in [Milos et al. 1984] for the generation of a Pascal

P-code compiler. They describe a semantic grammar [Paulsen t981] which is an amalgamation

233

of extended attribute grammars [Watt & Madsen I983] and denotational concepts [Stoy 1977].

Appropriately transformed P-code is then run on the SECD machine [Mosses 1976]. This might

provide for efficient execution of the code but is very inefficient for incremental updating of the

generated code. In an incremental attribute evaluation scheme, any change to a code fragment of

a subordinate node would mean propagation of this change to the root of the tree.

Another approach would be to coalesce or linearize this code just prior to execution time.

This would introduce the overhead due to the extra step of coalescing the code every time the

program was executed. It would avoid excessive change propagation but would entail additional

book-keeping in mapping the code back to its respective node in the AST for debugging

purposes. This extra book-keeping is also necessary for the previous approach.

We describe a scheme where the code fragments are "threaded". In order to thread the code

fragments, we must know the entry point to a code fragment and this entry point must be made

available to other code fragments that "exit" to it. This is modeled in our scheme by using two

attributes entry and completion which explicitly define the entry to a code fragment and the

entry to the next code fragment to execute on the completion of execution of the current one.

Entry and completion attributes are used to thread the code fragments. Entry to and exit from

code for language constructs is only possible via these two attributes respectively. Hence the

term threaded code [Bell 1973] appropriately describes our code generation strategy

We will describe this approach in terms of code generation for statements found in a block-

structured language like Pascal. For a statement node, we define a synthesized attribute entry

that indicates the entry point corresponding to the code of that statement and whose value is

then available to the statement's parents and siblings in the AST. These nodes can exit to the

statement node using the entry attribute value. In addition, we define an inherited attribute

completion whose value the statement node inherits from its parents or siblings and can

incorporate in its own code. The value of the completion is effectively the entry point of the

next code to be executed after the current statement is completed. These two attributes thread

the fragmented code together while allowing the individual code fragments to remain attached to

the nodes of the AST as attribute values.

Since we are using attribute grammars :o specify generation of threaded code, we have to be

careful about circularities in our specification. The diagram in Figure 1 shows the flow of

control in the linked code structure for the while loop using goto instructions. This is based

on the traditional semantics of a while Ioop:

234

a) evaluate the loop condition.

b) if condition is not true, go to d.

c) execute the loop body and go to a.

d) . . .

A while loop is typically defined by the following production:

StatementS1 ::= while expr do StatementS2

In the AST representing the while loop, the code for the loop condition is generated in the

subtree with root expr. The code for the loop body is generated in the subtree with root

StatementS2 and the code for the loop test is generated at the node (corresponding to the above

production) for the nonterminal StatementS1. Figure 2 shows the flow of control in the while

loop when we use the entry and completion attributes of the nonterminals StatementS1, expr
and StatementS2 to thread the code of these nonterminals. The flow of control in Figure 2

corresponds to the flow of control shown in Figure 1. However, in Figure 2, the threading of

the code for the loop test, body and condition of the while loop via the en t ry and

completion attributes leads to circularity in the dependency graph of these attributes. The

dependencies are in reverse, opposite to the flow of control arcs shown in Figure 2.

The Comell Synthesizer Generator however requires a noncircular attribute grammar as its

input. In general, the circularities that cause problems in SSL are due to the circularities in the

attribute equations of the specification. An attribute variable A on the right side of a semantic

Loop condition

.,. code.,. Goto

1
Loop test

~kip~-nFalse

L _ Loop body code...

Goto

IIIII m
Goto

IIII

Goto

....... ,' ' '1

3-
--- Flow of Control

,Figure 1: Control Flow Graph for the While Loop

235

expr

Statement$1/~ ~sn2 @ completion

O ~ [entry [~compteti ln |en~..~2~enlay [~]

I code] [] StatementS2 1~ code........ll I

(Loop condition) (Loop body)

completion

node in the abstract syntax tree ~ Flow of Control

attribute [] attribute

StatementS1 ::= while expr do StatementS2

Figure 2: Threaded Code for the While Loop

equation for attribute variable B, introduces a dependency from A to B. We overcome the
circularity problem by introducing a level of indirection in the generated code by making use of

the built-in, primitive "type" ATTR of attribute references in SSL If A is an attribute variable,

then &&A is an ATTR-valued expression whose value is a reference to A. &&A is called an

attribute reference. The semantics of the && operator are such that a semantic equation defining

an attribute B in term of &&A does not introduce any dependency from A to B.

We can represent the links in the generated code by ATTR-valued expressions. When a

production is applied, an attribute occurrence of the code fragment is created. Entry and

completion are then attribute references to this code created by the && operator. This strategy

effectively breaks the circularity mentioned above as the values of these attributes are no longer

dependent on the value of the code fragments. Hence we have dispensed with the use of a fLX-

point operator for mutually dependant code values by the use of attribute references. In Figure 2

we can think of the flow of control arcs (or threads) as being attribute references. SSL does not

provide a standard dereferencing operator for ATTR-values. During execution, a special

dereferencing operation performs the indirection required to access the next code fragment,

given the ATTR value from the current one. Thus we have an execution scheme based on

indirect threaded code, analogous to that described in [Dewar 1975].

2 3 6

Statement$I : ,-.L entry .j.., completion

I " - - . u - ~ " °~l

/ / " X , ,] SkipOnFalse i f i I
/ , i " . I N :I..,,,-~ I - -

/ . / _ / / ., .,..... --='-7" K /
/--." " X" \ - .>"- . . / x ; - " .X x \ / . ,

entry "~ompletion ","entry completion j d e l ~ apletion % =

expr :" T !' StatementS2: ~ , .[
I t J I

.......... ~,0 node in the abstract syntax

F l
kI

---H,,ll~

. . . . ~ Dependency
~e~d attribute (to production) [] ~fribute (for nonterminal)

Attribute reference (created by && operator)

StatementS1 ::= while expr do StatementS2

Figure 3: Dependency Graph for the While Production

We also define the code as a local attribute of the production, rather than that of the

nonterminal Statement. Code as an attribute of a nonterminal would require specifying attribute

equations even for cases where the nonterminal does not require the specification of code. Code

as a local attribute thus allows for generation of much more compact code. Another major

consequence of this approach, combined with the use of attribute references for linking the

code, is that change propagation due to change in the value of the code is limited to the
production in which the code fragment is defined.

Figure 3 shows the dependency graph for the attributes in the while production in the AST.

In this particular production there is only one local code attribute which is threaded in the overaU

code for the while construct using entry and completion attributes. The arc " ~ " does not

represent a true dependency and breaks the circularity cycle mentioned above. The value of

expr.completion is an attribute reference created by applying the && operator to the local

code. Note also that the entry point to the while loop is the entry point of the expression. This

is made available to whatever statement that precedes this production in the AST via

Statement$1.entry. The interpreter is thus able to transfer control directly to the expression

rather than leapfrogging first to this production and then jumping to the expression. This also

allows for the generation and execution of compact code.

237

As pointed out earlier not all nodes need to specify new code. In many cases it is only

necessary to thread the existing code properly to reflect the flow of control using their entry

and completion attributes. A case in point are the grammar productions for a sequence of

statements were the threading information in their entry and completion attributes is passed

on to the other nodes but no new code is generated. Threading code in this manner allows for

efficient execution as the sequencing of instructions is indicated by the code's threads.

Another advantage of this approach is that it also facilitates the tracing of control flow in the

attributed syntax tree during program execution, requiring a simple mapping from the attribute

reference to its production in the tree.

4 Continuations and Completions

The incremental indirect threaded code generation scheme described in the previous section can

be thought of as a completion semantics [Henson & Turner 1982]. A completion is an

operational representation of a continuation in the denotational semantic model [Stoy 1977]. A

continuation specifies what function the "remaining program" computes, and is defined in

reverse - opposite to the flow of execution in the program. A completion is a concrete

representation of this function.

The correspondence between the continuation structure of a program and a flow graph of a

program is expounded in [Sethi 1983]. Each statement defines a continuation in terms of a

supplied continuation and the denotations of its subcomponents. A special notation forpipes is

used to specify the construction of flow graphs for the control constructs of the C programming

language. A special combinator cycle is used for recursively defined continuations as in the case

of loops. The edges of the flow graph are analogous to the threads in the generated code in our

scheme.

In [Reppy & Kintala 1984], a case is made for automatically generating complete AG-based

LBE specifications from continuation semantics by techniques similar to those in [Sethi 1983].

The executable representation is similar to our scheme: code trees containing op-codes for a n

abstract machine are generated and executed by an interpreter for the corresponding abstract

machine. In contrast to our scheme, it however uses semantic functions with side effects to

mutate the internal values of generated code trees.

5 Implementation Status

A specification for a Pascal editor with fu!l static semantic checking is distributed with the CSG

release [Teitelbaum et al. 1987]. This specification has been augmented with the runtime

semantics of Pascal to provide runtime facilities.

238

SSL Pascal-I, which is described in [Mughal 1988], is an implementation of a complete

program editor for a subset of Pascal where both the runtime semantics and the runtime

environment are realized in SSL. The generated code is P-code [Nod et al. 1975] defined and

modified in SSL to produce incremental indirect threaded code. SSL PascaM demonstrates the

implementation of non-trivial control flow aspects of language constructs such as loops,

recursive procedure call, different modes of parameter passing (including procedure

parameters), handling of labels and non-local gotos, and other structured statements. SSL

PascaM supports only primitive data types in Pascal as these can be easily represented directly

by data types of SSL. The runtime management includes a tail-recursive interpreter and a

mntime shallow-binding store, also implemented in SSL. The program editor incorporates such

debugging facilities as control-flow tracing, single-stepping and value-monitoring at the source

level.

SSL Pascal-I demonstrated the feasibility of incremental indirect threaded code, but the

implementation of the runtime facilities was not efficient due to the limitations of the

specification language SSL. Experience gained from this implementation has been valuable in

the next undertaking of providing efficient runtime facilities for editors generated in the

framework of CSG [Teitelbaum et al. 1988]. The interpreter is written in C and the code

instructions are defined as a primitive data type CODE of the specification language SSL.

Constructors are provided for all P-code attribute values of the primitive data type CODE. Thus

the specification of code generation from SSL Pascal-I carries over to this scheme almost in its

entirety. However the execution environment is stack-frame based implementing deep-binding

in contrast to the shallow-binding-by-name scheme of SSL PascaM. The deep-binding scheme

calls for the calculation of address offsets of variables during incremental threaded code

generation. The code generation scheme of SSL Pascal-I is thus modified with respect to the

offset calculation. The new scheme also supports structured and dynamic data types of Pascal.

Debugging features include flow tracing, single-stepping, limited execution resumption after

program modification and a form of COME command [Alberga et al. 1984]. For obvious

reasons, the interpretation in C is far more efficient than the one in SSL PascaM. It is hoped

that this Pascal editor will be released with the next version of CSG.

6 Summary

We have presented a viable non-ad hoc scheme for the specification of runtime semantics based

on indirect threaded code in the framework provided by the CSG. It allows the implementation

of non-trivial control flow aspects of many language constructs and facilitates implementation of

certain runtime features. We believe this approach can be generalized to generate LBEs with

runtime facilities for other block-structured languages. Ultimately one would like to provide the

239

editor designer with a generic package for implementing runtime semantics and debugging

facilities, with "hooks" into the system for tailoring and augmenting the runtime model. We

believe this work to be a step in that direction.

7 Acknowledgements

I would like to thank Professors Tim Teitelbaum and Tom Peps for allowing me to work on the

Comell Synthesizer Generator Project. Support from the rest of the CSG Task Force, both past

and present, is also deeply acknowledged.

8 References

[Alberga et al. 1984]
Alberga, C.N., Brown, A.L., Leeman,Jr. G.B., Mikelsons, M., and Wegman, M.N.
A Program Development Tool.
IBM J. Res. Develop., Vot. 28, No. i, January 1984, 60-73.

[Bahlke & Snelting 1985]
Bahlke, R. and Snelting, G.
The PSG - Programming System Generator.
In Proceedings of the ACM SIGPLAN '85 Symposium on Language Issues in
Programming Environments, Seattle, WA,, June 25-28, 1985, 28 - 33. (SIGPLAN Notices
20, 7, July 1985.)

[Bell 1973]
Bell, J.R.
Threaded Code.
Communications of the ACM 16, 6 (June 1973), 370 - 372.

[Delisle et al. 1984]
Delisle, N. M., Menicosy, D. E., and Schwartz, M. D.
Viewing a Programming Environment as a Single Tool.
In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh, Penn., April 23-25, 1984, 49 -
56. (Joint issue: SIGPLAN Notices 19, 5, May 1984, and Software Engineering 9, 3, May
1984.)

[Dewar 1975]
Dewar, R.B.K.
Indirect Threaded Code.
Communications of the ACM, 18, 6 (June 1975), 330 - 331.

~ischer et at. 1984]
Fischer, C.N., Pal, A., Stock, D.L., Johnson, G.F., and Mauney, J.
The POE Language-based Editor Project.
In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh, Penn., April 23-25, 1984, 21 -
29. (Joint issue: SIGPLAN Notices 19, 5, May 1984, and Software Engineering 9, 3, May
1984.)

240

[Ford & Sawamiphakdi 1985]
Ford, R. and Sawamiphakdi, D.
A Greedy Concurrent Approach to Incremental Code Generation.
In Proceedings of the 12th Annual ACM Symposium on Principles of Programming
Languages, New Orleans, Louisiana, January 14 - 16, 1985, 165-178.

[Fritzson 1984]
Fritzson, P.
Preliminary Experience from the DICE system: a Distributed Incremental Compiling
Environment.
In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh, Penn., April 23-25, 1984, 113 -
123. (Joint issue: SIGPLAN Notices 19, 5, May 1984, and Software Engineering 9, 3,
May 1984.)

[Habermann et al. 1982]
Habermann, A. N., Ellison, R., Medina-Mora, R., Feiler, P., Notldn, D.S., Kaiser, G.E.,
Garlan D.B., and Popvich, S.
The Second Compendium of Gandalf Documentation.
Dept. of Computer Science, Carnegie-Mellon University, 1982.

[Henson & Turner 1982]
Henson, M.C.and Turner, R.
Completion Semantics and Interpreter Generation.
In Conference Record of the 9th. ACM Symposium on Principles of Programming
Languages, Albuquerque, N.M., January 25-27, 1982, 242-254.

[Kaiser 1986]
Kaiser, G.E.
Generation of Runtime Environments.
In Proceedings of the SIGPLAN '86 SYMPOSIUM ON COMPILER CONSTRUCTION,
Palo Alto, Calif., June 25-27, 1986, 51-57. (SIGPLAN Notices 21, 7, July 1986.)

[Kastens et al. 1982]
Kastens, U., Hutt, B., and Zimmermann, E.
Lecture Notes in Computer Science, vol. 141: GAG: A Practical Compiler Generator.
Springer-Verlag, New York, 1982.

[Knuth 1968]
Knuth, D.E.
Semantics of context-free languages.
Mathematical Systems Theory 2, 2 (June 1968), 127 - 145.

[Milos et al. 1984]
Milos, D., Pleban, U., and Loegel, G.
Direct Implementation of Compiler Specifications or The Pascal P-Code Compiler Revisited.
In Conference Record of the 1 lth. ACM Symposium on Principles of Programming
Languages, Salt Lake City, Utah, January 15-18, 1984, 196-207.

[Mosses 1976]
Mosses, P.D.
Compiler Generation Using Denotationat Semantics.
Mathematical Foundations of Computer Science, Lecture Notes in Computer Science,
Springer-Verlag, New York, 1976, 536-441.

241

[Mughal 1988]
Generation of Runtime Facilities for Program Editors.
Dr.scient. thesis, Dept. of Informatics, University of Bergen, Norway, May 1988.

[Nori et al. 1975]
Nori, K.V., Amman, U., Jensen, K., Nageli, H.H., and Jacobi, Ch.
The Pascal <P> Compiler: Implementation Notes.
Revised Edition.Instituts fur Informatik, Eidgenossische Technishe Hochschule, Zurich,
1975.

[Pal 1986]
Pal, A.A.
Generating Execution Facilities for Integrated Programming Environments.
Ph.D. dissertation, Dept. of Computer Science, University of Wisconsin - Madison, Wisc.,
1986.

[Paulsen 1981]
Paulsen, L.
A compiler generator for semantic grammars.
Ph.D. dissertation, Dept. of Computer Science, Stanford University, Calif., 1981.

[Reiss 1984a]
Reiss, S. P.
Graphical Program Development with the PECAN Program Development Systems.
In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh, Penn., April 23-25, 1984, 30 -
41. (Joint issue: SIGPLAN Notices 19, 5, May 1984, and Software Engineering 9, 3, May
1984.)

[Reiss 1984b]
Reiss, S. P.
An Approach to Incremental Compilation.
In Proceedings of the SIGPLAN '84 SYMPOSIUM ON COMPILER CONSTRUCTION,
Montreal, Canada, June 17-22, 1984, 144-156. (SIGPLAN Notices 19, 6, June 1984).

[Reppy & Kintala 1984]
Reppy, J.H.and Kintala, C.M.R.
Generating Execution Facilities for Integrated Programming Environments.
Technical Memorandum, AT&T Bell Laboratories, Murray HiU, 1984.

[Reps 1983]
Reps, T.
Static-semantic analysis in language-based editors.
In Digest of Papers of the IEEE Spring CompCon 83, San Francisco, Calif., Mar. 1983.,
411 -414.

[Reps 1984]
Reps, T.
Generating Language-Based Environments.
M.I.T. Press, Cambridge, Mass., 1984.

[Reps & Teitelbaum 1987]
Reps, T. and Teitelbaum, T.
The Synthesizer Generator Reference Manual.
2nd Ed., Dept. of Computer Science, CornelI University, Ithaca, N.Y., July 1987.

242

[Reps & Teitelbaum 1988]
Reps, T. and Teitelbaum, T.
The Synthesizer Generator.
Springer-Verlag. To be published in fall I988.

[R'NM 1984]
R~ih~i, K.J.
Attribute Grammar Design Using the Compiler Writing System HLP.
Methods and Tools for Compiler Construction, B. Lorho (ed.), Cambridge University
Press, 1984.

[Schwartz et al. 1984]
Schwartz, M. D., Delisle, N. M., and Begwani, V. S.
Incremental Compilation in Magpie.
In Proceedings of the SIGPLAN '84 SYMPOSIUM ON COMPILER CONSTRUCTION,
Montreal, Canada, June 17-22, 1984, 122-131. (SIGPLAN Notices 19, 6, June 1984).

[Sethi 1983]
Sethi, R.
Control Flow Aspects of Semantic Directed Compiling.
ACM TOPLAS 5, 4 (October 1983), 554-595.

[Stoy 1977]
Stoy, J.E.
Denotational Semantics.
MIT Press, Cambridge, Mass., 1977.

[Teitelbaum & Reps 1981]
Teitelbaum, T. and Reps, T.
The Comell Program Synthesizer: a syntax-directed programming environment.
Communications of ACM 24, 9 (September, 1981) 563-573.

[Teitelbaum et al. 1987]
Teitelbaum, T., Mughal, K., and Ball, T.
A Pascal editor with full static-semantic checking.
Included with the Cornell Synthesizer Generator, Release 2.0.
Dept. of Computer Science, Comell University, Ithaca, N.Y., July 1987.

[Teitelbaum et al. 1988]
Teitelbaum, T., Mughal, K., and Ball, T.,Belmonte, M. and Schoaff, P.
A Pascal editor with execution and debugging facilities.
To be included with the Comell Synthesizer Generator release.
Dept. of Computer Science, Cornell University, Ithaca, N.Y., fall 1988.

[Watt & Madsen 1983]
Watt, D.A., and Madsen, O.L.
Extended Attribute Grammars
The Computer Journal, Vol. 26, No. 2, 1983, 142 - 153.

