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Abstract  

We present an approach to generating incremental threaded code for language-based 

programming environments from the specification of the runtime semantics of the programming 

language. Language-based environments (LBEs) that support incremental code generation have 

usually done so using ad hoc techniques for incremental recompilation. Our aim is to provide 

one uniform operational model based on attribute grammars that allows the specification of the 

mntime semantics, and thus code generation, to be incorporated with the specification of the 

syntax and static semantics of the language. 

The proposed semantic model of incremental code generation allows specification of compact 

code. It severely limits the repropagation of semantic information in the program tree due to 

changes in the code caused by modifications to the source program. Extended with interactive 

execution, this representation also facilitates the implementation of such debugging features as 

control-flow tracing, single-stepping and value-monitoring at the source level. 

We have demonstrated the feasibility of the proposed model by implementing a program 

editor for Pascal. The specification is written in the Synthesizer Specification Language (SSL) 

and forms the input to the Cornell Synthesizer Generator (CSG). 

1 Introduct ion  

We are interested in providing code generation to support program interactive program and 

debugging. The main problem is mapping of the internal representation of the program 

maintained by the LBE to an executable form. The techniques are implemented in the 

incremental framework provided by CSG [Reps & Teitelbaum 1988]. 
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We are concerned with formal specifications for generating complete LBEs. There are 

primarily three schools of formalisms for such specifications. The semantic actions approach as 

exemplified by the GANDALF editors [Habermann et al. 1982]. The attribute grammar [Knuth 

1968] approach as exemplified by CSG [Reps & Teitelbaum 1988] and POEGEN [Fischer et 

al. 1984]. The third approach is based on denotational semantics [Stoy 1977] and is primarily 

employed in compiler generators: SIS [Mosses 1976], [Paulsen 1981]. EDS [Pal 1986] is a 

denotational semantics based generator for LBEs. However there are systems that employ a 

more hybrid approach for such formal specifications: PSG [Bahlke & Snelting 1985], PECAN 

[Reiss 1984a]. Action equations are advocated for such specifications in [Kaiser 1986]. A 

parallel development in this direction of tool generators can be seen in the field of compiler- 

compilers: GAG [Kastens et al. 1982], HLP [R~iih~ 1984], SIS [Mosses 1976]. 

2 Incremental Recompilation 

In order to provide efficient execution facilities, we have to address the problem of incremental 

recompilation: minimize the amount of computation necessary to generate and maintain 

executable code in the face of source program modifications. We would like to reuse as much of 

the old code as possible after a program is modified. Before we look at some approaches to the 

incremental problem, it will be useful to distinguish between the granularity of recompilation 

and extent of recompilation [Reps & Teitelbaum 1988]. By granularity of recompilation we 

mean the size of program fragment which can be modified before recompilation is necessary to 

reflect the source program change in the generated code. The extent of recompilation refers to 

the amount of code that must be recompiled to reflect the change made to the program. 

Hand-crafted LBEs that provide runtime facilities vary in their approach to providing 

incremental recompilation. In the Cornell Program Synthesizer [Teitelbaum & Reps 1981] 

incremental recompilation is dependent on the language construct modified. The granularity of 

recompilation coincides with the extent of recompilation for a control construct, an assignment 

or an expression. However modification of declarations requires more extensive reanalysis of 

the program. The extent of recompilation can thus be the entire procedure. 

The DICE (Distributed Incremental Compiling Environment) system [Fritzson 1984] 

supports incremental recompilation at the statement level in a host-target machine configuration. 

DICE provides statement level granularity of recompilation and supports source-level 

debugging. The extent of granularity is primarily updating the code for the statement on the 

target machine. In the MAGPIE system [Delisle et al. 1984] [Schwartz et al. 1984], the 

granularity of recompilation coincides with the extent of recompilation which is the entire 

procedure. PSEP [Ford & Sawamiphakdi 1985] uses again a different approach to incremental 

recompilation where editing and code generation are concurrent processes. In the PSG system 
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only incremental compilation is possible, not incremental recompilation. PSG performs 

incremental compilation during top-down derivation of the abstract syntax tree (AST) by series 

of refinement steps. PECAN editors [Reiss 1984b] limit the recompilation to what is called a 

compilation unit which may be a statement or a procedure depending on the context. 

In CSG, its attribute evaluation mechanism can be employed for incremental recompilation. 

Code can be defined as instances of attributes attached to nodes of the AST. After program 

modification, the attribute-updating mechanism also updates the code attributes that need 

reevaluation. Consequently the extent of recompilation in our model is dependent on the number 

of code attributes that need updating. CSG provides two (limited) ways for controlling the 

granularity of recompilation for creating editors with execution facilities. One is to specify that 

certain program fragments can only be edited as an entire unit. The second method makes use of 

demand attributes. Such attributes are given values only when a demand is placed on them. For 

example when such an attribute is an argument to another attribute which needs evaluation. We 

present ways in which to limit the extent of recompilation due to changes in the value of code 

because of program modifications. [Reps & Teitelbaum 1988] and [Reps & Teitelbaum 1987] 

are the authoritative references on CSG. [Reps & Teitelbaum 1988] and [Reps 1984] describe 

efficient methods for incremental attribute evaluation in LBEs. 

3 Incremental Indirect Threaded Code 

Our code generation model is based on incremental semantic analysis. [Reps 1983] is a 

discussion of static semantic analysis in LBEs. We are interested in applying the power of this 

incremental model for implementing runtime facilities for LBEs. Any efficient implementation 

realizing this goal must take the following two factors into consideration: it must minimize the 

change propagation affecting code generation due to program modifications, and secondly, it 

must provide an efficient execution of the generated code. The execution paradigm is 

interpretation of generated code on a v o n  Neumann machine. Thus we provide immediate 

program translation and interactive execution. 

Since we want to make use of the incremental attribute mechanism for code generation, we 

can define an attribute that represents the code for a node in the AST. The code for the program 

is thus fragmented and attached to various nodes of the AST as attribute values. 

One scheme for maintaining this fragmented code would be to synthesize the code for the 

root of the AST from the code fragments at the subordinate nodes in the AST. Thus the attribute 

value of the code at the root of the AST would represent the code generated for the program 

under development. This approach is used in [Milos et al. 1984] for the generation of a Pascal 

P-code compiler. They describe a semantic grammar [Paulsen t981] which is an amalgamation 
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of extended attribute grammars [Watt & Madsen I983] and denotational concepts [Stoy 1977]. 

Appropriately transformed P-code is then run on the SECD machine [Mosses 1976]. This might 

provide for efficient execution of the code but is very inefficient for incremental updating of the 

generated code. In an incremental attribute evaluation scheme, any change to a code fragment of 

a subordinate node would mean propagation of this change to the root of the tree. 

Another approach would be to coalesce or linearize this code just prior to execution time. 

This would introduce the overhead due to the extra step of coalescing the code every time the 

program was executed. It would avoid excessive change propagation but would entail additional 

book-keeping in mapping the code back to its respective node in the AST for debugging 

purposes. This extra book-keeping is also necessary for the previous approach. 

We describe a scheme where the code fragments are "threaded". In order to thread the code 

fragments, we must know the entry point to a code fragment and this entry point must be made 

available to other code fragments that "exit" to it. This is modeled in our scheme by using two 

attributes entry and completion which explicitly define the entry to a code fragment and the 

entry to the next code fragment to execute on the completion of execution of the current one. 

Entry and completion attributes are used to thread the code fragments. Entry to and exit from 

code for language constructs is only possible via these two attributes respectively. Hence the 

term threaded code [Bell 1973] appropriately describes our code generation strategy 

We will describe this approach in terms of code generation for statements found in a block- 

structured language like Pascal. For a statement node, we define a synthesized attribute entry 

that indicates the entry point corresponding to the code of that statement and whose value is 

then available to the statement's parents and siblings in the AST. These nodes can exit to the 

statement node using the entry attribute value. In addition, we define an inherited attribute 

completion whose value the statement node inherits from its parents or siblings and can 

incorporate in its own code. The value of the completion is effectively the entry point of the 

next code to be executed after the current statement is completed. These two attributes thread 

the fragmented code together while allowing the individual code fragments to remain attached to 

the nodes of the AST as attribute values. 

Since we are using attribute grammars :o specify generation of threaded code, we have to be 

careful about circularities in our specification. The diagram in Figure 1 shows the flow of 

control in the linked code structure for the while loop using goto instructions. This is based 

on the traditional semantics of a while Ioop: 
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a) evaluate the loop condition. 

b) if condition is not true, go to d. 

c) execute the loop body and go to a. 

d) . . .  

A while loop is typically defined by the following production: 

StatementS1 ::= while expr do StatementS2 

In the AST representing the while loop, the code for the loop condition is generated in the 

subtree with root expr. The code for the loop body is generated in the subtree with root 

StatementS2 and the code for the loop test is generated at the node (corresponding to the above 

production) for the nonterminal StatementS1. Figure 2 shows the flow of control in the while 

loop when we use the entry and completion attributes of the nonterminals StatementS1, expr 
and StatementS2 to thread the code of these nonterminals. The flow of control in Figure 2 

corresponds to the flow of control shown in Figure 1. However, in Figure 2, the threading of 

the code for the loop test, body and condition of the while loop via the en t ry  and 

completion attributes leads to circularity in the dependency graph of these attributes. The 

dependencies are in reverse, opposite to the flow of control arcs shown in Figure 2. 

The Comell Synthesizer Generator however requires a noncircular attribute grammar as its 

input. In general, the circularities that cause problems in SSL are due to the circularities in the 

attribute equations of the specification. An attribute variable A on the right side of a semantic 

Loop condition 
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Loop test 

~kip~-nFalse 

L _  Loop body code... 
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IIIII m 
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IIII 
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....... ,' ' '1 

3- 
--- Flow of Control 

,Figure 1: Control Flow Graph for the While Loop 
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StatementS1 ::= while expr do StatementS2 

Figure 2: Threaded Code for the While Loop 

equation for attribute variable B, introduces a dependency from A to B. We overcome the 
circularity problem by introducing a level of indirection in the generated code by making use of 

the built-in, primitive "type" ATTR of attribute references in SSL If A is an attribute variable, 

then &&A is an ATTR-valued expression whose value is a reference to A. &&A is called an 

attribute reference. The semantics of the && operator are such that a semantic equation defining 

an attribute B in term of &&A does not introduce any dependency from A to B. 

We can represent the links in the generated code by ATTR-valued expressions. When a 

production is applied, an attribute occurrence of the code fragment is created. Entry and 

completion are then attribute references to this code created by the && operator. This strategy 

effectively breaks the circularity mentioned above as the values of these attributes are no longer 

dependent on the value of the code fragments. Hence we have dispensed with the use of a fLX- 

point operator for mutually dependant code values by the use of attribute references. In Figure 2 

we can think of the flow of control arcs (or threads) as being attribute references. SSL does not 

provide a standard dereferencing operator for ATTR-values. During execution, a special 

dereferencing operation performs the indirection required to access the next code fragment, 

given the ATTR value from the current one. Thus we have an execution scheme based on 

indirect threaded code, analogous to that described in [Dewar 1975]. 
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Figure 3: Dependency Graph for the While Production 

We also define the code as a local attribute of the production, rather than that of the 

nonterminal Statement. Code as an attribute of a nonterminal would require specifying attribute 

equations even for cases where the nonterminal does not require the specification of code. Code 

as a local attribute thus allows for generation of much more compact code. Another major 

consequence of this approach, combined with the use of attribute references for linking the 

code, is that change propagation due to change in the value of the code is limited to the 
production in which the code fragment is defined. 

Figure 3 shows the dependency graph for the attributes in the while production in the AST. 

In this particular production there is only one local code attribute which is threaded in the overaU 

code for the while construct using entry and completion attributes. The arc " ~ "  does not 

represent a true dependency and breaks the circularity cycle mentioned above. The value of 

expr.completion is an attribute reference created by applying the && operator to the local 

code. Note also that the entry point to the while loop is the entry point of the expression. This 

is made available to whatever statement that precedes this production in the AST via 

Statement$1.entry. The interpreter is thus able to transfer control directly to the expression 

rather than leapfrogging first to this production and then jumping to the expression. This also 

allows for the generation and execution of compact code. 
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As pointed out earlier not all nodes need to specify new code. In many cases it is only 

necessary to thread the existing code properly to reflect the flow of control using their entry 

and completion attributes. A case in point are the grammar productions for a sequence of 

statements were the threading information in their entry and completion attributes is passed 

on to the other nodes but no new code is generated. Threading code in this manner allows for 

efficient execution as the sequencing of instructions is indicated by the code's threads. 

Another advantage of this approach is that it also facilitates the tracing of control flow in the 

attributed syntax tree during program execution, requiring a simple mapping from the attribute 

reference to its production in the tree. 

4 Continuations and Completions 

The incremental indirect threaded code generation scheme described in the previous section can 

be thought of as a completion semantics [Henson & Turner 1982]. A completion is an 

operational representation of a continuation in the denotational semantic model [Stoy 1977]. A 

continuation specifies what function the "remaining program" computes, and is defined in 

reverse - opposite to the flow of execution in the program. A completion is a concrete 

representation of this function. 

The correspondence between the continuation structure of a program and a flow graph of a 

program is expounded in [Sethi 1983]. Each statement defines a continuation in terms of a 

supplied continuation and the denotations of its subcomponents. A special notation forpipes is 

used to specify the construction of flow graphs for the control constructs of the C programming 

language. A special combinator cycle is used for recursively defined continuations as in the case 

of loops. The edges of the flow graph are analogous to the threads in the generated code in our 

scheme. 

In [Reppy & Kintala 1984], a case is made for automatically generating complete AG-based 

LBE specifications from continuation semantics by techniques similar to those in [Sethi 1983]. 

The executable representation is similar to our scheme: code trees containing op-codes for a n  

abstract machine are generated and executed by an interpreter for the corresponding abstract 

machine. In contrast to our scheme, it however uses semantic functions with side effects to 

mutate the internal values of generated code trees. 

5 Implementation Status 

A specification for a Pascal editor with fu!l static semantic checking is distributed with the CSG 

release [Teitelbaum et al. 1987]. This specification has been augmented with the runtime 

semantics of Pascal to provide runtime facilities. 



238 

SSL Pascal-I, which is described in [Mughal 1988], is an implementation of a complete 

program editor for a subset of Pascal where both the runtime semantics and the runtime 

environment are realized in SSL. The generated code is P-code [Nod et al. 1975] defined and 

modified in SSL to produce incremental indirect threaded code. SSL PascaM demonstrates the 

implementation of non-trivial control flow aspects of language constructs such as loops, 

recursive procedure call, different modes of parameter passing (including procedure 

parameters), handling of labels and non-local gotos, and other structured statements. SSL 

PascaM supports only primitive data types in Pascal as these can be easily represented directly 

by data types of SSL. The runtime management includes a tail-recursive interpreter and a 

mntime shallow-binding store, also implemented in SSL. The program editor incorporates such 

debugging facilities as control-flow tracing, single-stepping and value-monitoring at the source 

level. 

SSL Pascal-I demonstrated the feasibility of incremental indirect threaded code, but the 

implementation of the runtime facilities was not efficient due to the limitations of the 

specification language SSL. Experience gained from this implementation has been valuable in 

the next undertaking of providing efficient runtime facilities for editors generated in the 

framework of CSG [Teitelbaum et al. 1988]. The interpreter is written in C and the code 

instructions are defined as a primitive data type CODE of the specification language SSL. 

Constructors are provided for all P-code attribute values of the primitive data type CODE. Thus 

the specification of code generation from SSL Pascal-I carries over to this scheme almost in its 

entirety. However the execution environment is stack-frame based implementing deep-binding 

in contrast to the shallow-binding-by-name scheme of SSL PascaM. The deep-binding scheme 

calls for the calculation of address offsets of variables during incremental threaded code 

generation. The code generation scheme of SSL Pascal-I is thus modified with respect to the 

offset calculation. The new scheme also supports structured and dynamic data types of Pascal. 

Debugging features include flow tracing, single-stepping, limited execution resumption after 

program modification and a form of COME command [Alberga et al. 1984]. For obvious 

reasons, the interpretation in C is far more efficient than the one in SSL PascaM. It is hoped 

that this Pascal editor will be released with the next version of CSG. 

6 Summary 

We have presented a viable non-ad hoc scheme for the specification of runtime semantics based 

on indirect threaded code in the framework provided by the CSG. It allows the implementation 

of non-trivial control flow aspects of many language constructs and facilitates implementation of 

certain runtime features. We believe this approach can be generalized to generate LBEs with 

runtime facilities for other block-structured languages. Ultimately one would like to provide the 
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editor designer with a generic package for implementing runtime semantics and debugging 

facilities, with "hooks" into the system for tailoring and augmenting the runtime model. We 

believe this work to be a step in that direction. 
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