
Generators for High-Speed Front-Ends

Josef Grosch
GMD Forschnngsstelle fttr Programmstrukturen an der Universit~tt Karlsruhe

Haid-und-Neu-Str. 7, D-7500 Karlsruhe 1, West Germany

Abstract

High-speed compilers can be constructed automatically. We present some existing tools
for the generation of fast front-ends.

Rex (Regular EXpression tool) is a scanner generator whose specifications are based on
regular expressions and arbitrary semantic actions written in one of the target languages C or
Modulao2. As scanners sometimes have to consider the context to unambiguously recognize a
token the right context can be specified by an additional regular expression and the left con-
text can be handled by so-called start states. The generated scanners automatically compute
the line and column position of the tokens and offer an efficient mechanism to normalize
identifiers and keywords to upper or lower case letters. The scanners are table-driven and run
at a speed of 180,000 to 195,000 lines per minute on a MC 68020 processor.

Lair is a LALR(1) parser generator accepting grammars written in extended BNF nota-
tion which may be augmented by semantic actions expressed by statements of the target
language. The generator provides a mechanism for S-attribution, that is synthesized attri-
butes can be computed during parsing. In case of LR-conflicts, unlike other tools, La/r pro-
rides not only information about an internal state consisting of a set of items but it prints a
derivation tree which is much more tLseful to analyze the problem. Conflicts can be resolved
by specifying precedence and associativity of operators and productions. The generated
parsers include automatic error reporting, error recovery, and error repair. The parsers are
table-driven and run at a speed of 400,000 lines per minute. Currently parsers can be gen-
erated in the target languages C and Modula-2.

Ell is a LL(1) parser generator accepting the same specification language as La/r except
that the grammars must obey the LL(1) property. The generated parsers include automatic
error reporting, recovery, and repair like Lalr. The parsers are implemented following the
recursive descent method and reach a speed of 450,000 lines per minute. The possible target
languages are again C and Modula-~

A comparison of the above tools with the corresponding UNIX tools shows that
significant improvements have been achieved thus allowing the generation of high-speed com-
pilers.

1. The Scanner Generator Rex

The scanner generator Rex has been developed with the aim to combine the powerful
specification method of regular expressions with the generation of highly efficient scanners.
The name Rex stands for regular expression tool, reflecting the specification method.

82

A scanner specification consists in principle of a set of regular expressions each associ-
ated with a semantic action. Whenever a string constructed according to a regular expression
is reco~zed in the input of the scanner its semantic action which is a sequence of arbitrary
statements written in the target language is executed. To be able to recognize tokens depend-
ing on their context Rex provides start states to handle left context and the right context can
be specified by an additional regular expression. If several regular expressions match the
input characters, the longest match is preferred. If there are still several possibilities, the reg-
ular expression given first in the specification is chosen.

Rex generated scanners automatically provide the line and column position of each
token. For languages like Pascal and Ada where the case of letters is insignificant tokens can
be normalized to lower or upper case. There are predefined rules to skip white space like
blanks, tabs, or newlines.

The generated scanners are table-driven deterministic finite automatons. The tables are
compressed using the so-called comb-vector technique [ASU86]. Whereas the generator Rex is
implemented in Modula-2 it can generate scanners in the languages C and Modula-2.
Currently Rex is available for PCS Cadmus/UNIX and SUN/UNIX workstations.

The most outstanding feature of Rex is its speed. The generated scanners process nearly
200,000 lines per minute without hashing of identifiers and up to 150,000 lines per minute if
hashing is applied. This is 4 times the speed of Lex [Les75] generated scanners. In typical
cases Rex generated scanners are 4 times smaller then Lex generated ones (around 15 KB).
Usually Rex takes only 1/10 of the time of Lex to generate a scanner. All figures have been
measured on a MC 68020 processor.

In the following we will demonstrate the powerful specification method provided by
Rex and present a comparison with other scanner generators.

1.1. Structure o f Specification

A complete scanner specification is structured like shown in Figure 1. The regular
expressions may be preceded by six sections containing arbitrary target code, which may con-
tain declarations to be used in the semantic actions or statements for initialization and finali-
zation of data structures. The DEFINE and START sections serve to abbreviate regular
expressions by identifiers and to declare start states (see below). A complete definition of the

EXPORT {
GLOBAL {
LOCAL {
BEGIN {
CLOSE {
EOF {
DEFINE
START
RULE

external dec larat ions }
global dec la ra t ions }
local declarations }
initialization code }
finalization code }
end of f i l e code }
d e f i n i t i o n of regular expressions
d e f i n i t i o n of s t a r t s ta tes
regular expressions and semantic act ions

Fig. 1: Structure of Specification

specification language can be found in the user manual [Gro87].

83

1.2. R igh t C o n t e x t

There are languages where the strategy of the longest match fails. For example in
Modula-2 the input 1. . has to be recognized as tokens "1" and ". . ", not as "1." and ". ",
which are also two legal Modula tokens. The problem can be solved using an additional reg-
ular expression to describe this situation where the right context of a token leads to an excep-
tion in the longest match strategy. Figure 2 shows the syntax used in Rex for regular expres-
sions and semantic actions to describe the 4 tokens involved in the above problem. The char-
acter ' / ' separating two regular expressions specifies to recognize a sequence of digits only if
it is followed by two dots.

{0-9} + : { re turn SymDecimal; }
{0-9} + I "..' : { return SymDecimal; }
{0-9} + "." {0-9} * : { return SymReal ; }
'.." : { return SymRange ; }

" " : { return SymDot ; }

Fig. 2: Scanner Specification Using Right Context

1.3 . S t a r t S t a t e s

To handle tokens whose recognition depends on the left context or to process even
tokens which cannot be specified by regular expressions the scanners can have several start
states. In every start state a different set of regular expressions is recognized. There is a spe-
cial statement to change the current start state (yyStart). For example nested comments like
in Modula can be scanned as shown in Figure 3.

GLOBAL

BEGIN

E0F

DEFINE

START

RULES

#Comment#

#Comment#

{VAR NestingLevel: CARDINAL,}

{NestingLevel := 0;}

{IF yyStartState = Comment THEN Error ("unclosed comment'); END;}

CmtCh = - {* C\t\n}.

Comment

'(*" : {INC (Nestin~Level); yyStart (Comment);}

"*)" : {DEC (NestingLevel) ;

IF NestingLevel = 0 THEN yySta r t (STD); END;}

" (" t " * " i ~ t ~ + : { }

Fig. 3: Scanner Specification Using Start States

84

1.4. A d a Q u o t e P r o b l e m

The Ada quote problem can also be solved using start states. The problem is to scan
for example

t ' (' ' ' ' ' ') J t a s n a s

t ' (. , , , , ,) and not as
t ' (.)

which are both possible sequences of Ada tokens. The correct solution again violates the long-
est match strategy. A careful study of the language definition reveals that single quotes only
appear behind identifiers and closing parentheses. Figure 4 shows the structure of a solution.
After recognizing one of these two tokens we switch to start state QUOTE which recognizes
among other tokens single quotes. After all the other tokens we switch to the predefined start
state STD where quotes are only accepted as delimiters for character literals. More exam-
ples of scanner specifications can be found in [Gro88a].

LOCAL {char Word [256]; i n t L;}

DEFINE cha rac t e r = {\ - -} .
letter = {A-Z a-z).
digit = {0-9}.

START @UOTE

RULES

#STD# ' cha rac t e r ' : (
L = GetWord (Word);
Attribute.vChar = Word [1];
r e t u r n SymCharacte r L i t e r a l ; }

#QUO'I'F~ ' : "C
y y S t a r t (821)) ;
return SymApostrophe; }

= (" : {yyStart (STD) ; return SymLParentheeie;}

") = : { yyS t a r t (QUOTE) ; r e t u r n SymRParenthesis; }

letter (_? (letter I digit)+)* : {
yyStart (QUOTE); L = GetJ~ower (Word);
Attribute.vSymbol = MakeSymbol (Word, L);
return SymIdentifier;)

Fig. 4: Scanner Specification Solving the Ada Quote Problem

1.5 . C o m p a r i s o n o f S c a n n e r G e n e r a t o r s

Figure 5 compares Rex to the classical UNIX scanner generator Lex [Les75] and to the
new public domain remake of Lex called Flex [PaxSS l (for fast Lex). The table compares the
specification technique and the performance of the generators as well as of the generated
scanners. The specification dependent numbers for generation time and scanner size are for a

85

specification
language

semantic actions
right context
start states
conflict solution

source coordinates
case normalization
predefined rules to

skip white space
several solutions

(REJECT)
adjustment of

internal arrays
scanning method
table compression
implementation

language
target languages
speed [lines/min.]

without hashing
with hashin~

table size [bytes]
scanner size [bytes]
generation time [sec.]
availability

Lex Flex Rex
regular regular regular

expressions expressions expressions
yes yes yes
yes yes yes
yes yes yes
longest match longest match longest match
first rule first rule first rule
line

yes

yes yes

by hand automatic

line + column
yes
yes

automatic

table-driven table-driven table-driven
comb-vector comb-vector comb-vector
C C

C C

36,400 139,000
34r700 l l S z ~
39,200 57,300

647100
73.7 7.2

Modula

C 7 Modula

182,700
1417.400
4,400
117200
4.9
PCS/UNIX
SUN/UN~
VAX/UN[X

BSD 4.2

L~IX UNIX

Fig. 5: Comparison of Scanner Generators (speed measured on MC 68020 processor)

Modula-2 scanner.

2. T h e Parser Generator Lair

The parser generator Lair has been developed with the aim to combine a powerful
specification technique for context-free languages with the generation of highly efficient
parsers. As it processes the class of LALR(1) grammars we chose the name Lair to express
the power of the specification technique.

86

The grammars may be written using extended BNF constructs. Each grammar rule
may be associated with a semantic action consisting of arbitrary statements written in the
target language. Whenever a grammar rule is recognized by the generated parser the associ-
ated semantic action is executed. A mechanism for S-attribution (only synthesized attributes)
is provided to allow communication between the semantic actions.

In case of LR-conflicts a derivation tree is printed to ease in locating the problem. The
conflict can be resolved by specifying precedence and associativity for terminals and rules.
Syntactic errors are handled fully automatically by the generated parsers including error
reporting, recovery, and repair. The mentioned features are discussed in more detail in the
following chapters.

The generated parsers are table-~iven. Like in the case of Rex comb-vector technique
is used to compress the parse tables. The generator Lair is implemented in the language
Modula-2. Parsers can be generated in the languages C and Modula-2. The generator uses the
algorithm described by [DeP82] to compute the look-ahead sets although the algorithm pub-
lished by live86] promises to perform better. Currently Lair is available for
PCS-Cadmus/UNIX and Sb~N/UN~ workstations.

Parsers generated by Lalr are twice as fast as Yacc [Joh75] generated ones. They reach
a speed of 400,000 lines per minute on a MC 68020 processor excluding the time for scanning.
The size of the parsers is only slightly increased in comparison to Yacc (e. g. 37 KB for
Ada), because there is a small price to be paid for the speed.

In the following we will discuss some features of Lair in detail and present a com-
parison to other parser generators. Further information about the implementation of Lalr
can be found in [Gro88b].

2.1. Structure of Specification

The structure of a parser specification follows the style of a Rex specification as shown
in Figure 6. Again, there may be five sections to include target code. The TOKEN section
defines the terminals of the grammar and their encoding. In the OPER (for operator) section
precedence and associativity for terminals can be specified to resolve LR-cordlicts. The RULE
section contains the grammar rules and semantic actions. A complete definition of the
specification~language can be found in the user manual IVieS8].

EXPORT { ex te rna l dec la ra t ions }
GLOBAL { global dec la ra t ions }
LOCAL
BEGIN
CLOSE

TOKEN
0PER
RULE

local declarations }
{ initialization code }
{ finalization code)

coding of terminals
precedence of operators
gr~.~r rules and semmmtic actionB

Fig. 6: Structure of Specification

87

2 .2 . S - A t t r i b u t i o n

Figure 7 shows an example for the syntax of grammar rules and semantic actions. The
semantic actions may access and evaluate attributes associated with the nonterminals and ter-
minals of the grammar rules. This attributes are currently denoted in the less readable
"numeric" style of Yacc [Joh75].

e ~ r : expr '+ ' expr { S 0 . v a l u e := $ 1 . v a l u e + $ 3 . v a l u e ; } .
expr : expr , , s expr { S0.value := $1.value * $3.value; } .
exl)r : ' (' exl)r ') ' { $0.value := $2.value; } .
expr : number { $0.value := $1.value; } .

Fig. 7: Parser Specification Using S-Attribution

2 .3 . A m b i g u o u s G r a m m a r s

The grammar of Figure 7 as well as the example in Figure 8 are typical examples of
ambiguous grammars. Like Yacc we allow to resolve the resulting LR-confiicts by specifying
precedence and associativity for terminals in the OPER section. Figure 9 gives an example.
The lines represent increasing levels of precedence. LEFT, RIGHT, and NONE denote
left-associativity, right-associativity, and no ass~iativity. Rules can inherit the properties of
a terminal with the PREC suffix.

strut : ':IF' expr 'THEN' strut PRFg~ LOW
I ' IF ' expr "THEN' strut 'ELSE' strut PBEC HXGH .

Fig: 8:

OPER

Ambiguous Grammar (Dangling Else)

L ~ r ~4.s

LEFT s , ,
NONE LOW
NONE HIGH

Fig. 9: Resolution of LR-Conflicts Using Precedence and Associativity

2 .4 . L R - C o n f l i c t M e s s a g e

To ease in locating the reason for LR-conflicts we adopted the method proposed by
[DeP82]. Besides reporting the type of the conflict and the involved items (whatever that is
for the user) like most LR parser generators a derivation tree is printed. Figure 10 shows an
example. It shows how the items and the look-ahead tokens get into the conflict situation. In
general there can be two trees if the derivations for the conflicting items are different. Each
tree consists of 3 parts. An initial part begins at the start symbol of the grammar. At a cer-
tain node (rule) two subtrees explain the emergence of the item and the look-ahead.

Every line contains a right-hand side of a grammar rule. Usually the right-hand side is
indented to start below the nonterminal of the left-hand side. To avoid line overflow dotted
edges also refer to the left-hand side nonterminal and allow to shift back to the left margin.
In Figure 10 the initial tree part consists of 5 lines (not counting the dotted lines). The

88

S t a t e 266

read reduce c o n f l i c t

program End-of -Tokens
'PROGRAM' i d e n t i f i e r psrams ' ; ' b l o c k ' . '
, . o . . o * * * o . . * * * :

l a b e l s c o n s t s t y p e s vars procs 'BEGIN' struts 'END'

s tmt
' IF ' expr 'THEN' st~nt 'ELSE' s t a r

' IF' expr 'THEN' strut

reduce s t r u t - > ' IF' expr 'THEN' strut. { 'ELSE'}
read s t r u t - > ' IF' expr 'THEN' s tmt . 'ELSE' strut

?
?

Fig. 10: Derivation Tree for an LR-Conflict (Dangling Else)

symbols 'stmt' and 'ELSE' are the roots of the other two tree parts. This location is indi-
cated by the "unnecessary" colon in the following line. After one intermediate line the left
subtree derives the conflicting items. The right subtree consists in this case only of the root
node (the terminal 'ELSE') indicating the look-ahead. In general this can be a tree of arbi-
trary size. The LR-conflict can easily be seen from this tree fragment. If conditional state-
ments are nested like shown there is a read reduce conflict (also called shift reduce conflict).

2 .5 . E r r o r R e c o v e r y

The generated parsers include information and algorithms to handle syntax errors com-
pletely automatically. We follow the complete backtrack-free method described by
[R0h76,R~h80,Roh82] and provide expressive reporting, recovery, and repair. Every
incorrect input is "virtually" transformed into a syntactically correct program with the
consequence of only executing a ~correct" sequence of semantic actions. Therefore the fol-
lowing compiler phases like semantic analysis don't have to bother with syntax errors. Lair
provides a prototype error module which prints messages as shown in Figure ll . Internally
the error recovery works as follows:

The location of the syntax error is reported.

All the tokens that would be a legal continuation of the program are computed and
repo~ted.

All the tokens that can serve to continue parsing are computed. A minimal sequence of
tokens is skipped until one of these tokens is found.

89

Source Program:

program t e s t (output) ;
begin

i f (a = b]
end.

Error Messages:

3, 13: Error
3, 13: Information

3, 15: Information
3, 15: Repair
3. 15: Repair

write (a) ;

syntax error

expected symbols: ")" "*' '+ '
'= ' '<>' '>" ">=' 'AND" 'DIV'
restart point
symbol i n s e r t e d : ') '
symbol inserted : 'THEN"

. . . . / , ,<, ,<=,

'IN' 'MOD' "OR'

Fig. 11: Example of Automatic Error Messages

The recovery location is reported.

Parsing continues in the so-called repair mode. In this mode the parser behaves as usual
except that no tokens are read from the input. Instead a minimal sequence of tokens is
synthesized to repair the error. The parser stays in this mode until the input token can be
accepted. The synthesized tokens are reported. The program can be regarded as repaired,
if the skipped tokens are replaced by the synthesized ones. With leaving the repair mode
parsing continues as usual.

2.6 ,

Yacc

Bison

PGS

Ell

C o m p a r i s o n o f P a r s e r G e n e r a t o r s

Figure 12 compares Latr with:

well known from UNIX [Joh75]

public domain remake of Yacc [GNU88]

Parser Generating System also developed at Karlsruhe [GrK86, KlM88]

recursive descent parser generator described in chapter 3.

The language dependent numbers exclude time and size for scanning and refer to exper-
iments with a Modula-2 parser.

The measurements of the parser speed turned out to be a hairy business. The results
can he influenced in many ways from:

The hardware: We used a PCS Cadmus 9900 with a MC68020 processors running at a
clock rate of 20 MHz.

The compiler: We used the C compiler of PCS.

The language: We used Modula-2.

The size of the language: In the case of Lair the size of the language or the size of the
grammar does not influence the speed of the parser because the same table-driven algo-
rithm and the same data structure is used in every case. This can be different for other

90

Bison Yacc PGS Lalr Ell
spee. language
grammar class

semantic actions
S-attribution
L-attribution
conflict message

conflict solution

chain rule dim.
error recovery
error repair
parsing method

table compression
impl. language
target languages

speed [lines/min.]
table size [bytes]

parser size [bytes l

gen. t ime [see:]
availability

BNF BNF EBNF EBNF
LALR(1) LALR(1) LALR(1) LALR(1)

LR(1)
SLR(1)

yes yes yes yes
numeric numeric symbolic numeric

state, state,
items items

precedence precedence
associativity associativity

by hand by hand

table-driven table-driven

comb-vector comb-vector
C C
C C

state, derivation-
items tree

modification precedence
associativity

EBNF
LL(1)

yes

planned

yes
automatic automatic automatic
yes yes },-es
table-driven table-driven recursive

descent
comb-vector comb-vector-
Pascal Modula Modula
C C C
Modula Modula Modula
Pascal
Ada

105000 1 8 4 ~ 0 0 0 200,000 3 8 5 1 0 0 0 437z000
8,004 10,364 11,268 11,795 -
11 136 12 548 171616 171416 14~44
5.0 19.6 69.5 29.6 6.4
UNIX UNIX PCS/UNlX PCS/UNIX PCS/UNIX

VAXNNIX SUN/UNIX SUN/UNIX
BSD 4.2

SIEMENS/
BS2000

Fig. 12: Comparison of Parser Generators (speed measured on a MC 68020 processor)

parsers. For example the speed of directly coded parsers decreases with an increasing
grammar size. PGS stores states in one byte if there are less than 256 states and in two
bytes otherwise. This increases the speed for small grammars, too, at least on
byte-addressable machines.

The grammar style, the number of rules, especially chain rules and the like: We used the
same grammar for most experiments which had as few chain rules as possible and which
caused as few reduce actions as possible. This means e. g. we specified expressions in an

9]

ambiguous style like shown in Figure 7. Exceptions are Ell which needs an LL(1) grammar
and PGS, because modifications are inelegant to resolve many ambiguities.

The test input: We used the same large Modula program as test data in every case, of
course. Nevertheless the programming style or the code "density" influence the resulting
speed. This effect could be eliminated by selecting tokens per minute as measure. In spite
of this we chose lines per minute as measure because we find this to be more expressive.
(In the average there are 4 tokens in a line).

The timing: We measured CPU-time and subtracted the total time and the scanner time
to get the parser time.

The semantic actions: We specified empty semantic actions for all rules in order to simu-
late the conditions in a realistic application. This has more consequences as one might
think. It disables a short cut of Yacc and the chain rule elimination [WAG84] of PGS,
decreasing the speed in both cases. A further experiment with PGS revealed even more
problems. To allow chain rule elimination we deleted the empty semantic actions for chain
rules. Surprisingly, instead of getting faster the parser was slower. The reason is that
chain rule elimination increases the number of states. Accidentally we exceeded the
number of 256. Now states have to be stored in two bytes instead of one. The additional
memory accesses are more expensive than the win from the chain rule elimination.

3. The Parser Generator Ell

The parser generator Ell processes LL(1) grammars which may contain extended BNF
constructs and semantic actions and generates a recursive descent parser. A mechanism for
L-attribution (inherited and synthesized attributes evaluabte during one preorder traversal) is
to be added. Like Lalr syntax errors are handled fully automatic including error reporting
from a prototype error module, error recovery, and error repair. The generator Ell is imple-
mented in Modula-2 and can generate parsers in C and Modula-2. Those satisfied with the
restricted power of LL(1) grammars may profit from the high speed of the generated parsers
which lies around 450,000 lines per minute. For a detailed comparison see Figure 12.

4. Conclusion

We presented the tools Rex, Lair, and Ell that allow the generation of efficient com-
piler front-ends. The combination of generated scanners and parsers reach speeds of more
than 100,000 lines per minute or almost 2,000 lines per second. As scanning itself is one of
the dominating tasks in a compiler we belief that compilers with a total performance of 1,000
lines per second can be generated automatically. Our current work concentrates on tools for
semantic analysis based on attribute grammars and code generation based on pattern match-
ing.

Acknowledgement

The author implemented Rex and contributed the parser skeletons in C and Modula-2
for Lair. The generator program Ldr was written and debugged by Bertram Vielsack who
also provided the experimental results for the parser generators. The parser generator Ell
was programmed by Doris Kuske.

92

References
[ASU86] A.V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques, and

Tools, Addison Wesley, Reading, MA, 1986.

[DeP82] F. DeRemer and T. Pennello, Efficient Computation of LALR(1) Look-Ahead
Sets, ACM Trans. Prog. Lang. and Systems ~, 4 (Oct. 1982), 615-649.

[GNU88] GNU Project, Bison - Manual Page, Public Domain Software, 1988.

[GrK86] J. Grosch and E. Klein, User Manual for the PGS-System, GMD
Forschungsstelle an der Universit~it Kartsruhe, Aug. 1986.

[Gro87] J. Grosch, Rex - A Scanner Generator, Compiler Generation Report No. 5,
GMD Forschungsstelle an der Universiti~t Karlsruhe, Dec. 1987.

[Gro88a] J. Grosch, Selected Examples of Scanner Specifications, Compiler Generation
Report No. 7, GMD Forschungsstelle an der Universiti~t Karlsruhe, Mar. 1988.

[Gro88b] J. Grosch, LALR Generates Efficient Table-Driven Parsers, Compiler
Generation Report No. 10, GMD Forschungsstelle an der Universit~t Karlsruhe,
Sep. 1988.

live86] F. Ives, Unifying View of Recent LALR(1) Lookahead Set Algorithms, SIGPLAN
Notices 21, 7 (1986), 131-135.

[Joh75] S .C . Johnson, Yacc - - Yet Another Compiler-Compiler, Computer Science
Technical Report 32, Bell Telephone Laboratories, Murray Hill, N J, July 1975.

[KlM88] E. Klein and M. Martin, The Parser Generating System PGS, to appear in
Software--Practice f~ Experience,, 1988.

[LesT5] M . E . Lesk, LEX - - A Lexical Analyzer Generator, Computing Science
Technical Report 39, Bell Telephone Laboratories, Murray Hill, N J, 1975.

[Pax88] V. Paxson, Flex - Manual Pages, Public Domain Software, 1988.

[Rtih76] J. RShrich, Syntax-Error Recovery in LR-Parsers, in Informatik-Fachberichte,
vol. 1, H.-J. Schneider and M. Nagl (ed.), Springer, Berlin, 1976, 175-184.

[Rt~hS0] J. RShrich, Methods for the Automatic Construction of Error Correcting
Parsers~ Acta Inf. 13, 2 (1980), 115-1~9.

[Rtih82] J. RShrich, Behandlung syntaktischer Fehler, Informatik Spektrum 5, 3 (1982),
171-184.

IVieS8] B. Vielsack, The Parser Generators Lalr and Ell, Compiler Generation Report
No. 8, GMD Forschungsstelle an der Universit~t Karlsruhe, Apr. 1988.

~aG84] W.M. Waite and G. Goos, Compiler Construction, Springer Verlag, New York,
NY, 1984.

