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Abstract 

High-speed compilers can be constructed automatically. We present some existing tools 
for the generation of fast front-ends. 

Rex (Regular EXpression tool) is a scanner generator whose specifications are based on 
regular expressions and arbitrary semantic actions written in one of the target languages C or 
Modulao2. As scanners sometimes have to consider the context to unambiguously recognize a 
token the right context can be specified by an additional regular expression and the left con- 
text can be handled by so-called start states. The generated scanners automatically compute 
the line and column position of the tokens and offer an efficient mechanism to normalize 
identifiers and keywords to upper or lower case letters. The scanners are table-driven and run 
at a speed of 180,000 to 195,000 lines per minute on a MC 68020 processor. 

Lair is a LALR(1) parser generator accepting grammars written in extended BNF nota- 
tion which may be augmented by semantic actions expressed by statements of the target 
language. The generator provides a mechanism for S-attribution, that is synthesized attri- 
butes can be computed during parsing. In case of LR-conflicts, unlike other tools, La/r pro- 
rides not only information about an internal state consisting of a set of items but it prints a 
derivation tree which is much more tLseful to analyze the problem. Conflicts can be resolved 
by specifying precedence and associativity of operators and productions. The generated 
parsers include automatic error reporting, error recovery, and error repair. The parsers are 
table-driven and run at a speed of 400,000 lines per minute. Currently parsers can be gen- 
erated in the target languages C and Modula-2. 

Ell is a LL(1) parser generator accepting the same specification language as La/r except 
that the grammars must obey the LL(1) property. The generated parsers include automatic 
error reporting, recovery, and repair like Lalr. The parsers are implemented following the 
recursive descent method and reach a speed of 450,000 lines per minute. The possible target 
languages are again C and Modula-~ 

A comparison of the above tools with the corresponding UNIX tools shows that 
significant improvements have been achieved thus allowing the generation of high-speed com- 
pilers. 

1. The Scanner Generator Rex 

The scanner generator Rex has been developed with the aim to combine the powerful 
specification method of regular expressions with the generation of highly efficient scanners. 
The name Rex stands for regular expression tool, reflecting the specification method. 



82 

A scanner specification consists in principle of a set of regular expressions each associ- 
ated with a semantic action. Whenever a string constructed according to a regular expression 
is reco~zed  in the input of the scanner its semantic action which is a sequence of arbitrary 
statements written in the target language is executed. To be able to recognize tokens depend- 
ing on their context Rex provides start states to handle left context and the right context can 
be specified by an additional regular expression. If several regular expressions match the 
input characters, the longest match is preferred. If there are still several possibilities, the reg- 
ular expression given first in the specification is chosen. 

Rex generated scanners automatically provide the line and column position of each 
token. For languages like Pascal and Ada where the case of letters is insignificant tokens can 
be normalized to lower or upper case. There are predefined rules to skip white space like 
blanks, tabs, or newlines. 

The generated scanners are table-driven deterministic finite automatons. The tables are 
compressed using the so-called comb-vector technique [ASU86]. Whereas the generator Rex is 
implemented in Modula-2 it can generate scanners in the languages C and Modula-2. 
Currently Rex is available for PCS Cadmus/UNIX and SUN/UNIX workstations. 

The most outstanding feature of Rex is its speed. The generated scanners process nearly 
200,000 lines per minute without hashing of identifiers and up to 150,000 lines per minute if 
hashing is applied. This is 4 times the speed of Lex [Les75] generated scanners. In typical 
cases Rex generated scanners are 4 times smaller then Lex generated ones (around 15 KB). 
Usually Rex takes only 1/10 of the time of Lex to generate a scanner. All figures have been 
measured on a MC 68020 processor. 

In the following we will demonstrate the powerful specification method provided by 
Rex and present a comparison with other scanner generators. 

1.1. Structure  o f  Specification 

A complete scanner specification is structured like shown in Figure 1. The regular 
expressions may be preceded by six sections containing arbitrary target code, which may con- 
tain declarations to be used in the semantic actions or statements for initialization and finali- 
zation of data structures. The DEFINE and START sections serve to abbreviate regular 
expressions by identifiers and to declare start states (see below). A complete definition of the 

EXPORT { 
GLOBAL { 
LOCAL { 
BEGIN { 
CLOSE { 
EOF { 
DEFINE 
START 
RULE 

external  dec larat ions  } 
global dec la ra t ions  } 
local declarations } 
initialization code } 
finalization code } 
end of f i l e  code } 
d e f i n i t i o n  of regular expressions 
d e f i n i t i o n  of s t a r t  s ta tes  
regular expressions and semantic act ions  

Fig. 1: Structure of Specification 

specification language can be found in the user manual [Gro87]. 
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1.2. R igh t  C o n t e x t  

There are languages where the strategy of the longest match fails. For example in 
Modula-2 the input 1. .  has to be recognized as tokens "1" and ". .  ", not as "1." and ". ", 
which are also two legal Modula tokens. The problem can be solved using an additional reg- 
ular expression to describe this situation where the right context of a token leads to an excep- 
tion in the longest match strategy. Figure 2 shows the syntax used in Rex for regular expres- 
sions and semantic actions to describe the 4 tokens involved in the above problem. The char- 
acter ' / '  separating two regular expressions specifies to recognize a sequence of digits only if 
it is followed by two dots. 

{0-9} + : { re turn  SymDecimal; } 
{0-9} + I "..' : { return SymDecimal; } 
{0-9} + "." {0-9} * : { return SymReal ; } 
'.." : { return SymRange ; } 

" " : { return SymDot ; } 

Fig. 2: Scanner Specification Using Right Context 

1.3 .  S t a r t  S t a t e s  

To handle tokens whose recognition depends on the left context or to process even 
tokens which cannot be specified by regular expressions the scanners can have several start 
states. In every start state a different set of regular expressions is recognized. There is a spe- 
cial statement to change the current start state (yyStart). For example nested comments like 
in Modula can be scanned as shown in Figure 3. 

GLOBAL 

BEGIN 

E0F 

DEFINE 

START 

RULES 

#Comment# 

#Comment# 

{VAR NestingLevel: CARDINAL,} 

{NestingLevel := 0;} 

{IF yyStartState = Comment THEN Error ("unclosed comment'); END;} 

CmtCh = - {* C\t\n}. 

Comment 

'(*" : {INC (Nestin~Level); yyStart (Comment);} 

"*)" : {DEC (NestingLevel) ; 

IF NestingLevel = 0 THEN yySta r t  (STD); END;} 

" ( "  t " * "  i ~ t ~ +  : { }  

Fig. 3: Scanner Specification Using Start States 
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1.4.  A d a  Q u o t e  P r o b l e m  

The Ada quote problem can also be solved using start states. The problem is to scan 
for example 

t ' ( ' ' ' ' '  ' )  J t a s n a s  

t ' ( . . . . . . ,  , , , , ) and not as 
t ' (  . . . . . .  ) 

which are both possible sequences of Ada tokens. The correct solution again violates the long- 
est match strategy. A careful study of the language definition reveals that single quotes only 
appear behind identifiers and closing parentheses. Figure 4 shows the structure of a solution. 
After recognizing one of these two tokens we switch to start state QUOTE which recognizes 
among other tokens single quotes. After all the other tokens we switch to the predefined start 
state STD where quotes are only accepted as delimiters for character literals. More exam- 
ples of scanner specifications can be found in [Gro88a]. 

LOCAL {char Word [256]; i n t  L;} 

DEFINE cha rac t e r  = {\  - -} .  
letter = {A-Z a-z). 
digit = {0-9}. 

START @UOTE 

RULES 

#STD# ' cha rac t e r  ' : ( 
L = GetWord (Word); 
Attribute.vChar = Word [1]; 
r e t u r n  SymCharacte r L i t e r a l ;  } 

#QUO'I'F~ ' : "C 
y y S t a r t  (821)) ; 
return SymApostrophe; } 

= (" : {yyStart (STD) ; return SymLParentheeie;} 

") = : { yyS t a r t  (QUOTE) ; r e t u r n  SymRParenthesis; } 

letter (_? (letter I digit)+ )* : { 
yyStart (QUOTE); L = GetJ~ower (Word); 
Attribute.vSymbol = MakeSymbol (Word, L); 
return SymIdentifier; ) 

Fig. 4: Scanner Specification Solving the Ada Quote Problem 

1.5 .  C o m p a r i s o n  o f  S c a n n e r  G e n e r a t o r s  

Figure 5 compares Rex to the classical UNIX scanner generator Lex [Les75] and to the 
new public domain remake of Lex called Flex [PaxSS l (for fast Lex). The table compares the 
specification technique and the performance of the generators as well as of the generated 
scanners. The specification dependent numbers for generation time and scanner size are for a 
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specification 
language 

semantic actions 
right context 
start states 
conflict solution 

source coordinates 
case normalization 
predefined rules to 

skip white space 
several solutions 

(REJECT) 
adjustment of 

internal arrays 
scanning method 
table compression 
implementation 

language 
target languages 
speed [lines/min.] 

without hashing 
with hashin~ 

table size [bytes] 
scanner size [bytes] 
generation time [sec.] 
availability 

Lex Flex Rex 
regular regular regular 

expressions expressions expressions 
yes yes yes 
yes yes yes 
yes yes yes 
longest match longest match longest match 
first rule first rule first rule 
line 

yes 

yes yes 

by hand automatic 

line + column 
yes 
yes 

automatic 

table-driven table-driven table-driven 
comb-vector comb-vector comb-vector 
C C 

C C 

36,400 139,000 
34r700 l l S z ~  
39,200 57,300 

647100 
73.7 7.2 

Modula 

C 7 Modula 

182,700 
1417.400 
4,400 
117200 
4.9 
PCS/UNIX 
SUN/UN~ 
VAX/UN[X 

BSD 4.2 

L~IX UNIX 

Fig. 5: Comparison of Scanner Generators (speed measured on MC 68020 processor) 

Modula-2 scanner. 

2. T h e  Parser Generator Lair 

The parser generator Lair has been developed with the aim to combine a powerful 
specification technique for context-free languages with the generation of highly efficient 
parsers. As it processes the class of LALR(1) grammars we chose the name Lair to express 
the power of the specification technique. 
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The grammars may be written using extended BNF constructs. Each grammar rule 
may be associated with a semantic action consisting of arbitrary statements written in the 
target language. Whenever a grammar rule is recognized by the generated parser the associ- 
ated semantic action is executed. A mechanism for S-attribution (only synthesized attributes) 
is provided to allow communication between the semantic actions. 

In case of LR-conflicts a derivation tree is printed to ease in locating the problem. The 
conflict can be resolved by specifying precedence and associativity for terminals and rules. 
Syntactic errors are handled fully automatically by the generated parsers including error 
reporting, recovery, and repair. The mentioned features are discussed in more detail in the 
following chapters. 

The generated parsers are table-~iven. Like in the case of Rex comb-vector technique 
is used to compress the parse tables. The generator Lair is implemented in the language 
Modula-2. Parsers can be generated in the languages C and Modula-2. The generator uses the 
algorithm described by [DeP82] to compute the look-ahead sets although the algorithm pub- 
lished by live86] promises to perform better. Currently Lair is available for 
PCS-Cadmus/UNIX and Sb~N/UN~ workstations. 

Parsers generated by Lalr are twice as fast as Yacc [Joh75] generated ones. They reach 
a speed of 400,000 lines per minute on a MC 68020 processor excluding the time for scanning. 
The size of the parsers is only slightly increased in comparison to Yacc (e. g. 37 KB for 
Ada), because there is a small price to be paid for the speed. 

In the following we will discuss some features of Lair in detail and present a com- 
parison to other parser generators. Further information about the implementation of Lalr 
can be found in [Gro88b]. 

2.1. Structure of  Specification 

The structure of a parser specification follows the style of a Rex specification as shown 
in Figure 6. Again, there may be five sections to include target code. The TOKEN section 
defines the terminals of the grammar and their encoding. In the OPER (for operator) section 
precedence and associativity for terminals can be specified to resolve LR-cordlicts. The RULE 
section contains the grammar rules and semantic actions. A complete definition of the 
specification~language can be found in the user manual IVieS8]. 

EXPORT { ex te rna l  dec la ra t ions  } 
GLOBAL { global  dec la ra t ions  } 
LOCAL 
BEGIN 
CLOSE 

TOKEN 
0PER 
RULE 

local declarations } 
{ initialization code } 
{ finalization code ) 

coding of terminals 
precedence of operators 
gr~.~r rules and semmmtic actionB 

Fig. 6: Structure of Specification 
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2 .2 .  S - A t t r i b u t i o n  

Figure 7 shows an example for the syntax of grammar rules and semantic actions. The 
semantic actions may access and evaluate attributes associated with the nonterminals and ter- 
minals of the grammar rules. This attributes are currently denoted in the less readable 
"numeric" style of Yacc [Joh75]. 

e ~ r  : expr '+ '  expr { S 0 . v a l u e  := $ 1 . v a l u e  + $ 3 . v a l u e ;  } . 
expr : expr , , s  expr { S0.value := $1.value * $3.value;  } . 
exl)r : ' ( '  exl)r ' ) '  { $0.value := $2.value;  } . 
expr : number { $0.value := $1.value;  } . 

Fig. 7: Parser Specification Using S-Attribution 

2 .3 .  A m b i g u o u s  G r a m m a r s  

The grammar of Figure 7 as well as the example in Figure 8 are typical examples of 
ambiguous grammars. Like Yacc we allow to resolve the resulting LR-confiicts by specifying 
precedence and associativity for terminals in the OPER section. Figure 9 gives an example. 
The lines represent increasing levels of precedence. LEFT, RIGHT, and NONE denote 
left-associativity, right-associativity, and no ass~iativity. Rules can inherit the properties of 
a terminal with the PREC suffix. 

strut : ':IF' expr 'THEN' strut PRFg~ LOW 
I ' IF '  expr "THEN' strut 'ELSE' strut PBEC HXGH . 

Fig: 8: 

OPER 

Ambiguous Grammar (Dangling Else) 

L ~ r  ~4.s 

LEFT s , ,  
NONE LOW 
NONE HIGH 

Fig. 9: Resolution of LR-Conflicts Using Precedence and Associativity 

2 .4 .  L R - C o n f l i c t  M e s s a g e  

To ease in locating the reason for LR-conflicts we adopted the method proposed by 
[DeP82]. Besides reporting the type of the conflict and the involved items (whatever that is 
for the user) like most LR parser generators a derivation tree is printed. Figure 10 shows an 
example. It shows how the items and the look-ahead tokens get into the conflict situation. In 
general there can be two trees if the derivations for the conflicting items are different. Each 
tree consists of 3 parts. An initial part begins at the start symbol of the grammar. At a cer- 
tain node (rule) two subtrees explain the emergence of the item and the look-ahead. 

Every line contains a right-hand side of a grammar rule. Usually the right-hand side is 
indented to start below the nonterminal of the left-hand side. To avoid line overflow dotted 
edges also refer to the left-hand side nonterminal and allow to shift back to the left margin. 
In Figure 10 the initial tree part consists of 5 lines (not counting the dotted lines). The 
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S t a t e  266 

read reduce  c o n f l i c t  

program End-of -Tokens  
'PROGRAM' i d e n t i f i e r  psrams ' ; '  b l o c k  ' . '  
, . o . . o .  . . . .  * * *  . . . . .  o . . * * *  . . . . . . .  : 

l a b e l s  c o n s t s  t y p e s  vars  procs  'BEGIN' struts 'END' 

s tmt  
' IF '  expr 'THEN' st~nt 'ELSE' s t a r  

' IF'  expr 'THEN' strut 

reduce s t r u t - >  ' IF'  expr 'THEN' strut. { 'ELSE'} 
read s t r u t - >  ' IF'  expr 'THEN' s tmt .  'ELSE' strut 

? 
? 

Fig. 10: Derivation Tree for an LR-Conflict (Dangling Else) 

symbols 'stmt' and 'ELSE' are the roots of the other two tree parts. This location is indi- 
cated by the "unnecessary" colon in the following line. After one intermediate line the left 
subtree derives the conflicting items. The right subtree consists in this case only of the root 
node (the terminal 'ELSE') indicating the look-ahead. In general this can be a tree of arbi- 
trary size. The LR-conflict can easily be seen from this tree fragment. If conditional state- 
ments are nested like shown there is a read reduce conflict (also called shift reduce conflict). 

2 .5 .  E r r o r  R e c o v e r y  

The generated parsers include information and algorithms to handle syntax errors com- 
pletely automatically. We follow the complete backtrack-free method described by 
[R0h76,R~h80,Roh82] and provide expressive reporting, recovery, and repair. Every 
incorrect input is "virtually" transformed into a syntactically correct program with the 
consequence of only executing a ~correct" sequence of semantic actions. Therefore the fol- 
lowing compiler phases like semantic analysis don't have to bother with syntax errors. Lair 
provides a prototype error module which prints messages as shown in Figure ll .  Internally 
the error recovery works as follows: 

The location of the syntax error is reported. 

All the tokens that would be a legal continuation of the program are computed and 
repo~ted. 

All the tokens that can serve to continue parsing are computed. A minimal sequence of 
tokens is skipped until one of these tokens is found. 
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Source Program: 

program t e s t  (output) ;  
begin 

i f  (a = b] 
end. 

Error Messages: 

3, 13: Error  
3, 13: Information 

3, 15: Information 
3, 15: Repair 
3. 15: Repair 

write (a) ; 

syntax error 

expected  symbols: ")" "*' '+ '  
'= '  '<>' '>" ">=' 'AND" 'DIV' 
restart point 
symbol i n s e r t e d  : ') ' 
symbol inserted : 'THEN" 

. . . .  / ,  ,<, ,<=, 

'IN' 'MOD' "OR' 

Fig. 11: Example of Automatic Error Messages 

The recovery location is reported. 

Parsing continues in the so-called repair mode. In this mode the parser behaves as usual 
except that no tokens are read from the input. Instead a minimal sequence of tokens is 
synthesized to repair the error. The parser stays in this mode until the input token can be 
accepted. The synthesized tokens are reported. The program can be regarded as repaired, 
if the skipped tokens are replaced by the synthesized ones. With leaving the repair mode 
parsing continues as usual. 

2.6 ,  

Yacc 

Bison 

PGS 

Ell 

C o m p a r i s o n  o f  P a r s e r  G e n e r a t o r s  

Figure 12 compares Latr with: 

well known from UNIX [Joh75] 

public domain remake of Yacc [GNU88] 

Parser Generating System also developed at Karlsruhe [GrK86, KlM88] 

recursive descent parser generator described in chapter 3. 

The language dependent numbers exclude time and size for scanning and refer to exper- 
iments with a Modula-2 parser. 

The measurements of the parser speed turned out to be a hairy business. The results 
can he influenced in many ways from: 

The hardware: We used a PCS Cadmus 9900 with a MC68020 processors running at a 
clock rate of 20 MHz. 

The compiler: We used the C compiler of PCS. 

The language: We used Modula-2. 

The size of the language: In the case of Lair the size of the language or the size of the 
grammar does not influence the speed of the parser because the same table-driven algo- 
rithm and the same data structure is used in every case. This can be different for other 
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Bison Yacc PGS Lalr Ell 
spee. language 
grammar class 

semantic actions 
S-attribution 
L-attribution 
conflict message 

conflict solution 

chain rule dim. 
error recovery 
error repair 
parsing method 

table compression 
impl. language 
target languages 

speed [lines/min.] 
table size [bytes] 

parser size [bytes l 

gen. t ime [see: ] 
availability 

BNF BNF EBNF EBNF 
LALR(1) LALR(1) LALR(1) LALR(1) 

LR(1) 
SLR(1) 

yes yes yes yes 
numeric numeric symbolic numeric 

state, state, 
items items 

precedence precedence 
associativity associativity 

by hand by hand 

table-driven table-driven 

comb-vector comb-vector 
C C 
C C 

state, derivation- 
items tree 

modification precedence 
associativity 

EBNF 
LL(1) 

yes 

planned 

yes 
automatic automatic automatic 
yes yes },-es ..... 
table-driven table-driven recursive 

descent 
comb-vector comb-vector- 
Pascal Modula Modula 
C C C 
Modula Modula Modula 
Pascal 
Ada 

105000 1 8 4 ~ 0 0 0  200,000 3 8 5 1 0 0 0  437z000 
8,004 10,364 11,268 11,795 - 
11 136 12 548 171616 171416 14~44 
5.0 19.6 69.5 29.6 6.4 
UNIX UNIX PCS/UNlX PCS/UNIX PCS/UNIX 

VAXNNIX SUN/UNIX SUN/UNIX 
BSD 4.2 

SIEMENS/ 
BS2000 

Fig. 12: Comparison of Parser Generators (speed measured on a MC 68020 processor) 

parsers. For example the speed of directly coded parsers decreases with an increasing 
grammar size. PGS stores states in one byte if there are less than 256 states and in two 
bytes otherwise. This increases the speed for small grammars, too, at least on 
byte-addressable machines. 

The grammar style, the number of rules, especially chain rules and the like: We used the 
same grammar for most experiments which had as few chain rules as possible and which 
caused as few reduce actions as possible. This means e. g. we specified expressions in an 
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ambiguous style like shown in Figure 7. Exceptions are Ell which needs an LL(1) grammar 
and PGS, because modifications are inelegant to resolve many ambiguities. 

The test input: We used the same large Modula program as test data in every case, of 
course. Nevertheless the programming style or the code "density" influence the resulting 
speed. This effect could be eliminated by selecting tokens per minute as measure. In spite 
of this we chose lines per minute as measure because we find this to be more expressive. 
(In the average there are 4 tokens in a line). 

The timing: We measured CPU-time and subtracted the total time and the scanner time 
to get the parser time. 

The semantic actions: We specified empty semantic actions for all rules in order to simu- 
late the conditions in a realistic application. This has more consequences as one might 
think. It disables a short cut of Yacc and the chain rule elimination [WAG84] of PGS, 
decreasing the speed in both cases. A further experiment with PGS revealed even more 
problems. To allow chain rule elimination we deleted the empty semantic actions for chain 
rules. Surprisingly, instead of getting faster the parser was slower. The reason is that 
chain rule elimination increases the number of states. Accidentally we exceeded the 
number of 256. Now states have to be stored in two bytes instead of one. The additional 
memory accesses are more expensive than the win from the chain rule elimination. 

3. The Parser Generator Ell 

The parser generator Ell processes LL(1) grammars which may contain extended BNF 
constructs and semantic actions and generates a recursive descent parser. A mechanism for 
L-attribution (inherited and synthesized attributes evaluabte during one preorder traversal) is 
to be added. Like Lalr syntax errors are handled fully automatic including error reporting 
from a prototype error module, error recovery, and error repair. The generator Ell is imple- 
mented in Modula-2 and can generate parsers in C and Modula-2. Those satisfied with the 
restricted power of LL(1) grammars may profit from the high speed of the generated parsers 
which lies around 450,000 lines per minute. For a detailed comparison see Figure 12. 

4. Conclusion 

We presented the tools Rex, Lair, and Ell that allow the generation of efficient com- 
piler front-ends. The combination of generated scanners and parsers reach speeds of more 
than 100,000 lines per minute or almost 2,000 lines per second. As scanning itself is one of 
the dominating tasks in a compiler we belief that compilers with a total performance of 1,000 
lines per second can be generated automatically. Our current work concentrates on tools for 
semantic analysis based on attribute grammars and code generation based on pattern match- 
ing. 
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