The INDIA Lexic Generator

MICHAEL ALBINUS WERNER ABMANN*

1 Introduction

Because lexical analysis takes a conciderable amount of compilation time if is necessary
to build fast scanners. Generated scanners were brought info discredit because their
lack of efficiency, although finite auiomata are an appreciated method for generafing
scanners. Some effort was made to improve the speed of generated scanners.

This paper describes the lexic generator of the INDIA system.

2 Lexical analysis in the INDIA system

The INDIA compiler generator, described in [Albinus86), is the basis for compiler con-
struction in the INDIA system. It generates tables for all compiler components, which
contain the language specific informations. As presented in [ABmann86}, the compiler
can be viewed as a sel of abstract machines associated by tables which contain the
abstract instruction codes to control the work. In this way we have a lezical machine
(scanner) that reads a sequence of input characters and fits them into a sequence of
lexical items, the smallest symbols known by the syntactical machine (parser). The
syntactical machine (based on LR(1) respectively LALR(1) mechanism) fransforms this
sequence of lexical items into a sequence of meta symbols again, and so on. Therefore,
we have the following model:

*Academy of Sciences of the G.D.R.
Institute of Informatics and Computing Technique
Rudower Chaussee 5, Berlin, G.D.R.

116

sequence of input characters

lexical lexical lexical
table machine control data

sequence of lexical items

syntactical syntactical syntactical
table machine control data

sequence of meta symbols

Figure 1: Principle of the lexical and syntacfical machines

The other abstract machines of the compiler (tree constructor, table constructor, repar-
ser, and code generator) are working in the same way. Every abstract machine is
controlled by control data including options for list regime, production of test results
and 8o on.

8 Generation of lexical table

The scanner has to construct the lexical items. There exists two kinds of lexical items,
namely lexical items without "semantic” like '<*, *:=" or 'BEGIN’, and lexical items
with a determined value like identifiers or numbers. We call them terminal symbols and
pseudoterminal symbols, respectively. Keywords (like *BEGIN®) are ordinary terminal
symbols from the viewpoint of syntactical analysis. Comments are special psesdotermi-
nal symbols. Every lexical item is represented by an item number.

For generating the lexical table it is necessary fo describe

o the text (string) of every terminal symbol and the item number belonging to,

o the syntactical structure of every pseudoterminal symbol and the item number
belonging to,

o special features for handling of keywords, and

o special features for handling of comments.

The lexic generator transforms the description of lexical items into an deterministic
finite automaton as described in [Aho77] and stores an abstract program, representing
the automaton, into the lexical table. Some special features introduced in the next
subsections are represented in the automaton.

117

3.1 Defining lexical items

The ferminal and pseudoterminal symbols are defined during the generation of the syn-
tactical table. Using extended BNF notation (described in [ASmann85}), the syntax
production

<Procedure Head> ::= *'PROCEDURE’' "Identifier" <Parameters> *;* ||

defines the termenal symbols *PROCEDURE® and *;* as well as the pseudotermsnal symbol
"Identifier". The item numbers belonging to are generated automatically. In a spe-
cial part of the compiler generator it is possible to declare the item numbers explicitly.
Nevertheless, in the most cases it is unnecessary.

Keywords are recognized by the property of being terminal symbols confaining letters
only. All these facts are available for the generation of the lexical table.

3.2 Syntactical structure of pseudoterminal symbols

The syntax of pseudotermsnal symbols is described by using productions of regular gram-
mars (instead of regular expressions as proposed in [Aho77]). The possibilities of de-
scription are derived from Alexis {{Mossenbeck86]) using the INDIA notation.

A typical production is

"Real_ Number" ::= [<Decimal Digit>]+ '.’ [<Decimal Digit>]*
[’E* [("+*]*-")] [<Decimal Digit>]+] i

It defines the syntactical nature of real numbers (in MODULA-2). Elements of a pro-
duction are simple character literals (like 'E') or previously declared character sets
(<Decimal Digit>). Character sets are introduced in section 3.5. A non printable
character literal can be written in its octal notation. For example, the character literal
36C stands for the EOL character.

Expressions are built using
e alternatives: (*+°|’-*)

e options: [(*+*|'-")]
{repeat factor O or 1)

¢ optional iterations: [<Decimal Digit>]*
(repeat factor 0, 1 or any more)

o iterations: [<Decimal Digit>]+
(repeat factor 1 or any more)

It is possible to mark "redundant® character literals. These characters will be removed
by the scanner from the string containing the pseudoterminal symbol. {a} describes
removing a character.

118

3.3 Comments

Comments are treated as a special pseudoterminal symbol. The description confains
the leading and ending characters of an comment. It is possible to describe the nested
structure of comments with the keyword NESTED. This breaks the regularity of the ex-
pressions and will be handled in a special way.

The next productions describe nested MODULA-2 comments and unnesied Ada com-
ments.

Comment" s:= {(*'} [ANY FOLLOWED BY °**)°'1I* {’%)‘} NESTED ||

“"Comment" c:= {*~-'} [ANY FOLLOWED BY 36C]* {36C} P

ANY stands for the character set containing all characters. FOLLOWED BY « is a construc-
tion that terminates the optional iteration [ANY|*, which never ends otherwise. It can
be used in other lexical declarations too for avoiding ambiguities, but requires multiple
access to characters and decreases the efficiency of the scanner.

3.4 Keywords

Keywords are sampled from the set of ferminal symbols defined during the generation of
the syntactical table. Using the phrase EXCEPT KEYWORDS in the identifier production,
keywords and identifiers are distinguished.

#Identifier" 1:= <letter> [<extended letter>}* EXCEPT KEYWORDS |}

The lexic generator produces a perfect hash function b over the keywords. It uses the
(beuristic) approach from [Sager85]. This function is defined as

h:K—0 .. N-1]

whereby K stands for the set of keywords and N is a cardinal number with N > ||K|.
h is called a perfect hash function if h proves as an injection (h is unique).

Perfect hash functions have the advantage that the decision for being a keyword (or
not) is very fast, because after computing the hash code of an identifier it needs only
one comparison with the keyword represented by this hash code.

A perfect hash function h is called minimal perfect hash function if N = [|K}].

The lexic generator realizes the hash function h as
h(k) = (ho(k) + hyi(k) + ho(k)) MOD N
ho(k) = ORD(k[i01]) + ORD(kl4ea])
ha(k) = g:[(ORD(k[ius]) + ORD(klir2])) MOD r]
he(k) = gz{{ORD(k[iz]) + ORD(k[izg])) MOD r]

whereas

119

o k€ K is a keyword interpreted as a string (ARRAY OF CHAR)

o r is the smallest power of 2 with r > ﬂ%ﬁ;

e 1, are array indices describing access to keyword characters;

¢ ORD is a function converting a character into its binary representation; and

® g1, are arrays for parametrizing the hash function.

For details, see [Ernst87].

All these N, r,1,y, g1,9; are computed by the lexic generator and stored into the lexical
table as parameters for the hash function used during lexical analysis. Appendix B
contains the values computed for the keyword set of MODULA-2. By the way, all
hash functions computed with this algorithm by the authors were minimal perfect hash
functions. This holds for the compiler generator INDIA itself (22 keywords), MODULA-
2 (40 keywords), PALM (our MODULA-2 extension, 51 keywords) and CHILL (86
keywords).

3.5 Character sets

Character sets are used in the productions of the lexic generator fo allow the choice of
one character from a set. It is in principle a simplified notation for a choice only. For
example,

<octal digit> 1= '01234667° i
"Octal_Number" 1:= [<octal digit>]+ 'B’ H
is equivalent to

"Octal_Number" si= [CCO°) 40} 27 03141616 |*7")]+ *B* i

Definition of new character sets can use unions or differences of strings or already defined
character sets, respectively.

<hexadecimal digit> ::= <decimal digit> + 'ABCDEFabcdef’ i

3.6 The generated automaton and its abstract program

The lexic generator samples all termsnal and pseudoterminal symbols delivered by the
syntax generator and builds an deterministic automaton from it. Terminal symbols {ex-
cept keywords) are included into the automaton as chain, pseudoterminal symbols as
partial automaton, derived from the affiliated production. Accepting any lexical item is
dome by using the longest chain. This technique is well known and described in [Aho77],
for example.

The partial automaton for scanning the *<* symbol would be

120

Figure 2: Abstract automaton

The lexic generator produces an abstract program using basic operations from this
automaton. This abstract program is stored into the lexical table and inferpreted by
the scanner during the lexical analysis. The set of basic operations is described in
appendix C. The resulting abstract program for state 2 above is

(* scan '<’' *)
lex_accept

(* scan *>’ and return item number of ‘<>’ x)
lex_accept_and_return_if_next '>’, 8B

(* scan '=' and return item number of ‘<=' #)
lex_accept_and_return_if_next ’=', 86

(* return item number of ‘<’ *)
lex_return_code 72

4 Remarks on efficiency

4.1 Arrangements for increasing efficiency

o The approach of converting the deterministic finite antomaton into program text of
the scanner, favoured in the most lexic generators ([Horspool87], [Eulenstein8s],
[Grosch88], [Heuring86], [Mdssenbeck86]), was not suitable for us, because the
INDIA system is multilingual. Currently, it supports PALM (our MODULA-2
extension, see [Baum88]) and CHILL. Therefore, the scanner has to interprete
the lexical table very efficiently. It tries to avoid mulfiple access to a character if
possible.

The main loop interpreting the lexical operations is a closed program part without
any procedure calls (except keyword handling). The data structures inside the
lexical table are optimiged for this tagk and allow fast access to all parts of the
lexical table.

o The length of a terminal symbol (except keywords) is restricted up to 2 characters.
It results simple automata with short chains. Terminal symbols with the same start

121

character decreases efficiency. For example, scanning '<* needs in MODULA-2
four operations instead of the simple lex.accept_and retura operation.

¢ Using character sets for transitions between states simplifies the automaton and
allows shorter and faster operation sequences interpreting the automaton.

o The identifier automaton is optimized depending on the keywords:

B extended letter
o @ extended letter - 8 @
letter - o

Figure 3: Abstract automaton for identifiers

a is the character set confaining all start characters of the keywords. The char-
acter set 8 contains all characters occuring in keywords at any position but not
the first. The check for being a keyword occurs only in state 2. Achieving state
3 an identifier cannot be a keyword, and the check would be absurd (and time
consuming).

Therefore, if an identifier contains at least one character not included in the char-
acter set o or §, the check for being a keyword doesn’t appear. In many program-
ming languages it holds for all identifiers containing at least a small letter or a
digit.

The abstract program for this automaton in respect of MODULA-2 keywords is

state 1:

lex_goto_state_if_next_in_set
ABCDEFILNNOPQRSTUVW, 2

lex_goto_state _if_next_in_set
GHJKXYZabcdefghijklmnopqrstuvwxyz, 3

state 2:
lex_accept
lex_accept_while_in_set
ACDEFGHILMNOPRSTUVXY
lex_goto_state_if_next_in_set
0123466789BJKQWZabcdefghi jklmnopqrstuvwxyz, 3
lex_return_code_if_keyword
lex_return_code 1

122

state 3:
lex_accept
lex_accept_while_in_set
0123466789
ABCDEFGHI JKLMNOPQRSTUVWXYZabcdefghi jklmnopqrstuvwxyz
lex_return_code 1

4.2 Results (for MODULA-2 lexic)!

lexic table: 2 KByte
finite automaton: 54 states, 90 transitions
abstract program: 169 operations

MODULA-2 mix: 2#25 modules

i 116 b2b characters 28 921 lines
362 894 blanks/EOL 302 864 characters in comments
99 456 lexical items 4 662 comments (4.7%)
10 131 keywords (10.2%) 33 794 identifiers (33.98%)

runtime: 230 sec
7 545 lines/min 4 864 characters/sec
447 393 operations
4 662 characters handled more than once (0.42%)
6 308 identifiers were asked to be a keyword (16.71i%)

l{ime measured on an 8 MHz IBM/AT

123

A Lexic definition part for MODULA-2

(* Character set definitions *)

€ Taiainiaiaiaintuiebaiietnteintedetntadelniiedatel %)
'012345667° I
<octal digit> + °89° H
<decimal digit> + ’ABCDEFabcdef’ i
' ABCDEFGHI JKLMNOPQRSTUVWXYZ® +
‘abcdefghijklmnopqrstuvwxyz’ b

<octal digit>

<decimal digit>
<hexadecimal digit> ::
<letter>

MwnH

<extended letter> ::= <letter> + <decimal digit> H
<stringl character> ::= ANY - 36C - *** i
<string2 character> ::= ANY - 36C - 47C i
(* Pseudoterminal declarations *)
¢ iaintaitelatuieieinintointeletutnietnintelnintebinte *)
"IDENTIFIER" 1= <letter> [<extended letter>]* EXCEPT KEYWORDS ||
"OCTAL_NUMBER" := [<octal digit>]+ 'B’ i
"CARD_NUMBER" = [<decimal digit>]+ [FOLLOWED BY *..’] H
"HEX_NUMBER" := <decimal digit> [<hexadecimal digit>]* 'H’ H
"REAL_NUMBER" 1= [<decimal digit>]+ *.’' [<decimal digit>]*
['E* [(+*|'-")] [<decimal digit>]+] I
"CHARACTER" := {""'} <stringl character> {'"'}

{47C} <string2 character> {47C} f

[<octal digit>]+ 'C’ H
“STRING" 1:=m {*"'} [<stringl character>

[<stringl character>]+] {*"'} |

{47C} [<string2 character>

[<string2 character>]+] {47C} I
"CONNENT" 1= {"(*'} [ANY FOLLOWED BY ’'%)°]* {"*)'} NESTED ||

124

B Minimal perfect hash function for MODULA-2

The hash value must be computed by the following formula:

b := (ORD(c1) + ORD(cO)

+ gi[(ORD(c3) + ORD{(c)) NOD 16]

+ g2[(ORD(c2) + ORD(c)) MOD 16]) MOD 40
Note: cO means length of terminal

¢ means blank character (Code = 32)
(can be eliminated by redefinition of g)

*x%% RESULTS #**

h keyword b keyword Nr gi g2
0 MNOD 20 LoOP 6 ¢ 0
i NOT 21 FOR i 9 26
2 FRON 22 VAR 2 21T 29
3 NODULE 23 RECORD 8 8 0
4 OF 24 THEN 4 39 0
& DIV 25 CASE § 12 7
6 ARRAY 26 QUALIFIED 6 13 3
7 TO 27 IMPLEMENTATION 7T 168 0
8 POINTER 28 AND 8 0 4
9 TYPE 29 BY 9 0 1
10 UNTIL 30 OR i0 0 0
11 VWITH 31 DO i1 0 0
12 SET 32 END 12 0 32
13 BEGIN 33 ELSE i3 0 20
14 RETURN 34 ELSIF 14 2 1
16 REPEAT 36 CONST 6 19 1
16 WHILE 36 IN

17 PROCEDURE 37 EXIT
18 DEFINITION 38 IF

19 IMPORT 39 EXPORT

125

C Basic operations for a deterministic finite automa-
ton interpreter

LexEndOfLine {* *)
LexEndDfFile (* %)
Lex0OverreadBlanks (* *)
LexOverreadUntil (* <character> *)
LexOverreadUntils {* <character>, <character> *)
LexOverreadIfCondUntil (* <character> *)
LexOverreadIfCondUntils (* <character>, <character> *)
LexReadComment (* <character>, <character>, %)

(* <character>, <character>, *)

(* <nested> *)
LexAccept (* *)
LexReturnCode (* <lexical code> *)
LexAcceptAndReturn (» <lexical code> *)
LexAcceptAndReturnIfNext (* <character>, <lexical code> *)
LexReturnCodeIfliextlot {* <character>, <lexical code> *)
LexAcceptWhileInSet (* <class> *)
LexAcceptWhileNotInSet (* <class> *)
LexReturnCodeIfKeyword (* *)
LexInsertCharacter (* <character> *)
LexSkipCharacter (*)
LexReturnCharacter (* *)
LexGotoInitialState (* *)
LexGotoStateIfNext (x <character>, <address> *)
LexGotoStateIfNextNot (* <character>, <address> *)
LexGotoStateIfNextInSet (* <class>, <address> *)
LexGotoStateIfNextNotInSet (* <class>, <address> %)

LexGotoState {# <address> *)
LexError (* <error code> *)

126

References

[Aho77]

[Albinus86]

[ABmann85)

[ABmann86]

[Baums8s]

[Ernst87)

[Eulenstein88]

[Grosch88]

[Heuring86]

[Horspool87]

Aho, A.V.; Ullman, J.D.:
Principles of Compiler Design
Addison Wesley 1977

Albinus, M.; ABmann, W.; Enskonatus, P.:

The INDIA Compiler Generator

Workshop on Compiler Compiler and Incremental Compilation,
iir-reporte 2(1986)12, Berlin 1986, pp. 58-84

ABmann, W.:
Die Metasprache des Compiler-Rahmensystems INDIA
iir-reporte 1(1985)7, Berlin 1985, pp. 8-13

Afmann, W.:

The INDIA System for Incremental Dialog Programming
Workshop on Compiler Compiler and Incremental Compilation,
iir-reporte 2(1986)12, Berlin 1986, pp. 12-34

Baum, M.:
PALM
internal material, IIR, Berlin 1988

Ernst, Th.:

Eine Implementation des Minimalgyklen—Algorithmus sum Bestimmen
perfekter Hashfunkiionen

internal material, IIR, Berlin 1987

Eulenstein, M.:

The POCO Compiler Generating System

Workshop on Compiler Compiler and High Speed Compilation, Berlin
1988

Grosch, J.:

Generators for High-Speed Front-Ends

Workshop on Compiler Compiler and High Speed Compilation, Berlin
1988

Heuring, V.P.:
The Automatic Generation of Fast Lexical Analysers
Software — Practice and Experience 16{1986)9, pp. 801-808

Horspool, R.N.; Levy, M.R.:
Mkscan — An Interactive Scanner Generator
Software — Practice and Experience 17(1987)6, pp. 369-378

[Mbssenbeck86] Mossenbeck, H.:

Alex — A Simple and Efficient Scanner Generator
SIGPLAN Notices 21(1986)5, pp. 69-78

[Sager85)

[Szwillus86)

[Waite86]

127

Sager, T.J.:
Polynomial Time Generator for Minimal Perfect Hash Functions
Commun. ACM 28(1985)5, pp. 523-532

Sgwillus, Gerd.; Hemmer, W.:
Die automatische Ergengung effizienter Scanner
University of Dortmund, Report Nr. 217, 1986

Waite, W. M.:
The Cost of Lexical Analysis
Software — Practice and Experience 16(1986)5, pp. 473-488

