Skip to main content

On restricted Boolean circuits

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 380))

Abstract

We consider some classes of restricted Boolean circuits: synchronous and locally synchronous circuits, planar circuits, formulas and multilective planar circuits. Bounds are given comparing the computational power of circuits from these classes.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon, W. Maass: Meanders and their application in lower bounds arguments, J. Comp. Syst. Sci., 37(1988), 118–129.

    Article  Google Scholar 

  2. A. E. Andreev: On a method giving larger than quadratic effective lower bounds for the complexity of π-schemes, Vestnik Moscow Univ. Ser. 1 (Math. Mech.), 1986, No. 6, 73–76. (In Russian.)

    Google Scholar 

  3. L. Babai, P. Pudlák, V. Rödl, E. Szemerédi: Lower bounds to the complexity of symmetric functions, preprint (1986).

    Google Scholar 

  4. E. G. Belaga: Locally synchronous complexity in the light of the trans-box method, 1. STACS, LNCS 166(1984), 129–139.

    Google Scholar 

  5. E. G. Belaga: Constructive universal algebra: an introduction, Theor. Comp. Sci., 51(1987), 229–238.

    Article  Google Scholar 

  6. E. G. Belaga: Through the mincing machine with a Boolean layer cake, preprint (1987).

    Google Scholar 

  7. E. G. Belaga: Through the mincing machine with a Boolean layer cake. Non-standard computations over Boolean circuits in the lower-bounds-to-circuit-size complexity proving, Acta Inf., 26(1989), 381–407.

    Google Scholar 

  8. S. N. Bhatt, F. T. Leighton: A framework for solving VLSI graph layout problems, J. Comp. Syst. Sci., 28(1984), 300–343.

    Article  Google Scholar 

  9. O. Gabber, Z. Galil: Explicit construction of linear size superconcentrators, J. Comp. Syst. Sci., 22(1981), 407–420.

    Article  Google Scholar 

  10. L. H. Harper: An n log n lower bound on synchronous combinational complexity, Proc. AMS, 64(1977), 300–306.

    Google Scholar 

  11. L. H. Harper, J. E. Savage: Lower bounds on synchronous combinational complexity, SIAM J. Comp., 8(1979), 115–119.

    Article  Google Scholar 

  12. P. Hochschild: Multiple cuts, input repetition, and VLSI complexity, Inf. Proc. Lett., 24(1987), 19–24.

    Article  Google Scholar 

  13. Z. M. Kedem: Optimal allocation of computational resources in VLSI, 23 FOCS (1982), 379–385.

    Google Scholar 

  14. Z. M. Kedem, A. Zorat: Replication of inputs may save computational resources in VLSI, in: H. T. Kung, R. Sproull, G. Steele (eds.): VLSI Systems and Computations, Comp. Sci. Press (Rockwille, Md.), 1981, 52–60.

    Google Scholar 

  15. Z. M. Kedem, A. Zorat: On relations between input and communication/computation in VLSI, 22 FOCS (1981), 37–41.

    Google Scholar 

  16. R. J. Lipton, R. E. Tarjan: A planar separator theorem, SIAM J. Appl. Math., 36(1979), 177–189.

    Article  Google Scholar 

  17. R. J. Lipton, R. E. Tarjan: Applications of a planar separator theorem, SIAM J. Comp., 9(1980), 513–524.

    Article  Google Scholar 

  18. W. Maass, G. Schnitger: An optimal lower bound for Turing machines with one work tape and a two-way input tape, Structure in Complexity, LNCS 223(1986), 249–264.

    Google Scholar 

  19. W. Maass, G. Schnitger, E. Szemerédi: Two tapes are better than one for off-line Turing machines, 19 STOC (1987), 94–100.

    Google Scholar 

  20. W. F. McColl: Planar circuits have short specifications, STACS, LNCS 182 (1985), 231–242.

    Google Scholar 

  21. W. J. Paul: A 2.5n lower bound on the combinational complexity of Boolean functions, SIAM J. Comp., 6(1977), 427–443.

    Article  Google Scholar 

  22. J. E. Savage: Planar circuit complexity and the performance of VLSI algorithms, in: H. T. Kung, R. Sproull, G. Steele (eds.): VLSI Systems and Computations, Comp. Sci. Press (Rockwille, Md.), 1981, 61–67. Also: INRIA Report No. 77 (1981).

    Google Scholar 

  23. J. E. Savage: The performance of multilective VLSI algorithms, J. Comp. Syst. Sci., 29(1984), 243–272.

    Google Scholar 

  24. A. L. Toom: On the complexity of the realization of binary functions having few “subfunctions”, Problems of Cybernetics, 18(1967), 83–90. (In Russian.)

    Google Scholar 

  25. Gy. Turán: Lower bounds for synchronous circuits and planar circuits, Inf. Proc. Lett., 30(1989), 37–40.

    Google Scholar 

  26. D. Uhlig: On the relationship between circuit complexity of a Boolean functions and the number of its subfunctions, Problems of Cybernetics, 26(1973), 183–201. (In Russian.)

    Google Scholar 

  27. J. D. Ullman: Computational Aspects of VLSI, Comp. Sci. Press (Rockwille, Md.) (1984).

    Google Scholar 

  28. I. Wegener: The Complexity of Boolean Functions, Wiley-Teubner Series in Comp. Sci. (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Csirik J. Demetrovics F. Gécseg

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Turán, G. (1989). On restricted Boolean circuits. In: Csirik, J., Demetrovics, J., Gécseg, F. (eds) Fundamentals of Computation Theory. FCT 1989. Lecture Notes in Computer Science, vol 380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51498-8_45

Download citation

  • DOI: https://doi.org/10.1007/3-540-51498-8_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51498-5

  • Online ISBN: 978-3-540-48180-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics