Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

369

Dirk Taubner

Finite Representations of
CCS and TCSP Programs by
Automata and Petri Nets

SpringerVerlag

Berlin Heidelberg New York London Paris Tokyo HongKong

Editorial Board

D. Barstow W.Brauer P Brinch Hansen D. Gries D. Luckham
C. Moler A.Pnueli G. Seegmiiller J. Stoer N. Wirth

Author

Dirk A. Taubner
Institut fir Informatik, Technische Universitat Mlnchen
ArcisstraBe 21, D-8000 Minchen 2, Federal Republic of Germany

CR Subject Classification (1887): D.1.3, D.8.1, F1.1-2, F3.2-3,F4.3

ISBN 3-540-51525-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-51625-9 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks, Dupiication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1989

Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr,
2145/3140-543210 ~ Printed on acid-free paper

To my parents

Foreword

There are two main approaches to a theory of concurrent distributed computa-
tions: the theory of Petri nets and the Milner/Hoare theory of CCS/CSP. They are
based on different philosophies and emerged from two different classical notions of
computability. The Petri net approach developed (in the early 60s) from the ideas
around Turing machines and automata; it has concurrency and causality as its
basic concepts. CCS/CSP grew (in the middle of the 70s) out of ideas around the
A-calculus and concepts in programming; it has communication and composition
as its basic notions.

Petri nets are equipped with a natural notion of partial order semantics (the
processes introduced by Petri in 1976, which model concurrency explicitly), while
originally CCS/CSP has an interleaving semantics (which models concurrency by
nondeterminism).

In recent years both approaches began to influence each other and to converge.
In particular Petri nets are being developed such that they can be used for a
variety of purposes: for system description, as a specification and programming
language, and as a formal semantics for languages like CCS and CSP. We are now in
the phase where constructions allowing compositionality and modularity are built
into Petri nets, where we look for hierarchical net constructions and refinement
techniques, and for methods of formal reasoning (about or by using nets) — see
for example the ESPRIT Basic Research Action 3148 ”Design Methods Based on
Nets” (DEMON). The deep and broad theory developed around CCS/CSP and
related concepts has a great impact on this development.

On the other hand, ideas and techniques from the field of Petri nets influence
more and more the CCS/CSP domain. And, at least in my opinion, the power
and the problems inherent in the application of the CCS/CSP operators as well
as in the implementation of CCS/CSP-based languages, can be particularly well
understood and studied by translating these operators into constructors for nets
and for automata. This thesis is an especially good proof for this opinion.

Munich, June 1989 Wilfried Brauer

Preface

This work relates different approaches for the modelling of parallel processes.

On the one hand there are the so-called ‘process algebras’ or ‘abstract pro-
gramming languages’ with Milner’s Calculus of Communicating Systems (CCS)
and the theoretical version of Hoare’s Communicating Sequential Processes (CSP)
as main representatives.

On the other hand there are machine models, viz. the classical finite state
automata (transition systems), for which however more discriminating notions of
equivalence than equality of languages are used; and secondly there are differently
powerful types of Petri nets, namely safe, respectively general (place/transition)
nets, and predicate/transition nets.

Within a uniform framework the syntax and the operational semantics of CCS
and TCSP are explained. We consider both, Milner’s well-known interleaving
semantics which is based on infinite transition systems, as well as the new dis-
tributed semantics introduced by Degano, De Nicola, Montanari, and Olderog
which is based on infinite safe nets.

The main part of this work contains three syntax-driven constructions of tran-
sition systems, safe nets, and predicate/transition nets respectively. Each of them
is accompanied with a proof of consistency.

Due to intrinsic limits, which are also investigated here, neither for transition
systems and safe nets, nor for general place/transition nets does a finite consistent
representation of all CCS and TCSP programs exist. However sublanguages which
allow finite representations are discerned. On the other hand the construction of
finite predicate/transition nets is possible for all CCS programs in which every
choice and every recursive body starts sequentially.

The work is a revised version of my PhD thesis. I am particularly grateful to
my supervisor Prof. W. Brauer for his kind guidance, for many helpful discussions,
and for his continuous very efficient support. Additionally I thank Prof. Mogens
Nielsen for his advice and for having acted as the second referee.

My special thanks go to Walter Vogler. In numerous discussions and with many
suggestions for improvements he has been a great help. I have also benefitted from
valuable comments of Volker Diekert and Ursula Goltz.

I thank the Siemens AG and in particular Prof. H. Gumin for supporting my
work by an Ernst von Siemens Scholarship. Especially I appreciate the additional
time which made it possible for me to do this revision.

Munich, June 1989 Dirk Taubner

Contents

Introduction 1
1 Abstract programming languages 7
1.1 Syntax e 8
1.2 Agenerallanguage 12
1.3 Interleaving operational semantics 21
1.4 Equivalencenotions oo L 25
1.5 Reachable subsystems and quotients 30
1.6 Correspondence with CCS 33
1.7 An alternative rule for recursion 39
1.8 Correspondence with TCSP 43
2 Connections with formal language theory 46
2.1 Terminating traces oL 46
2.2 Turing pOWer i i it e e e e e e e e 48
2.3 Counters v v i i e e e e e e 52
2.4 Decidability questions o oL 57
3 Representation by finite automata 000 61
3.1 Extended transition systems 62
3.2 Syntax-driven comstruction oo 64
3.3 The extended transition system foraterm 76
3.4 Consistency v it e 86
3.5 Finitely representable subsets, .. 91
4 Representation by finite and safe Petrinets 95
4.1 Definitions and terminology of net theory 97
4.2 Syntax-driven constructiono 101
4.3 Consistency, definedness, and finiteness 107
4.4 Further properties of the constructednets 113
5 A remark on the representation by finite Petrinets 118

6 Representation by finite and strict predicate/transition nets . . 123
6.1 Predicate/transitionnets, 126
6.2 Syntax-driven construction L0 133
6.3 Distributed operational semantics following Degano, De Nicola,

Montanari, and Olderog 140
6.4 Distributed consistency L L L. 145

Conclusion. e e 156

Bibliography 159

Mathematical notations, abbreviations 165

Index L e e e 166

