
Parallel LU Decomposition on a Transputer Network
Rob H. Bisseling and Johannes G. G. van de Vorst

Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B.V.)
P.O. Box 3003, 1003 AA Amsterdam, the Netherlands

Abstract

A parallel algorithm is derived for LU decomposition with partial pivoting on a
local-memory multiprocessor. A general Cartesian data distribution scheme is
presented which contains many of the existing distribution schemes as special
cases. This scheme is used to prove optimality of toad balance for the grid dis-
tribution. Experimental results of an implementation of the algorithm in occam-2
on a square mesh of 36 transputers show an efficiency of 88% and a speed of 21.5
Mflop/s for a matrix of size n = 1000.

1. Introduction

The local-memory multiprocessor is an important new type of parallel computer.
It consists of a number of powerful processors and a communication network. Each
processor has its own local memory; communication with other processors is done
by message-passing. Examples of this architecture are hypercubes and transputer
networks.

The recent availability of parallel computers as a tool in scientific computing has
renewed the interest in many long-existing basic algorithms, in particular in the
field of linear algebra. Much attention has been paid to the parallelisation of the
Gaussian elimination algorithm for the solution of a system of linear equations, and
to the parallelisation of the equivalent LU decomposition algorithms.

This paper presents a practical and efficient algorithm that calculates the LU de-
composition with partial pivoting of an n x n matrix A on a two-dimensional mesh
ofp processors. The efficiency of the algorithm is achieved by balancing the com-
putational work load and by red uucing the communication costs. The complexity of
the algorithm is 2n~/3p + n2/~/p floating point operations, and O(n2/~/p) commu-
nications.

A number of parallel LU decomposition algorithms have been proposed for local-
memory computers, that are based on row- or column-oriented data distribution
schemes {6, 7, 12, 18}. The complexity of these algorithms is approximately
2n~/3p + O(n ~) floating point operations, and at least O(n 2) communications. The
efficiency of row- or column-oriented algorithms decreases rapidly with increasing
p, due to the growth of the communication cost O(n 2) relative to the computation
cost 2n3/3p . The range of applicability of these algorithms is therefore limited to
p < n, and to situations where the communication cost is mainly determined by the
communication start-up time and not by the length of the messages. The latter

62

situation exists in some of the current ly available hypercubes, which have an ex-
tremely high communicat ion start-up penalty.

Good load balancing can be achieved by cyclic or inteHeaved assignment of matrix
rows (or columns) to processors. In such an assignment row i (0 _< i < n) is allo-
cated to processor i m o d p (cf. {6, 7, 12}). Carrying this idea further, it has been
proposed {11, 22} to distr ibute the elements cyclically in both coordinates; the re-
sult ing grid distribution {22}, also called scattered distribution {11}, has an even
better load balance {22}, and a lower communicat ion complexity as well. The grid
distr ibution has been employed by Fox et al. for LU decomposit ion of banded ma-
trices on a hypercube {11}.

The present paper is based on the work of Ref. {22}. A practical LU decomposit ion
algorithm with explicit partial pivoting is derived and shown correct by use of formal
methods, and its performance on a mesh of p transputers is tested.

The remainder of this paper is organised as follows. Section 2 gives a formal der-
ivation of the parallel LU decomposit ion program. Section 3 introduces the notion
of Cartesian clustering, to facilitate the analysis of the load balancing and commu-
nication properties of the algorithm. Section 4 presents experimental t iming results
of an implementat ion on a square mesh of transputers. Section 5 gives the con-
clusions.

2. The Paral lel LU Decomposit ion Algorithm

2.1 Introduction

A parallel version of the LU decomposit ion algorithm with partial pivoting is derived
in this section, using invariants {8,14} and the Gries-Owicki theory {19,20}.

The problem of LU decomposit ion with partial pivoting can be formulated as follows
{13}: given a nonsingular n x n matrix A = (a~t, 0_< s, t < n) , find a permutation
~r e S, , a unit lower t r iangular matrix L = (/,t, 0 _<. s, t < n) , with Ist = 0 for s < t and
/,t = 1 for s = t , and an upper t r iangular matrix U = (u , ~ , 0 < _ s , t < n) , with
u,~ = 0 for s > t, such that

a=(s), t = (LU)st for all s,t. (2.1)

(Here, and in the sequel, the bounds on s and t are omitted for the sake of brevity.)
in addition to this, it is required that

I/stl <- 1 for s > t. (2,2)

Later on, we shall see that this requirement wil l lead to the partial pivoting proce-
dure of choosing a maximal pivot element in the pivoting column. Partial pivoting
ensures numerical stability.

A reformulation of the problem is obtained by expansion of eqn (2.1) in terms of a
matrix X = (x,t, 0_<s, t < n) , with xs~ = u~t for s_< t and x,~ = l,t for s > t, and by
use of the t r iangular properties of L and U. For s<_ t,

83

and for s > t,

n- I s-1 s-1

j=0 j=0 j=0
(2.3)

n-- t t--1 t--1

j=0 j=O j=0

The new formulation then becomes: given a nonsingular n x n matrix A, find a
permutation ~ and a matrix X such that

S--1

xst = a=(s), t - ~ x s j x j t for s _< t, (2.5)
j=O

t-1

XstXtt = a~(s), t -- ~ x s j x j t for s > t, (2.6)
j=0

IXstl _< 1 fors > t. (2.7)

For compactness of notatic~ it is convenient to define a partial sum function f. If
we fix the matrices A and X, and the permutation ~ , then f is a function of three
arguments:

k-1

f (s , t , k) = a~(s) ' t - ~ x s j x j t for 0 < k < n. (2.8)
j=0

2.2 Postcondition and invariants

The method of invariants { 8, 14} solves problems by the use of a formalism of
logical expressions. For the present problem this requires the establ ishment of the
p o s t c o n d i t i o n R,

R =_ V s , t R [s , t] , (2.9)

where the I o c a l p o s t c o n d i t i o n s R [s , t] are defined by

R~s , t] = (x s t = f (s , t , s) A s < _ t) v (x s t x t t = f (s , t , t) ^ Ixstl <_1 ^ s > t) . (2.10)

The postcondit ion suggests, in analogy with Ref. {22}, the use of an i n va r i an t P ,

P =- Vs , tm [s , t] , (2.11)

where the l oca l i nva r i an t s P[s , t] are defined by

P [s , t] - (xst = f (s , t , k) ^ k <_ s ^ s < t) v (xst = f (s , t , s) ^ k > s ^ s <<_ t) v

(xst = f (s , t , k) A k <__ t ^ S > t) v (XstXtt = f (s , t , t) ^ Ixstl < 1 ^ k > t ^ s > t) (2.12)

64

An init ial isation which establ ishes P is:

k : = 0 ; ~ : = i d ; X : = A . (2.13)

At~er that, k wilt be increased until k = n, while s imultaneously keeping P valid.
This wil l establish R, since P ^ (k = n) ~ R. Note that the value of k wil l depend
u p o n s a n d t , s o k = k(s, 0.

2.3 Maintaining the invariant

The invariant P should remain valid after increasing the index k. To achieve this,
we shall focus on the local invariants P[s,t] , and fix k = k (s,t) in each of them.
This reflects the fact that later on we want to perform the operations necessary for
each P[s,t] in parallel. Our aim is to determine which operat ions have to be per-
formed in order to maintain P[s, t] when k is incremented by one.

Before turning our attention to the maintenance of the invariants P[s, t] , some
terminology is introduced. Let xq° denote the q-th row of X. For fixed k, the pair
(s,t) is called active if k < min(s,t); it is called critical if k = t < s and it is called
passive if k > rain(s, 0 v (k = s _< t).

For an active pair, a comparison of f(s,t,k) and f(s,t,k + 1) in eqn (2.8) shows that
the val idity of P[s, t] is maintained if the program fragment

xst := x s t - xskxkt; k : = k + 1 (2,14)

is executed, provided P[s,k] and P[k, t] hold.

For a passive pair with k > min(s,t), incrementing k leaves P[s,t] invariant, since
P[s,t] =- R[s,t] , both for k and k + 1, and R[s,t] is not dependent upon k. For a
passive pair with k=s<_ t , incrementing k leaves P[s,t] invariant, since
x,, = f(s,t,k) = f(s,t,s).

For a crit ical pair, eqn (2.12) shows that the program fragment

x s t : = Xst/Xkk; k : = k + 1 (2.15)

maintains the val idity of P[s,t] , provided that P[k,k] and the addit ional initial
condit ion tXkkl __> IX,kl hold. The initial condit ion can be established by the exe-
cution of the program fragment

~r : = ~ o (k,r); swap (xk., Xr.) (2.16)

with r such that

IXrk{ ---- max { Ixskl :s > k} . (2.17)

The proof that this program fragment leaves P invariant is given in Appendix A.

65

2.4 The algorithm

Combining the program fragments above, we get the complete program text S:

S: for all s,t : 0 <_ s, t < n par do process (s,t)
(s,t): vat x,t, 7:, k;

begin
x~t:= a~t ; ~ : = id ; k : = O;
{ P [s , t] }
while k < n do
var r;
begin

(P[s,t])
find r such that Ix, kl = max(Ix,,I : s _> k};
broadcast r to all processes;

: =. ~r o (k,r);
swap (Xko, x~,);
{ I xk, l = ma×(tx , kl • s >__ k) ^ PEs , t])
i l k < min(s,t) then
begin

par begin
receive x~, from process (s,k);
receive x~ from process (k, t)

par end;
x,~: = x~ - x~kx ~

end
else if k = t < s then
begin

receive Xkk from process (k,k);
x,t: = x~Jxk~ ;
send x,k to all processes (s,q) with q > k

end
else if k --- s _< t then

send x~ to all processes (q, t) with q > k
else if k > min(s,t) then skip;
k : = k + l
{ P [s , t] }

end
end,

(Details of the pivot search, broadcast and swap operat ions are omitted.)

3. Analysis

3.t Cartesian clustering

In many practical situations, full exploitat ion of paral lel ism is impossible. This may
be due to a l imit on the number of processors available, or to the fact that the
communicat ion costs overtake the computation costs. As a consequence, compu-

86

tations that could in principle be performed in parallel have to be grouped in
clusters. For each cluster there is a corresponding process that maintains the local
invariants of that cluster. In terms of matrices, this means that their elements are
distributed, and that each process has local variables for the representation of one
part of a matrix. There are p processes, running simultaneously on p processors;
each processor is responsible for the execution of exactly one process, the oper-
ations of which are performed sequentially.

A clustering scheme is efficient for a particular algorithm on a particular network
of processors if: (i) it has good load balancing properties, meaning that the com-
putations are spread evenly across the processors, (ii) it is not communication
bound.

A number of data clustering schemes have been proposed for linear algebra algo-
rithms on various muttiprocessors, such as ring, mesh, torus, and hypercube net-
works. Clustering of matrix elements can be done in: blocks {4} (i.e., "consecutive
storage" {10, 16}); grids {22} (i.e., "cyclic storage" {10, 16} or "scattered square
decomposition" {5, 1t}); contiguous or scattered rows {6, 15, 21}; dynamically al-
located rows {12}; columns {15}; and interleaved blocks {21}. All of these schemes
are special cases of the general Cartesian clustering scheme presented below. It
will be shown that grid clustering gives an optimal load balance for the present al-
gorithm, and a sufficiently low communication complexity. The choice of clustering
has significant influence on the efficiency: e.g. it has been shown {22} that the use
of block clustering instead of grid clustering degrades the performance of the al-
gorithm by a factor of three, because of poor load balancing.

In the following analysis, a Cartesian clustering will be seen as a Cartesian product
of two partitions of a finite set V. A partition of V is a collection {Vt : 0 _< i < N} of
mutually disjoint, non-empty subsets V,.c V, such that U ~ 1 Vj = V. The size of the
partition is N, and t Vii denotes the cardinality of V;, 0 _< i < N.

Let V = {s : 0_< s < n}, where n equals the matrix size. It is our aim to find the
best clustering of V x V for the present algorithm. A Cartesian clustering C of
V x V has the form: C = (V i xW i : O < _ i < M A O < _ j < N } , where {V~ : 0 _ < i < M }
and {Wj : 0 _<j< N} are two partitions or v, of size M and N, respectively. The sets
V~ x Wj are called clusters. The size of C is defined as the ordered pair (M,N). Be-
cause each cluster corresponds uniquely to one processor, the total number of
clusters equals p = MN.

The grid clustering G of V x V of size (MoN) is a special kind of Cartesian clustering:

G = { G i x H j " O < _ i < M A O < _ j < N ~ , (3.1)

with

G i = { s e V : s m o d M = i}, for O < i < M ,

Hj = { t e V : t m o d N = j}, for O<_j<N.

(3.2)

(3.3)

3.2 Load balancing

Let us consider the load balancing properties of program S using an arbitrary

67

Cartesian clustering C = { V j x W j O < _ i < M A O < _ j < N } of the set VxV . A
measure Ncomp(C) for the computation complexity of the clustering C is given by
the expression

n-1

Ncomp(C) = ~ max {N(c,k) " c e C}, (3.4)
k=0

where N(c,k) denotes the number of computations in cluster c that have to be per-
formed during phase k of the total computation. Phase k is defined as the part of
the computation between the k-th and the k + l-th pivot operation, i. e. the part
which updates the x~. The number N(c,k) is approximately proportional to the
computation time in phase k of processor c. This approximation is valid because
nearly all the computations take the same form (see (2.14)),

Xst : = Xst -- Xs#Xkt , (3.5)

each computation involving two floating point operations. In the definition of
Ncomp(C) it is assumed that the comparison operations of the pivot search and the
division operations of program fragment (2.15) do not contribute significantly to the
computation time. Note that the measure does take into account that processes
may have to wait for the (intermediate) results from other ones. The communication
costs are not included in Ncomp(C); these will be treated in the next subsections.

LetUk = {s " k < s < n } , so that U k x U, equals the set of active pairs. This set is
exactly the set of pairs for which a computation of the form (3.5) has to be per-
formed. Therefore, the expression Ncomp(C) can be written as:

n-1

Ncomp(C) = g
k=O

max {N(c,k) " c ~ C}

n-1

g max { l (v i x Wj) N (Uk x Uk) l
k=0

n-1

• O < _ i < M A O < j < N }

max{l(VjlqU.)l " 0_<: i<M} • max{i(WjAuk)l " 0 _ < j < N } . (3.6)
k=0

The grid clustering is optimal among Cartesian clusterings from the point of view
of load balancing: if C is an arbitrary Cartesian clustering of V x V, with size
(M,N), and G is the grid clustering of V x V of the same size, then

Ncomp(C) >>_ Ncomp (G).

PROOF.

n-1
Ncomp(C) =

k=O
max { l (v i n Uk)l " 0 <_i< M} . max {I(wjN uk)l

(3.7)

• O_<j<N}

68

n-1 n-1

--> " M N

k=0 k=O

n-1

max{l(GiNuk)l " 0 _ < i < M } • m a x { l (H j ~ U k) l " 0 < j < N }
k=O

= Ncomp(G). (3.8)

END OF PROOF.

A lower bound on the total computation time for any clustering, of arbitrary size, is
obtained by dividing the total number of computations by p,

n-1 n (n - 1/2)(n - I) n 3 n 2
1 (n - k - 1) 2 Ncomp(C) > -p- = 3p - 3p 2p t- O(n).

k=0

An upper bound for the grid clustering of size (M,N) is given by

n--1
Ncomp(G) <_ ~ , , (n - k - I 4 - 1) ° M (n - k - 1 + I) N

k=0

(3.9)

n (n - 1f2)(n - 1) n (n - 1)(M + N)
= + + n. (3.10)

3p 2p

This upper bound is minimal if the grid clustering is square, M = N = ,/-p-. From
the upper bound on the computation complexity, a simple upper bound on the
computation time for square grid clustering can be obtained,

Tc°mp(G) -< 2tfl°P ~ + 2~/p- + O(n) . (3.11)

Here tno p is the time needed to perform one floating point computation such as a
multiplication or an addition. Two such operations are needed for each computation
of the form (3.5). Comparison of this upper bound with the time of the sequential
algorithm, 2t, opn3/3 , shows that a good load balance is obtained by square grid
clustering, for values of p up to the order of n 2. The point of 50% efficiency loss
due to load imbalance is reached at the value o fp = 4n2/9.

The grid clustering of size (M,N) with M = 1 (N = 1) is simply the interleaved column
(row) clustering. An exact count shows that its complexity equals n~/3p + O(n2),
so that the load imbalance is of a higher order than the load imbalance of the
square grid clustering.

3 . 3 C o m m u n i c a t i o n o n a fu l l n e t w o r k

In this subsection, we shall determine the number of communications that are re-
quired by program S, for a Cartesian clustering C. Because we do not yet want to

69

restrict ourselves to one particular hardware network, it is assumed that a full
communication network is available. The total number of communications is
counted. The particular hardware of the communication network determines the
number of communications that can be done in parallel, and the actual number of
communication steps that are needed to route data from source to destination (this
might be more than one, if the network is not full).

The number of communications Ncoml(C) needed to find the index r of the pivot row
is found as follows: The pivot element IXrkl is defined by eqn (2.17), Ixrkl =
max (I x , kl :s > k}, for 0 _< k < n. Since the set { Ix, , I :s _> k) is distributed
across at most M clusters, not more than M - t communications are needed for the
computation of r. Hence

Ncoml(C) <_ n (M - 1). (3.12)

The number of communications Ncom2(C) needed to broadcast r and to interchange
rows r and k, is determined as follows: First, the value of r has to be broadcasted
to all processes, so that they can perform the assignment 7r : = ~c o(k,r). This gives
rise to M N - 1 communications. The operation swap (xk°,xr°) requires either 0
communications (if the rows x k, and xr° are contained in the same cluster), or 2n
communications (if they are not). Thus, an upper bound for Ncornz(C) is

Ncom2(C) <_ n (M N - t) + 2n 2. (3.13)

The number of communications Ncom3(C) needed to update the local invariants is
counted as follows: The set of values needed in phase k is (x,k 's > k} U
{x~" t _> k) . A value x,k is needed in at most N clusters (the clusters that contain
row s) and therefore it has to be communicated at most N - 1 times. Employing a
similar argument for values x,~, an upper bound for Ncom3(C) is obtained:

n-1 n-1

Ncom3(C) < (N - 1)(n - k - 1) + (M - 1)(n - k)
k=o k=O

n (n + 1)(M + N - 2)
= 2 - n (N - 1). (3.14)

The total number of communications is

3

~ ' n 2 n (2MN + 3M - N -4).(3.15) Ncom(C) = Ncom t(C) <_ - ~ - (M + N + 2) + ~- .
i=1

Under the constraint MN = p, this bound attains a minimum for M = N = ~/-P-. In
that case we get, approximately,

Ncom (C) < n2./-p - + np. (3.18)

3.4 Communicat ion on a square mesh

The actual number of communication steps Ncom of the LU decomposition algo-
rithm is dependent on the topology of the hardware network, and on the mapping

70

of the clusters onto the processors. In this subsection we count the number of
communication steps, instead of the number of communications, since some com-
munications may be performed simultaneously in one step. The topology of the
network is assumed to be a two-dimensional mesh. This is a sufficiently general
network, and is embedded in many networks, such as e.g. a torus and a hypercube.
(Transputers have four bi-directional links, and can therefore be configured in a
two-dimensional mesh.) Because of the reduced bound (3.16) on the total number
of communications, the mesh is chosen to be square. The count for grid clustering
on a square mesh with the natural cluster-processor mapping is similar to the
analysis of the previous subsection.

First,

Ncoml(G) <_ n (~ - 1) 1 2 , (3.17)

because r can be obtained by_comparing and communicating values of lx,,l in a
processor column of length ~/p, finally obtaining the result in the middle processor
of the column.

Second,
r- m

(~/rp--2) + n (~P---1 + I - ~ - - I - 1) Ncom2(G) <..% t t

R 2
<_ + n (2J - -3). (3.18)

A broadcast of r, first horizontally and then in parallel vertica)_.ly, costs ~P- -2 steps,
giving the first term of (3.18). A row swap can be done in 2~/p independent vertical
pipelines. The start-up time of the pipeline is ~P- -1, and the additional completion
time is r ' n / ~ ~ - 1 .

Third, the number of communication steps needed for the updating procedure is

n- t F-- -~P 1 n2
Ncom3(G) < ~,, (~fp--1 + n - k -1) __< 2drp- + n~Fp--. (3.19)

k=0

There are ~ horizontal and ~ vertical communication pipelines, which are
proceeding simultaneously. The vertical ones involve n - k data elements; they
have a start-up time of -J-P---I and an additional completion time of
~n - k)/x/P--~ - 1. Similar for the horizontal pipelines, which involve one data el-
ement less.

The total communication complexity is

3n 2
Ncom (G) _.% 2,/-p- + ~ (d/'~- -1). (3.20)

Note that this count is valid for the square grid clustering, but not necessarily for
other Cartesian clusterings.

The total communication time on a square mesh is

7t

3n 2
Tc°mm(G) = tc°mm(2.,/-p- + O(n~J~-)). (3.21)

Here t0omm is the time needed to communicate one floating point value to a
neighbouring processor. Comparison of eqns (3.21) and (3.1t) shows that the point
of 50% efficiency loss due to communication overhead is reached at the value of
p = (4t, o,/9tcomm)2n 2 .

In conclusion, the communication complexity for the grid clustering is sufficiently
low; it is of the same order as the load imbalance of the algorithm; both are of a
lower order than the computation complexity.

4. Results

The LU decomposition algorithm has been implemented in the parallel program-
ming language occam-2 {3}, and executed on a square mesh of T800-20
transputers, each with 256 Kbyte of local memory, and communicating with each
other at a maximum link speed of 10 Mbit/s. (This maximal rate is the rate for
communication of large packets of data.) Timing results were obtained for meshes
of size p = 1, 4, 9, 16, 25, and 36 processors, and for matrices of size up to
n = 1200.

Work distribution was done by grid clustering; communication by independent
pipelines, as described in subsection 3.4. Performance was maximised by using
on-chip memory (4 kByte) as much as possible {1}. Computations were done in
single precision (32 bits).

The test matrices were constructed in such a way that a fair amount of pivoting was
necessary: half of the n steps of the algorithm included a swap of two rows&_ These
rows were contained in processor rows at an average distance of 1/2., /p in the
processor network, i.e. at a distance of half the mesh size.

The timing measurements were obtained by using an internal t imer calibrated with
a wallclock. Timings of the parallel algorithm were compared with timings of the
sequential algorithm programmed in occam-2 and run on a single transputer.

Table 1 shows the time T~(n) of the LU decomposition of a matrix of size n x n, on
a network of p transputers. The size of the problem that can be solved grows with
the number of processors available. Since our transputer network contains 256
kByte of memory per processor, a single transputer can maximally store a matrix
of size 200 x 200.

The results of Table 1 show that large matrices can be decomposed fast: e. g. a
1000x 1000 matrix was decomposed in 31 seconds. The overhead paid for
parallelism is small, as can be seen by comparing the results of the parallel algo-
rithm with p = 1 with the results of the sequential algorithm. Already for a small
matrix size, n = 200, a speed-up of a factor 15 compared to the sequential algo-
rithm was obtained, using 36 processors. (The intended range of applications
consists mainly of matrices of size ~arger than this.)

72

Table 1.

n p = l p = l p = 4 p = 9 p = 1 6 p=25 p=36
(seq) (par)

50 0,16 0.17 0.08 0.06 0.05 0.05 0.04
100 1,06 1.09 0.39 0.25 0.18 0.15 0.13
200 7.8 7.9 2.4 1.3 0.86 0.65 0.52
300 7.3 3.8 2.4 1.7 1.3
400 16.5 8.2 5,0 3.6 2.7
600 25.6 15.2 10.5 7.7
800 34.2 23.1 16.7

1000 43.1 31.0
1200 51.7

Timings of LU decomposition with partial pivoting on a transputer network.
Tp(n) = the time (in s) on p processors for an n x n matrix.

Table 2.

n p = l p = l p = 4 p = 9 p=16 p = 2 5 p = 3 6
(seq) (par)

50 0,52 0.49 1.1 1.3 1.7 1.8 1.9
100 0.63 0.61 1.7 2.7 3,7 4.4 5.0
200 0.68 0.68 2.3 4.1 6.2 8.2 10.2
300 2.5 4.8 7.6 10.5 13.5
400 2.6 5.2 8.5 11.9 15.9
600 5.6 9,5 13.8 18.7
800 10,0 14.8 20.5

1000 15.5 21.5
1200 22.2

Megaflop rates of LU decomposition with partial pivoting on a transputer network.
Rp(n) = the speed (in Mflop/s) on p processors for an n x n matrix.

Table 2 presents the computational speed Rp(n) of the algorithm in million floating
point operations per second (Mflop/s); it was computed from Table 1, Comparison
of the maximal speeds of p --- 1 (sequential) and p = 36 shows a speed-up of a
factor 32, for matrices of size n >_ 1000. This means that a close-to-maximum speed
can be sustained even [or large numbers of processors, as long as the problem
size n stays large enough.

73

Figure 1 shows the processor utilisation during parallel LU decomposition. Each
curve shows the efficiency Ep(n),

ep(n)
Ep(n i - (4.1)

PRseq,max

for various matrices of size n on a fixed mesh of p processors. Here R,.q,,... is the
highest speed obtainable by the sequential algorithm on a single processor; in the
present case this is 0.68 Mflop/s.

The results of Figure 1 show that over 90% efficiency can be achieved for all mesh
sizes p, as long as the problem is large enough, The point of 50% efficiency is
reached for matrix size 250 on a 36 processor mesh, and earlier for smaller
meshes.

"100

90

80

7O

60

5O

4O

3 0

201
i

"1o i
I

0 -
0

EFFICIENCY E (%)
~_ p=t (SEQ)

P=4
P=I ,.,,,O P=9 P=16 P = 2 5 P=36

200 4.00 600 800 IOOO "t200
MATRIX SIZE N

Figure 1.
Efficiency of LU decomposition with partial pivoting on a transputer network.

Ep(n) = the efficiency (in %) on p processors for an n x n matrix.

The experimental timings were used in a least-squares fit to the theoretical per-
formance model, expressed by eqns (3.11) and (3.21). The resulting empirical tim-
ing formula is

2n 3 n 2
T (n) _-= 131- - + 40.2- S (4.2)

74

The second term of eqn (4.2) contains communication overhead (eqn (3.21)), load
imbalance (eqn (3.11)), comparisons to find the maximum pivot element in a col-
umn~_and divisions by the pivot elements. All of these take a time of the order
n2/~/p . The communication overhead is dependent on the actual amount of pivot
swaps executed.

In solving a system of linear equations Ax = b, the decomposition A = LU is
usually followed by the solution of the triangular systems Ly = b and Ux = y. An
efficient parallel algorithm has been developed for triangular system solving which
is based on grid clustering; it is therefore compatible with the preceding grid-based
LU decomposition. A detailed description of the algorithm and its analysis can be
found elsewhere (2, 17}. The complexity of this algorithm is n2/p + O(n) floating
point operations, and O(n) communications. The experimental timing formula is

Tp(n) ~-- 1 .89 -~ + 38n /~s. (4.3)

Timings obtained were e.g. 0.0039 s for solution of a triangular matrix of size
n = 100, and 0.091 s for n = 1000, on the same mesh of 36 T800-20 transputers as
a bore.

5. Conclusion

The concept of Cartesian clustering is central to parallel linear algebra: most of the
clustering schemes known to us are Cartesian. The availability of such a general
scheme gives a powerful tool for the analysis of parallel algorithms, as demon-
strated in the optimality proof of grid clustering for LU decomposition.

Interleaving is the key to obtaining good load balance in LU decomposition. For
example, interleaving rows by assigning them to processors 0, 1, and 2 by the
pattern 012012... will keep all processors busy almost until the end of the computa-
tion. Without interleaving computation time is unnecessarily long, e.g. in block
(submatrix) clustering T~omp(B) ~- 2n~/P, whereas with interleaved row clustering this
is only Tcomp(R)~-2n3/3P + n 2 , thereby gaining a factor 3 and attaining maximum
speedup, at least asymptotically (for n -* ~o). The load imba lance term n 2 is for
many purposes too large; it is independent of p and soon becomes the computa-
tional bottleneck when increasing p. It can be further reduced by double inter-
leaving: interleaving both rows and columns gives the grid clustering with
Tcomp(G) ~- 2n3/3p + n~l~/p .

The communication time of the algorithm depends upon the hardware topology and
on the speed of the communication links. A ring topology is not sufficiently rich for
LU decomposition, since the communication time is of the order O(n 2) . A mesh is
ideally suited, since the communication time is only of the order O(n2/~/r-p), which
is the order of the load imbalance. The even richer topology of the hypercube
cannot be fully exploited, since losses due to load imbalance will be the limiting
factor of performance.

In the sequential case, the time of linear system solving is almost completely de-
termined by the time of LU decomposition, except for very small matrices, since the
time complexity of triangular system solution is of a lower order than the com-

75

plexity of LU decomposition. The same holds for the parallel case, provided grid
clustering is used, compare eqns (4.2) and (4.3).

The LINPACK benchmark {9} is a measure of computational speed in linear system
solving; it is the time needed to perform one LU decomposition and two triangular
system solutions. The n = 100 benchmark for a 36 transputer system is 0.138 s,
corresponding to an actual performance rate of 4.8 Mflop/s. The n = 1000
benchmark is 31.2 s; corresponding to a rate of 21.3 Mflop/s. All benchmarks are
for single precision (32 bits) computations.

More important than a single benchmark of an implementation of an algorithm is
the scaling behaviour with an increase in the number of processors. Formula (4.2)
shows that the LU decomposition implementation on a transputer mesh scales well.
The formula can be used to predict the performance of larger transputer networks:
For example, to decompose a 1000 x 1000 matrix at a speed of 100 Mflop/s a mesh
of 225 transputers would be needed; the efficiency of the computation would be
about 60%.

Acknowledgements

We would like to thank our colleagues Ico van den Born, Daniel Loyens, and Theo
Verheggen for their useful remarks on the initial version of this manuscript.

References

.

2.

.

4.

.

.

.

P. Atkin, "Performance Maximisation," INMOS Technical Note 17, Bristol (1987).

R. H. Bisseling and J. G. G. van de Vorst, "Parallel Triangular System Solving
on a Mesh Network of Transputers," submitted for publication (1988).

A. Burns, "Programming in occam-2," Addison-Wesley (1988).

P. R. Capello, "Gaussian Elimination on a Hypercube Automaton," J. Parallel
Distrib. Comput. 4 (1987) 288-308.

H. Y. Chang, S. Utku, M. Salama, and D. Rapp, "A Parallel Householder
Tridiagonalization Stratagem using Scattered Square Decomposition," Parallel
Comput. 6 (I988) 297-311.

E. Chu and A. George, "Gaussian Elimination with Partial Pivoting and Load
Balancing on a Multiprocessor," Parallel Cornput. 5 (1987) 65-74.

G. J. Davis, "Column LU Factorization with Pivoting On a Message-passing
Multiprocessor," SIAM J. AIg. Discr. Meth. 7 (1986) 538-550.

8. E.W. Dijkstra, "A Discipline of Programming," Prentice-Hall (1976).

76

9. J.J. Dongarra, "The LINPACK Benchmark: An Explanation," Prec. 1st Int. Conf.
on Supercomputing 1987, Lecture Notes in Computer Science, Vol. 297,
Springer (1988).

10. J. J. Dongarra and L. Johnsson, "Solving Banded Systems on a Parallel
Processor," Parallel Comput. 5 (1987) 219-246.

11. G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W.
Walker, "Solving Problems on Concurrent Processors," Vol. 1, Prentice-Hall,
Englewood Cliffs, NJ (1988).

12. G. A. Geist and C. H. Romine, "LU Factorization Algorithms on Distributed-
Memory Multiprocessor Architectures," SIAM J. Sci. Statist. Comput. 9 (1988)
639-649.

13. G. H. Golub and C. F. van Loan, "Matrix Computations," Johns Hopkins Uni-
versity Press, Baltimore (1983).

14. D. Gries, "The Science of Programming," Springer {198t).

15. I .C.F. Ipsen, Y. Saad, and M. H. Schultz, "Complexity of Dense-Linear-System
Solution on a Multiprocessor Ring," Linear Algebra Appl. F7 (1986) 205-239.

16. S. L. Johnsson, "Communication Efficient Basic Linear Algebra Computations
on Hypercube Architectures," J. Paraflet Distrib. Comput. 4 (1987) 133-172.

17. L. D. J. C. Loyens and R. H. Bisseling, "The Formal Construction of a Parallel
Triangular System Solver," Prec. Int. Conf. on Mathematics of Program Con-
struction t989, Lecture Notes in Computer Science, Springer (1989).

18. J. M. Ortega and C. H. Romine, "The ijk Forms of Factorization Methods tl.
Parallel Systems," Parallel Comput. 7 (1988) 149-162.

19. S. Owicki and D. Gries, "Verifying Properties of Parallel Programs: An Axi-
omatic Approach," Comm. ACM 19 (1976) 279-285.

20. S. Owicki and D. Gries, "An Axiomatic Proof Technique for Parallel Programs
I," Acta Inform. 6 (1976) 319-340.

21. Y. Saad and M. H. Schultz, "Parallel Direct Methods for Solving Banded Linear
Systems," Linear Algebra Appl. 88189 (1987) 623-650.

22. J. G. G. van de Verst, "The Formal Development of a Parallel Program Per-
forming LU-Decomposition," Acta Inform. 28 (1988) 1-17.

Appendix A. Invariance of P under row interchange

LEMMA. Letk, q,r, and t be fixed;0 _< k ,q , r , t < n;k _< q,r. Assume thatP[q , t]
and P[r , t] are valid, and that k = k (q,t) = k (r,t). Let $1 be the program fragment:

S 1 : = : = ~ o (q,r); swap (xq,, Xro), (A.1)

Then P[q,t] and P[r, t] will still be valid after the execution of $1.

77

PROOF OF LEMMA. Assume that k ,q , r , and t are fixed; 0 < k , q , r , t < n ;
k <_ q, r ; k = k (q,t) = k (r,t). Assume also that PEq,t-J and PEr, t~] are valid. For
s = q o r s = r,

(xst = f(s,t,k~, if k < t,
PE s,t-I

"~xstxtt = f (s, t , t) ^ Ixstl < 1 if k > t.
(A.2)

The val idity of P[s , t~ after the execution of S 1 will only be shown for k <_ t. The case
k > t can be treated similarly. In the following, primed symbols represent vari-
ables, functions, and assert ions before execution of $1, and non-primed those after
execution. Without loss of general i ty it may be assumed that s = q.

Xqt = X'rt = (because of P ' [r , t] ^ k <<_ t)

~-1
~ q x I .x p" f { t k~_'~r,_,_, = a~,(r), t - ~ q jt
]=0

k-1

= a~(q) , t - ~_XqjXjt = f(q,t ,k).
j=0

This proves that PEq,t-I is true. END OF PROOF.

k-1

~-~X t .Xr
= a='o(q,r)(q),t- / , q jt

j=O

(A.3)

