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Abstract 

A parallel algorithm is derived for LU decomposition with partial pivoting on a 
local-memory multiprocessor. A general Cartesian data distribution scheme is 
presented which contains many of the existing distribution schemes as special 
cases. This scheme is used to prove optimality of toad balance for the grid dis- 
tribution. Experimental results of an implementation of the algorithm in occam-2 
on a square mesh of 36 transputers show an efficiency of 88% and a speed of 21.5 
Mflop/s for a matrix of size n = 1000. 

1. Introduction 

The local-memory multiprocessor is an important new type of parallel computer. 
It consists of a number of powerful processors and a communication network. Each 
processor has its own local memory; communication with other processors is done 
by message-passing. Examples of this architecture are hypercubes and transputer 
networks. 

The recent availability of parallel computers as a tool in scientific computing has 
renewed the interest in many long-existing basic algorithms, in particular in the 
field of linear algebra. Much attention has been paid to the parallelisation of the 
Gaussian elimination algorithm for the solution of a system of linear equations, and 
to the parallelisation of the equivalent LU decomposition algorithms. 

This paper presents a practical and efficient algorithm that calculates the LU de- 
composition with partial pivoting of an n x n matrix A on a two-dimensional mesh 
ofp processors. The efficiency of the algorithm is achieved by balancing the com- 
putational work load and by red uucing the communication costs. The complexity of 
the algorithm is 2n~/3p + n2/~/p floating point operations, and O(n2/~/p ) commu- 
nications. 

A number of parallel LU decomposition algorithms have been proposed for local- 
memory computers, that are based on row- or column-oriented data distribution 
schemes {6, 7, 12, 18}. The complexity of these algorithms is approximately 
2n~/3p + O(n ~) floating point operations, and at least O(n 2) communications. The 
efficiency of row- or column-oriented algorithms decreases rapidly with increasing 
p, due to the growth of the communication cost O(n 2) relative to the computation 
cost 2n3/3p . The range of applicability of these algorithms is therefore limited to 
p < n, and to situations where the communication cost is mainly determined by the 
communication start-up time and not by the length of the messages. The latter 
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situation exists in some of the current ly available hypercubes, which have an ex- 
tremely high communicat ion start-up penalty. 

Good load balancing can be achieved by cyclic or inteHeaved assignment of matrix 
rows (or columns) to processors. In such an assignment row i (0 _< i < n) is allo- 
cated to processor i m o d p  (cf. {6, 7, 12}). Carrying this idea further, it has been 
proposed {11, 22} to distr ibute the elements cyclically in both coordinates; the re- 
sult ing grid distribution {22}, also called scattered distribution {11}, has an even 
better load balance {22}, and a lower communicat ion complexity as well. The grid 
distr ibution has been employed by Fox et al. for LU decomposit ion of banded ma- 
trices on a hypercube {11}. 

The present paper is based on the work of Ref. {22}. A practical LU decomposit ion 
algorithm with explicit partial pivoting is derived and shown correct by use of formal 
methods, and its performance on a mesh of p transputers is tested. 

The remainder of this paper is organised as follows. Section 2 gives a formal der- 
ivation of the parallel LU decomposit ion program. Section 3 introduces the notion 
of Cartesian clustering, to facilitate the analysis of the load balancing and commu- 
nication properties of the algorithm. Section 4 presents experimental t iming results 
of an implementat ion on a square mesh of transputers. Section 5 gives the con- 
clusions. 

2. The Paral lel  LU Decomposit ion Algorithm 

2.1 Introduction 

A parallel version of the LU decomposit ion algorithm with partial pivoting is derived 
in this section, using invariants {8,14} and the Gries-Owicki theory {19,20}. 

The problem of LU decomposit ion with partial pivoting can be formulated as follows 
{13}: given a nonsingular n x n matrix A = (a~t, 0_< s, t < n) , find a permutation 
~r e S, ,  a unit lower t r iangular matrix L = (/,t, 0 _<. s, t < n) ,  with Ist = 0 for s < t and 
/,t = 1 for s = t ,  and an upper t r iangular matrix U = ( u , ~ , 0 < _ s , t < n )  , with 
u,~ = 0 for s > t, such that 

a=(s), t = (LU)st for all s,t. (2.1) 

(Here, and in the sequel, the bounds on s and t are omitted for the sake of brevity.) 
in addition to this, it is required that 

I/stl <- 1 for s > t. (2,2)  

Later on, we shall see that this requirement wil l lead to the partial pivoting proce- 
dure of choosing a maximal pivot element in the pivoting column. Partial pivoting 
ensures numerical stability. 

A reformulation of the problem is obtained by expansion of eqn (2.1) in terms of a 
matrix X = (x,t, 0_<s, t < n ) ,  with xs~ = u~t for s_< t and x,~ = l,t for s > t, and by 
use of the t r iangular  properties of L and U. For s<_ t, 
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and for s > t, 

n- I  s-1 s-1 

j=0 j=0 j=0 
(2.3) 

n-- t  t--1 t--1 

j=0 j=O j=0 

The new formulation then becomes: given a nonsingular n x n  matrix A, find a 
permutation ~ and a matrix X such that 

S--1 

xst = a=(s), t - ~ x s j x j t  for s _< t, (2.5) 
j=O 

t-1 

XstXtt = a~(s), t -- ~ x s j x j t  for s > t, (2.6) 
j=0 

IXstl _< 1 fors  > t. (2.7) 

For compactness of notatic~ it is convenient to define a partial sum function f. If 
we fix the matrices A and X, and the permutation ~ ,  then f is a function of three 
arguments: 

k-1 

f (s , t , k )  = a~(s) ' t - ~ x s j x j t  for 0 < k < n. (2.8) 
j=0 

2.2 Postcondition and invariants 

The method of invariants { 8, 14} solves problems by the use of a formalism of 
logical expressions. For the present problem this requires the establ ishment of the 
p o s t c o n d i t i o n  R, 

R =_ V s , t R [ s , t ] ,  (2.9) 

where the I o c a l p o s t c o n d i t i o n s  R [ s , t ]  are defined by 

R~s , t ]  = ( x s t = f ( s , t , s )  A s < _ t )  v ( x s t x t t = f ( s , t , t )  ^ Ixstl <_1 ^ s > t ) .  (2.10) 

The postcondit ion suggests, in analogy with Ref. {22}, the use of an i n va r i an t  P ,  

P =- Vs , tm [s , t ] ,  (2.11) 

where the l oca l  i nva r i an t s  P[s , t ]  are defined by 

P [ s , t ]  - (xst = f (s , t , k )  ^ k <_ s ^ s < t) v (xst = f (s , t , s )  ^ k > s ^ s <<_ t) v 

(xst = f (s , t , k )  A k <__ t ^ S > t) v (XstXtt = f (s , t , t )  ^ Ixstl < 1 ^ k > t ^ s > t) (2.12) 
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An init ial isation which establ ishes P is: 

k : = 0  ; ~ : = i d  ; X : = A .  (2.13) 

At~er that, k wilt be increased until k = n, while s imultaneously keeping P valid. 
This wil l establish R, since P ^ (k = n) ~ R. Note that the value of k wil l depend 
u p o n s a n d t ,  s o k  = k(s, 0. 

2.3 Maintaining the invariant 

The invariant P should remain valid after increasing the index k. To achieve this, 
we shall focus on the local invariants P[s,t] ,  and fix k = k (s,t) in each of them. 
This reflects the fact that later on we want to perform the operations necessary for 
each P[s,t ]  in parallel. Our aim is to determine which operat ions have to be per- 
formed in order to maintain P[s, t ]  when k is incremented by one. 

Before turning our attention to the maintenance of the invariants P[s, t ]  , some 
terminology is introduced. Let xq° denote the q-th row of X. For fixed k, the pair 
(s,t) is called active if k < min(s,t); it is called critical if k = t <  s and it is called 
passive if k > rain(s, 0 v (k = s _< t). 

For an active pair, a comparison of f(s,t,k) and f(s,t,k + 1) in eqn (2.8) shows that 
the val idity of P[s, t ]  is maintained if the program fragment 

xst :=  x s t -  xskxkt; k : =  k + 1 (2,14) 

is executed, provided P[s,k] and P[k, t ]  hold. 

For a passive pair with k > min(s,t), incrementing k leaves P[s,t ]  invariant, since 
P[s,t ]  =- R[s,t] ,  both for k and k + 1, and R[s,t ]  is not dependent upon k. For a 
passive pair with k=s<_ t ,  incrementing k leaves P[s,t ]  invariant, since 
x,, = f(s,t,k) = f(s,t,s). 

For a crit ical pair, eqn (2.12) shows that the program fragment 

x s t : =  Xst/Xkk; k : =  k +  1 (2.15) 

maintains the val idity of P[s,t] ,  provided that P[k,k]  and the addit ional initial 
condit ion tXkkl __> IX,kl hold. The initial condit ion can be established by the exe- 
cution of the program fragment 

~r : = ~ o (k,r); swap (xk., Xr. ) (2.16) 

with r such that 

IXrk{  ---- max { Ixskl :s > k} .  (2.17) 

The proof that this program fragment leaves P invariant is given in Appendix A. 
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2.4 The algorithm 

Combining the program fragments above, we get the complete program text S: 

S: for all s,t  : 0 <_ s, t  < n par do process (s,t) 
(s,t): vat x,t, 7:, k; 

begin 
x~t:= a~t ; ~ : =  id ; k : =  O; 
{ P [ s , t ] }  
while k < n do 
var r; 
begin 

( P[s,t] ) 
find r such that Ix, kl = max(Ix,,I : s _> k}; 
broadcast r to all processes; 

: =. ~r o (k,r); 
swap (Xko, x~,); 
{ I xk, l = ma×( tx ,  kl • s >__ k )  ^ PEs , t ]  ) 
i l k  < min(s,t) then 
begin 

par begin 
receive x~, from process (s,k); 
receive x~ from process (k, t)  

par end; 
x,~: = x~ - x~kx ~ 

end 
else if k = t < s then 
begin 

receive Xkk from process (k,k); 
x,t: = x~Jxk~ ; 
send x,k to all processes (s,q) with q > k 

end 
else if k --- s _< t then 

send x~ to all processes (q, t )  with q > k 
else if k > min(s,t) then skip; 
k : =  k + l  
{ P [ s , t ]  } 

end 
end, 

(Details of the pivot search, broadcast and swap operat ions are omitted.) 

3. Analysis 

3.t Cartesian clustering 

In many practical situations, full exploitat ion of paral lel ism is impossible. This may 
be due to a l imit on the number of processors available, or to the fact that the 
communicat ion costs overtake the computation costs. As a consequence, compu- 



86 

tations that could in principle be performed in parallel have to be grouped in 
clusters. For each cluster there is a corresponding process that maintains the local 
invariants of that cluster. In terms of matrices, this means that their elements are 
distributed, and that each process has local variables for the representation of one 
part of a matrix. There are p processes, running simultaneously on p processors; 
each processor is responsible for the execution of exactly one process, the oper- 
ations of which are performed sequentially. 

A clustering scheme is efficient for a particular algorithm on a particular network 
of processors if: (i) it has good load balancing properties, meaning that the com- 
putations are spread evenly across the processors, (ii) it is not communication 
bound. 

A number of data clustering schemes have been proposed for linear algebra algo- 
rithms on various muttiprocessors, such as ring, mesh, torus, and hypercube net- 
works. Clustering of matrix elements can be done in: blocks {4} (i.e., "consecutive 
storage" {10, 16}); grids {22} (i.e., "cyclic storage" {10, 16} or "scattered square 
decomposition" {5, 1t}); contiguous or scattered rows {6, 15, 21}; dynamically al- 
located rows {12}; columns {15}; and interleaved blocks {21}. All of these schemes 
are special cases of the general Cartesian clustering scheme presented below. It 
will be shown that grid clustering gives an optimal load balance for the present al- 
gorithm, and a sufficiently low communication complexity. The choice of clustering 
has significant influence on the efficiency: e.g. it has been shown {22} that the use 
of block clustering instead of grid clustering degrades the performance of the al- 
gorithm by a factor of three, because of poor load balancing. 

In the following analysis, a Cartesian clustering will be seen as a Cartesian product 
of two partitions of a finite set V. A partition of V is a collection {Vt : 0 _< i < N} of 
mutually disjoint, non-empty subsets V,.c V, such that U ~  1 Vj = V. The size of the 
partition is N, and t Vii denotes the cardinality of V;, 0 _< i < N. 

Let V = {s : 0_< s <  n}, where n equals the matrix size. It is our aim to find the 
best clustering of V x V for the present algorithm. A Cartesian clustering C of 
V x V  has the form: C = (V i xW i : O < _ i < M A O < _ j < N }  , where {V~ : 0 _ < i < M }  
and {Wj : 0 _<j< N} are two partitions or v, of size M and N, respectively. The sets 
V~ x Wj are called clusters. The size of C is defined as the ordered pair (M,N). Be- 
cause each cluster corresponds uniquely to one processor, the total number of 
clusters equals p = MN. 

The grid clustering G of V x V of size (MoN) is a special kind of Cartesian clustering: 

G = { G i x H j "  O < _ i < M A O < _ j < N ~ ,  (3.1) 

with 

G i = { s e V  : s m o d M  = i}, for O < i < M ,  

Hj = { t e V  : t m o d N  = j}, for O<_j<N. 

(3.2) 

(3.3) 

3.2 Load balancing 

Let us consider the load balancing properties of program S using an arbitrary 
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Cartesian clustering C = { V j x W j  O < _ i < M A O < _ j < N }  of the set VxV .  A 
measure Ncomp(C) for the computation complexity of the clustering C is given by 
the expression 

n-1 

Ncomp(C) = ~ max {N(c,k) " c e C}, (3.4) 
k=0 

where N(c,k) denotes the number of computations in cluster c that have to be per- 
formed during phase k of the total computation. Phase k is defined as the part of 
the computation between the k-th and the k + l-th pivot operation, i. e. the part 
which updates the x~. The number N(c,k) is approximately proportional to the 
computation time in phase k of processor c. This approximation is valid because 
nearly all the computations take the same form (see (2.14)), 

Xst : = Xst -- Xs#Xkt , (3.5) 

each computation involving two floating point operations. In the definition of 
Ncomp(C) it is assumed that the comparison operations of the pivot search and the 
division operations of program fragment (2.15) do not contribute significantly to the 
computation time. Note that the measure does take into account that processes 
may have to wait for the (intermediate) results from other ones. The communication 
costs are not included in Ncomp(C); these will be treated in the next subsections. 

LetUk = {s " k < s < n } ,  so that U k x U, equals the set of active pairs. This set is 
exactly the set of pairs for which a computation of the form (3.5) has to be per- 
formed. Therefore, the expression Ncomp(C) can be written as: 

n-1 

Ncomp(C) = g 
k=O 

max {N(c,k) " c ~ C} 

n-1 

g max { l (v i  x Wj) N (Uk x Uk) l 
k=0 

n-1 

• O < _ i < M A O < j < N }  

max{l(VjlqU.)l " 0_<: i<M} • max{i(WjAuk)l " 0 _ < j < N } .  (3.6) 
k=0 

The grid clustering is optimal among Cartesian clusterings from the point of view 
of load balancing: if C is an arbitrary Cartesian clustering of V x V, with size 
(M,N), and G is the grid clustering of V x V of the same size, then 

Ncomp(C) >>_ Ncomp (G). 

PROOF. 

n-1 
Ncomp(C) = 

k=O 
max { l ( v i n  Uk)l " 0 <_i< M} . max {I(wjN uk)l 

(3.7) 

• O_<j<N} 
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n-1 n-1 

--> " M N 

k=0 k=O 

n-1 

max{l(GiNuk)l " 0 _ < i < M }  • m a x { l ( H j ~ U k ) l  " 0 < j < N }  
k=O 

= Ncomp(G). (3.8) 

END OF PROOF. 

A lower bound on the total computation time for any clustering, of arbitrary size, is 
obtained by dividing the total number of computations by p, 

n-1 n (n - 1/2)(n - I)  n 3 n 2 
1 (n - k - 1) 2 Ncomp(C) > -p- = 3p - 3p 2p t- O(n). 

k=0 

An upper bound for the grid clustering of size (M,N) is given by 

n--1 
Ncomp(G) <_ ~ , , ( n - k - I  4 - 1 ) ° M  ( n - k - 1  + I ) N  

k=0 

(3.9) 

n (n - 1f2)(n - 1) n (n - 1)(M + N) 
= + + n. (3.10) 

3p 2p 

This upper bound is minimal if the grid clustering is square, M = N = ,/-p-. From 
the upper bound on the computation complexity, a simple upper bound on the 
computation time for square grid clustering can be obtained, 

Tc°mp(G) -< 2tfl°P ~ + 2~/p- + O(n) . (3.11) 

Here tno p is the time needed to perform one floating point computation such as a 
multiplication or an addition. Two such operations are needed for each computation 
of the form (3.5). Comparison of this upper bound with the time of the sequential 
algorithm, 2t, opn3/3 , shows that a good load balance is obtained by square grid 
clustering, for values of p up to the order of n 2. The point of 50% efficiency loss 
due to load imbalance is reached at the value o fp  = 4n2/9. 

The grid clustering of size (M,N) with M = 1 (N = 1) is simply the interleaved column 
(row) clustering. An exact count shows that its complexity equals n~/3p + O(n2), 
so that the load imbalance is of a higher order than the load imbalance of the 
square grid clustering. 

3 . 3  C o m m u n i c a t i o n  o n  a fu l l  n e t w o r k  

In this subsection, we shall determine the number of communications that are re- 
quired by program S, for a Cartesian clustering C. Because we do not yet want to 
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restrict ourselves to one particular hardware network, it is assumed that a full 
communication network is available. The total number of communications is 
counted. The particular hardware of the communication network determines the 
number of communications that can be done in parallel, and the actual number of 
communication steps that are needed to route data from source to destination (this 
might be more than one, if the network is not full). 

The number of communications Ncoml(C ) needed to find the index r of the pivot row 
is found as follows: The pivot element IXrkl is defined by eqn (2.17), Ixrkl = 
max ( I x ,  kl :s > k}, for 0 _< k < n. Since the set { Ix, , I  :s _> k) is distributed 
across at most M clusters, not more than M - t communications are needed for the 
computation of r. Hence 

Ncoml(C ) <_ n (M - 1). (3.12) 

The number of communications Ncom2(C ) needed to broadcast r and to interchange 
rows r and k, is determined as follows: First, the value of r has to be broadcasted 
to all processes, so that they can perform the assignment 7r : = ~c o(k,r). This gives 
rise to M N - 1  communications. The operation swap (xk°,xr°) requires either 0 
communications (if the rows x k, and xr° are contained in the same cluster), or 2n 
communications (if they are not). Thus, an upper bound for Ncornz(C ) is 

Ncom2(C ) <_ n ( M N -  t) + 2n 2. (3.13) 

The number of communications Ncom3(C) needed to update the local invariants is 
counted as follows: The set of values needed in phase k is (x,k 's > k} U 
{x~" t _> k) . A value x,k is needed in at most N clusters (the clusters that contain 
row s) and therefore it has to be communicated at most N -  1 times. Employing a 
similar argument for values x,~, an upper bound for Ncom3(C ) is obtained: 

n-1 n-1 

Ncom3(C ) < (N - 1)(n - k - 1) + (M - 1)(n - k) 
k=o k=O 

n (n + 1)(M + N -  2) 
= 2 - n (N - 1). (3.14) 

The total number of communications is 

3 

~ '  n 2 n (2MN + 3M - N  -4).(3.15) Ncom(C) = Ncom t(C) <_ - ~ - ( M + N + 2 )  + ~-  . 
i=1 

Under the constraint MN = p, this bound attains a minimum for M = N = ~/-P-. In 
that case we get, approximately, 

Ncom (C) < n2./-p - + np. (3.18) 

3.4 Communicat ion on a square mesh 

The actual number of communication steps Ncom of the LU decomposition algo- 
rithm is dependent on the topology of the hardware network, and on the mapping 
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of the clusters onto the processors. In this subsection we count the number of 
communication steps, instead of the number of communications, since some com- 
munications may be performed simultaneously in one step. The topology of the 
network is assumed to be a two-dimensional mesh. This is a sufficiently general 
network, and is embedded in many networks, such as e.g. a torus and a hypercube. 
(Transputers have four bi-directional links, and can therefore be configured in a 
two-dimensional mesh.) Because of the reduced bound (3.16) on the total number 
of communications, the mesh is chosen to be square. The count for grid clustering 
on a square mesh with the natural cluster-processor mapping is similar to the 
analysis of the previous subsection. 

First, 

Ncoml(G ) <_ n ( ~ - 1 ) 1 2 ,  (3.17) 

because r can be obtained by_comparing and communicating values of lx,,l in a 
processor column of length ~/p, finally obtaining the result in the middle processor 
of the column. 

Second, 
r- m 

(~/rp--2) + n (~P---1 + I - ~ - -  I - 1 )  Ncom2(G) <..% t t  

R 2 
<_ + n (2J - -3). (3.18) 

A broadcast of r, first horizontally and then in parallel vertica)_.ly, costs ~P- -2  steps, 
giving the first term of (3.18). A row swap can be done in 2~/p independent vertical 
pipelines. The start-up time of the pipeline is ~P- -1,  and the additional completion 
time is r ' n / ~ ~ - 1 .  

Third, the number of communication steps needed for the updating procedure is 

n- t  F-- -~P 1 n2 
Ncom3(G ) < ~,, (~fp--1 + n - k  -1)  __< 2drp- + n~Fp--. (3.19) 

k=0 

There are ~ horizontal and ~ vertical communication pipelines, which are 
proceeding simultaneously. The vertical ones involve n - k  data elements; they 
have a start-up time of -J-P---I and an additional completion time of 
~n - k)/x/P--~ - 1. Similar for the horizontal pipelines, which involve one data el- 
ement less. 

The total communication complexity is 

3n 2 
Ncom (G) _.% 2,/-p- + ~ (d/'~- -1). (3.20) 

Note that this count is valid for the square grid clustering, but not necessarily for 
other Cartesian clusterings. 

The total communication time on a square mesh is 
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3n 2 
Tc°mm(G) = tc°mm( 2.,/-p- + O(n~J~-)). (3.21) 

Here t0omm is the time needed to communicate one floating point value to a 
neighbouring processor. Comparison of eqns (3.21) and (3.1t) shows that the point 
of 50% efficiency loss due to communication overhead is reached at the value of 
p = (4t,  o,/9tcomm)2n 2 . 

In conclusion, the communication complexity for the grid clustering is sufficiently 
low; it is of the same order as the load imbalance of the algorithm; both are of a 
lower order than the computation complexity. 

4. Results 

The LU decomposition algorithm has been implemented in the parallel program- 
ming language occam-2 {3}, and executed on a square mesh of T800-20 
transputers, each with 256 Kbyte of local memory, and communicating with each 
other at a maximum link speed of 10 Mbit/s. (This maximal rate is the rate for 
communication of large packets of data.) Timing results were obtained for meshes 
of size p = 1, 4, 9, 16, 25, and 36 processors, and for matrices of size up to 
n = 1200. 

Work distribution was done by grid clustering; communication by independent 
pipelines, as described in subsection 3.4. Performance was maximised by using 
on-chip memory (4 kByte) as much as possible {1}. Computations were done in 
single precision (32 bits). 

The test matrices were constructed in such a way that a fair amount of pivoting was 
necessary: half of the n steps of the algorithm included a swap of two rows&_ These 
rows were contained in processor rows at an average distance of 1/2., /p in the 
processor network, i.e. at a distance of half the mesh size. 

The timing measurements were obtained by using an internal t imer calibrated with 
a wallclock. Timings of the parallel algorithm were compared with timings of the 
sequential algorithm programmed in occam-2 and run on a single transputer. 

Table 1 shows the time T~(n) of the LU decomposition of a matrix of size n x n, on 
a network of p transputers. The size of the problem that can be solved grows with 
the number of processors available. Since our transputer network contains 256 
kByte of memory per processor, a single transputer can maximally store a matrix 
of size 200 x 200. 

The results of Table 1 show that large matrices can be decomposed fast: e. g. a 
1000x 1000 matrix was decomposed in 31 seconds. The overhead paid for 
parallelism is small, as can be seen by comparing the results of the parallel algo- 
rithm with p = 1 with the results of the sequential algorithm. Already for a small 
matrix size, n = 200, a speed-up of a factor 15 compared to the sequential algo- 
rithm was obtained, using 36 processors. (The intended range of applications 
consists mainly of matrices of size ~arger than this.) 
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Table 1. 

n p = l  p = l  p = 4  p = 9  p = 1 6  p=25  p=36  
(seq) (par) 

50 0,16 0.17 0.08 0.06 0.05 0.05 0.04 
100 1,06 1.09 0.39 0.25 0.18 0.15 0.13 
200 7.8 7.9 2.4 1.3 0.86 0.65 0.52 
300 7.3 3.8 2.4 1.7 1.3 
400 16.5 8.2 5,0 3.6 2.7 
600 25.6 15.2 10.5 7.7 
800 34.2 23.1 16.7 

1000 43.1 31.0 
1200 51.7 

Timings of LU decomposition with partial pivoting on a transputer network. 
Tp(n) = the time (in s) on p processors for an n x n matrix. 

Table 2. 

n p = l  p = l  p = 4  p = 9  p=16  p = 2 5  p = 3 6  
(seq) (par) 

50 0,52 0.49 1.1 1.3 1.7 1.8 1.9 
100 0.63 0.61 1.7 2.7 3,7 4.4 5.0 
200 0.68 0.68 2.3 4.1 6.2 8.2 10.2 
300 2.5 4.8 7.6 10.5 13.5 
400 2.6 5.2 8.5 11.9 15.9 
600 5.6 9,5 13.8 18.7 
800 10,0 14.8 20.5 

1000 15.5 21.5 
1200 22.2 

Megaflop rates of LU decomposition with partial pivoting on a transputer network. 
Rp(n) = the speed (in Mflop/s) on p processors for an n x n matrix. 

Table 2 presents the computational speed Rp(n) of the algorithm in million floating 
point operations per second (Mflop/s); it was computed from Table 1, Comparison 
of the maximal speeds of p --- 1 (sequential) and p = 36 shows a speed-up of a 
factor 32, for matrices of size n >_ 1000. This means that a close-to-maximum speed 
can be sustained even [or large numbers of processors, as long as the problem 
size n stays large enough. 
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Figure 1 shows the processor utilisation during parallel LU decomposition. Each 
curve shows the efficiency Ep(n), 

ep(n) 
Ep(n i - (4.1) 

PRseq,max 

for various matrices of size n on a fixed mesh of p processors. Here R,.q,,... is the 
highest speed obtainable by the sequential algorithm on a single processor; in the 
present case this is 0.68 Mflop/s. 

The results of Figure 1 show that over 90% efficiency can be achieved for all mesh 
sizes p, as long as the problem is large enough, The point of 50% efficiency is 
reached for matrix size 250 on a 36 processor mesh, and earlier for smaller 
meshes. 
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Figure 1. 
Efficiency of LU decomposition with partial pivoting on a transputer network. 

Ep(n) = the efficiency (in %) on p processors for an n x n matrix. 

The experimental timings were used in a least-squares fit to the theoretical per- 
formance model, expressed by eqns (3.11) and (3.21). The resulting empirical tim- 
ing formula is 

2n 3 n 2 
T (n) _-= 131- - + 40.2- S (4.2) 
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The second term of eqn (4.2) contains communication overhead (eqn (3.21)), load 
imbalance (eqn (3.11)), comparisons to find the maximum pivot element in a col- 
umn~_and divisions by the pivot elements. All of these take a time of the order 
n2/~/p . The communication overhead is dependent on the actual amount of pivot 
swaps executed. 

In solving a system of linear equations Ax = b, the decomposition A = LU is 
usually followed by the solution of the triangular systems Ly = b and Ux = y. An 
efficient parallel algorithm has been developed for triangular system solving which 
is based on grid clustering; it is therefore compatible with the preceding grid-based 
LU decomposition. A detailed description of the algorithm and its analysis can be 
found elsewhere (2, 17}. The complexity of this algorithm is n2/p + O(n) floating 
point operations, and O(n) communications. The experimental timing formula is 

Tp(n) ~-- 1 .89 -~  + 38n /~s. (4.3) 

Timings obtained were e.g. 0.0039 s for solution of a triangular matrix of size 
n = 100, and 0.091 s for n = 1000, on the same mesh of 36 T800-20 transputers as 
a bore. 

5. Conclusion 

The concept of Cartesian clustering is central to parallel linear algebra: most of the 
clustering schemes known to us are Cartesian. The availability of such a general 
scheme gives a powerful tool for the analysis of parallel algorithms, as demon- 
strated in the optimality proof of grid clustering for LU decomposition. 

Interleaving is the key to obtaining good load balance in LU decomposition. For 
example, interleaving rows by assigning them to processors 0, 1, and 2 by the 
pattern 012012... will keep all processors busy almost until the end of the computa- 
tion. Without interleaving computation time is unnecessarily long, e.g. in block 
(submatrix) clustering T~omp(B) ~- 2n~/P, whereas with interleaved row clustering this 
is only Tcomp(R)~-2n3/3P + n 2 , thereby gaining a factor 3 and attaining maximum 
speedup, at least asymptotically (for n -* ~o). The load imba lance  term n 2 is for 
many purposes too large; it is independent of p and soon becomes the computa- 
tional bottleneck when increasing p. It can be further reduced by double inter- 
leaving: interleaving both rows and columns gives the grid clustering with 
Tcomp(G ) ~- 2n3/3p + n~l~/p . 

The communication time of the algorithm depends upon the hardware topology and 
on the speed of the communication links. A ring topology is not sufficiently rich for 
LU decomposition, since the communication time is of the order O(n 2) . A mesh is 
ideally suited, since the communication time is only of the order O(n2/~/r-p), which 
is the order of the load imbalance. The even richer topology of the hypercube 
cannot be fully exploited, since losses due to load imbalance will be the limiting 
factor of performance. 

In the sequential case, the time of linear system solving is almost completely de- 
termined by the time of LU decomposition, except for very small matrices, since the 
time complexity of triangular system solution is of a lower order than the com- 
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plexity of LU decomposition. The same holds for the parallel case, provided grid 
clustering is used, compare eqns (4.2) and (4.3). 

The LINPACK benchmark {9} is a measure of computational speed in linear system 
solving; it is the time needed to perform one LU decomposition and two triangular 
system solutions. The n = 100 benchmark for a 36 transputer system is 0.138 s, 
corresponding to an actual performance rate of 4.8 Mflop/s. The n = 1000 
benchmark is 31.2 s; corresponding to a rate of 21.3 Mflop/s. All benchmarks are 
for single precision (32 bits) computations. 

More important than a single benchmark of an implementation of an algorithm is 
the scaling behaviour with an increase in the number of processors. Formula (4.2) 
shows that the LU decomposition implementation on a transputer mesh scales well. 
The formula can be used to predict the performance of larger transputer networks: 
For example, to decompose a 1000 x 1000 matrix at a speed of 100 Mflop/s a mesh 
of 225 transputers would be needed; the efficiency of the computation would be 
about 60%. 
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Appendix A. Invariance of P under row interchange 

LEMMA. Letk, q,r, and t be fixed;0 _< k ,q , r , t  < n;k  _< q,r. Assume thatP[q , t ]  
and P[r , t ]  are valid, and that k = k (q,t) = k (r,t). Let $1 be the program fragment: 

S 1 : = : = ~ o (q,r); swap (xq,, Xro ), (A.1) 

Then P[q,t ]  and P[r, t ]  will still be valid after the execution of $1. 
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PROOF OF LEMMA.  Assume that k ,q , r ,  and t are fixed; 0 < k , q , r , t  < n ; 
k <_ q, r ; k = k (q,t) = k (r,t). Assume also that PEq,t-J and PEr, t~] are valid. For 
s = q o r s  = r, 

(xst  = f(s,t,k~, if k < t, 
PE s,t-I 

"~xstxtt = f (s, t , t )  ^ Ixstl < 1  if k > t. 
(A.2) 

The val idity of P[s , t~  after the execution of S 1 will only be shown for k <_ t. The case 
k > t can be treated similarly. In the following, primed symbols represent vari- 
ables, functions, and assert ions before execution of $1, and non-primed those after 
execution. Without loss of general i ty it may be assumed that s = q. 

Xqt = X'rt = (because of P ' [ r , t ]  ^ k <<_ t )  

~-1 
~ q x  I .x p" f {  t k~_'~r,_,_, = a~,(r), t - ~ q jt 
]=0 

k-1 

= a~(q ) , t -  ~_XqjXjt = f(q,t ,k).  
j=0 

This proves that PEq,t-I is true. END OF PROOF. 

k-1 

~-~X t .Xr 
= a='o(q,r)(q),t- / ,  q jt 

j=O 

(A.3) 


