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ABSTRACT

Seismic inversion, broadly enough defined, is equivalent to doing migration and re-
flection tomography simultaneously. Diffraction tomography and inversion work best
when sources and receivers surround the region of interest, as in medical imaging ap-
plications. Theoretical studies typically show that the high vertical wavenumber ve-
locity perturbations are resolved in seismic reflection experiments where the sources
and receivers are restricted to the Earth’s surface but low vertical wavenumbers must
be obtained using a separate step such as a velocity analysis or reflection tomogra-
phy. I propose that an iterative inversion using a varying background velocity obtains
all wavenumbers that are resolvable separately by migration and tomography. (The
background velocity must contain abrupt discontinuities.) Reflectors in the background
model simulate sources and receivers within the Earth so the source and receiver cover-
age in seismic reflection inverse problems is effectively the same as in medical imaging.
Some synthetic examples verify the theoretical predictions and show that reflector lo-
cations and interval velocities can be obtained simultaneously.

INTRODUCTION

Typical analyses of the seismic inverse problem with sources and geophones on the
Earth’s surface indicate that the velocity image will only be partially reconstructed (De-
vaney, 1984; Devaney and Beylkin, 1984; Esmersoy et al., 1985; Esmersoy and Levy, 1986;
Wu and Toksdz, 1987). Even when source-geophone offsets extend from zero to infinity,
only the high vertical wavenumbers are resolved and inversion results look like migration
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results and do not resolve, but rather require, a smooth (low-wavenumber) velocity model
(Mora, 1987b).

This is strange considering that inversion purports to obtain a velocity model from which
synthetic data could be generated that best matches the observed seismic wavefield. It is
well known that shapes of reflection hyperbolas can be used to obtain the low-wavenumber
velocity model, so the low-wavenumber information s contained in the seismic wavefield.
However, it is hard to extract this low-wavenumber information unless some assumptions
about the shape of reflectors are made. For instance, velocity analysis typically assumes
flat reflectors (and small incidence angles) and tomography often makes assumptions about
the reflectors (for example that the reflectors have been identified or that reflectors are flat
or continuous). However, an inversion that best matches the observed seismic wavefield
to a synthetic wavefield should obtain all resolvable wavenumber components in a velocity
model. In order to account for the shapes of reflection hyperbolas, the low-wavenumber
velocity model must be correct. To account for reflection amplitudes the high-wavenumber
velocity model must be correct. What is the problem with the analyses that indicate that

these Jow wavenurmbers cannot be obtained? Or is it a problem in the inversion algorithms
themselves?

An analysis using a non-constant background mode! containing a deep reflecting inter-
face indicates that all wavenumbers can be resolved up to some maximum value for the case
when offset extends from zero to infinity. This value depends on the maximum frequency
in the seismic wavelet. Therefore, provided the inversion assumes a background model that
is non-constant and contains the reflector locations, the inversion is capable of resolving
all wavenumbers. Considering the first iteration of an iterative inversion approximately
locates the reflectors, it is not really necessary to know the reflector locations a priori. Con-
sequently, an sterative inversion that allows both the high- and low-wavenumber components
of the background model to vary is a complete inversion. In other words, it resolves both
reflector locations as well as interval velocities simultaneously.
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NON-CONSTANT BACKGROUND SCATTERING AND INVERSION

I will assume the simplest wave equation, the acoustic wave equation, to simplify al-
gebra. This enables the reader to focus on the main problem of obtaining high- and low-
wavenumber velocity models simultaneously. Of course, all the concepts apply equally well
to the full anisotropic elastic wave equation. A future paper will detail these extensions.

To explore which part of the wavenumber spectrum can be obtained in an inversion,
consider first the basic plane wave experiment in Figure 1. A plane wave is incident on some
anomalous region and both the sources and the geophones are located along a horizontal
line which is assumed to be far from the velocity anomaly (the source/geophone line would
normally be the Earth’s surface). A simple non-constant background velocity is assumed,
namely two homogeneous halfspaces or equivalently, a layer over a halfspace with an ab-
sorbing boundary condition at the Earth’s surface. Note that I use an absorbing rather than
a more realistic free surface boundary condition to simplify the mathematical development.
Usage of an absorbing boundary condition will not affect from my conclusions because they
are based on first order effects whereas multiple reflections generated by a free surface are
of second order. Hence, within the context of this paper, I use the term “source/geophone
surface” interchangeability with “Earth’s surface”. It is the reflection from the halfspace-
halfspace interface that enables the low wavenumbers in the velocity anomaly to be resolved
in an inversion. (This reflection event helps to resolve the “interval velocities” in the region
between the interface and the Earth’s surface.) This is comparable to the case of reflection
tomography but, as we will see in the example, locations of reflectors can be determined by
the inversion and are therefore not required a priori.

The following is a derivation of the scattering formulas which relate the scattered field to
the spectrum of the velocity anomaly (see Wu and Toksdz (1987) for the equivalent constant
background velocity derivation).

For monochromatic waves, the constant-density acoustic wave equation is
Viu(r ,r) + o*W(r p)ulr, x) = f(£,) (1)

where u(,g‘, r) is the scalar quantity of the wavefield at position r (such as the pressure),
w is the angular frequency, f(g‘) is the source function at frequency w, r . is the source
position, and W(r) is the squared slowness (i.e. W(r) = 1 /v*(r) where v(r) is the velocity
of acoustic wave propagation).

In the following development, I will apply the wave equation and first order Born ap-
proximation to obtain an expression for the perturbation in the wavefield §u in terms of the
perturbation in the squared slowness 6W. I will then specialize this result to a particular
non-constant background, namely a two-halfspace model. Restricting the region of interest
to be the upper halfspace and using the formula for §u, I will derive the inverse formula for
§W in terms of éu in the Fourier domain. This inverse formula for the squared slowness in
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the wavenumber domain is the main result of this paper and will be interpreted with the
help of Figures and numerical examples.

Defining the squared slowness field to be a constant background Wo(x) = 1/v3(r) plus
some relative perturbation denoted §W (),

W(x) = Wolr)l + éW ()] (2)
and defining the wavenumber k = k(r) = w/vo(r) we obtain

Viu(r ,r) + Fulz ,x) = -EW(r)u(r, k) + fx,) - (3)
Now, by defining the wavefield u(g‘, I ) in terms of the wavefield in the unperturbed medium
o(,x) as
u(g, k) = wolE,.x) +6ul(g,.x) (4)
and applying the first order Born approximation, namely that higher order terms of form
O?%(6u,5W) can be neglected, and applying equation (1) yields
Viu(r ,x) + Fou(r ,x) = -kW(r)w(r,r) - (5)

The solution to this equation in terms of the acoustic wave equation Green’s functions for
the medium G(r',r) is

bulg,8) = [ KW uole, £ )G £

= [ RoW )G, )1, )60k - (6)

So far the discussion has been valid for sources located without restriction at r and geo-

phones at r. Now, restricting the sources and geophones to be located on the Earth'’s
surface yields

Su(z,,z,) = /V KW (£)G(24,5) f(2.)G(2g0E )dE (1)

Note that the Green’s functions obey reciprocity between source and geophones, namely

that G(x',xr) = G(r,r'). Fourier transforming over the source location 2, and geophone
location z, yields

bikak) = [ BW(E)G(k, DRIk (8)

So far the development assumed nothing about the Green’s functions and hence noth-
ing about the background medium Wo(r). Now, I will assume the simplest inhomoge-
neous non-smooth background medium, namely the previously mentioned two-halfspace
model. Furthermore, I will assume the anomaly region is above the interface and below the
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source/geophone surface (see Figure 1). In that case, the approximate Green’s functions
for the background medium above the halfspace-halfspace interface are

é(kn,!:) = é+(kn’£) + éﬁ(kn,!',)

i exp(i7,d}) .y s o exp(i7.d;) e
= E.—.—-«‘y‘——exp(—tkg""-'g) + C(k.)i—““‘;‘;'“mex?(_‘ké ‘L) . (99)
and . - -
Glkgx) = GHkgx) + G (kgx)
) i exp(iy,dt . i exp(iy,d; oy
= c(kg)%———-(ly—gg—)exp(—-tk’§+ L) + %.__,(_Zﬁ..g.}_up(_.ké ',E) ’ (9%)
" e

where § and § are the unit vectors pointing along the direction of wave propagation away
from the origin towards the source and geophone locations locations respectively and d,
and d, are the vertical distances between the origin and the source/geophone surface. Note
that the first term in equation (9a) and the second term in equation (9b) are the same as
the Green’s functions given by Wu and Toksdz (1987) for a homogeneous medium while the
other terms correspond to reflected waves generated by the halfspace-halfspace interface.

The superscripts on the Green’s functions indicate whether the waves are downgoing (+)
or upgoing (~) at the origin. The vertical distances traveled by the waves corresponding
to each Green’s function are denoted d. For instance, d} is the vertical distance from the
source to the origin (i.e. the anomaly depth) and d is the vertical distance from source
down to the interface and back up to the origin (i.e. the vertical distance traveled by a wave
that propagates from the source down to the deep interface to be reflected back up to the
anomaly). Specifically, from Figure 1, df = zg, dy = 22z, — 20, d‘j =22, - zg, and d; = 2.
Similarly, § + is the unit vector that points toward the source along a ray that travels in
the positive depth direction (downward) while § ~ is the unit vector that points toward the
source along a ray that travels in the negative depth direction (upward). Thus, the §~

corresponds to the source end of the §~+ or S~ raypaths shown in Figure 2. Likewise, gt

and g~ are unit vectors pointing along the two raypaths between the geophones and the
origin. The vertical wavenumbers denoted v, and v, are specified by

Te = sz - k? s (10a)
Yy = ‘/kz - kg ’ (108)

and &(k') is the reflection coefficient of the halfspace-halfspace interface for an angle of
incidence corresponding to wavenumber k and horizontal wavenumber k' (denoting the
source k, or geophone wavenumber k,). Notice that waves can travel from the source to the
anomaly and then either go up to the geophones or go down to the reflector to be reflected
back up to the geophones. These two alternate paths from the anomaly to the geophones

and
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are included as two terms in the geophone Green's function G(kg,r ). Similarly, the source
Green’s function G(k,,x) describing how waves can get from the source to the anomaly has
twe components.

Recall that equation (8) is a first order Born approximation so reverberations in the
anomalous region have been excluded. Furthermore, the Green’s functions of equation (9)
are also approximate to first order because they assume that the sources and geophones
are located along an absorbing Earth’s surface whereas the real Earth's surface is better
approximated as a free surface which would generate multiple reflections of second order.
Neither of these approximations detract from the following analysis which shows that first
order tomographic terms as well as fisrt order migration terms are included in inversion
provided the background model generates reflections.

Substituting the approximate Green's functions into equation (8) yields the equation
for the perturbations of the field variable in terms of the squared slowness anomaly

Sulky, k,) =

exp(iv.d} + i?gd;) Iy §W(r) exp{—ik(é"" +§—) “Eldr
Fk)E? | +&Kp)E(k,) exp(ivad] + iv,d]) fyy §W(x) exp[~ik(§™ + g*) -xldr
7 + &(kg) exp(ivod} + ivyd}) Jy EW(r) exp[~ik(§* + £%) - xldr
+ &(k,) exp(iv,d; + iv,d7) Jy 6W(c) exp[—ik(§™ +£7) -xldr

= 8§t + §7t 4 §¥t 4 g, (11)

Note that there are four scattering terms in this expression are denoted respectively S+-,

§=%,8§** and §~~. Figure 2 shows the corresponding raypaths and illustrates the meaning
of the superscripts.

The first two terms are the reflection scattering terms. It is these that lead to the
resolution of high vertical wavenurmbers in the inversion formulas for squared slowness.

In a homogeneous background there would only be one term, the $t~ term (e.g. Wu
and Toksoz, 1987). This term corresponds to waves that travel down from the source and
are scattered by the velocity anomaly back up to the geophones. Therefore, it represents
scattering from waves incident from above. Notice that the presence of the deeper reflector
has introduced three other terms.

The S~ term corresponds to waves that travel down from the source, reflect up from
the halfspace-halfspace interface, are downward scattered (reflected) from the anomaly back
to the interface and are then reflected back up to the geophones.

The last two terms are the transmission scattering terms. It is these that lead to the
resolution of the low vertical wavenumbers in the inversion formulas for squared slowness.
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The §** term corresponds to waves that travel down from the source, are downward

scattered (transmitted) through the anomaly to the interface and then reflected back up to
the geophones.

Similarly, the §~~ term corresponds to waves that travel down from the source, are
reflected back up from the halfspace-halfspace interface and subsequently upward scattered
(transmitted) through the anomaly to the geophones.

In other words, the §¥~ and §~t terms will lead to migration-like terms in the inversion
formulas while the §¥+ and §~~ terms will lead to reflection tomography-like terms (c.f.
Devaney, 1984). St~ yields the usual migration term, §~+ corresponds to back-scattering
of waves incident upon the anomaly from below due to deeper reflectors so it yields an
underside imaging term, and §** and §~~ correspond to transmission scattering and thus
yield tomographic terms. Mora (1987¢) pointed out the corresponding four terms for the
case of elastic inversion and suggested how to use these terms to simultaneously resolve
both the high and low wavenumbers in the velocity model

Earlier, I said I would base my development and conclusions on first order effects. Hence,
strictly speaking, I am restricted to distributions in the Earth where velocity perturbations
are relatively small (§v/v << 1) such that the back-scattering or reflection coeflicients
are small and the forward-scattering or {ransmission coeflicients are close to unity. In this
context, it is clear that the underside scattering term §~7 of equation (11) must also be
of second order because it represents a double back-scattering. Therefore, to first order,
equation (11) becomes

§u(k, k) = St~ + ST 4+ 57

In the following development of the inverse formulas, I will continue to carry the second
order S~ term for completeness although no conclusions will be drawn from any terms
that result from its presence.

Equation (11) can be written as

fk)PCE)C(-g)
- 47:7¢

[ W) expl-ik( + ) xMe - (12)

Now there appears to be only one term because § and g span 360 degrees while previously

Sulk, k) = expliv,D,(8) + i?aDv(g)} x

the £+, £, g% and g~ vectors only spanned 180 degrees each. For convenience, I have
Jumped together reflection coefficient terms like é(k') into C(§) and C(~g). Similarly, dJ

and d; were included in D, and d} and d; in D,. For example,

D(3) = df when g corresponds to a downgoing ray
(5) - d; when § corresponds to an upgoing ray
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Therefore, equation (12) can be considered to be a generic term of equation (11). Three
dimensional Fourier transformation of equation (12) yields the generic equation for the
squared slowness anomaly in terms of the perturbation in the wavefield

W +4)] = 8tk k) gt e {-inDD) + DY} - 09

Note that I assumed that C(€) # 0 for all directions ¢ and f(k,) # 0 (i.e. the reflection
coefficient and source strength are both non-zero for all wavenumbers). Normally, one
would apply a small damping term to the denominator to stabilize the solution. Hence,
zero’s in the source or reflection coeflicient at a given wavenumber would result in holes in
the wavenumber spectrum for squared slowness.

THE RESOLVED WAVENUMBER SPECTRUM

Equation (13) relates one plane wave component in the wavenumber spectrum in squared
slowness to the wavenumbers of the acoustic waves along the source and geophone axes.
Consider the single frequency experiment where the frequency of the source w is fixed so the
length of the vectors k§ and L-g are constant. Now both § and g & span 360 degrees thanks to
the reflecting interface between the two halfspaces (if the mterface were not present then we
would only have the ST~ term and § § and g B would only span 180 degrees). If we fix § and
let g span 360 degrees then a circular zone will be resolved in the wavenumber spectrum
of the squared slowness (Figure 3). Now, by letting the source vector § range from 0 to
360 degrees, the entire wavenumber spectrum of the squared slowness will be resolved up to
some maximurm depending on the frequency w (Figure 4). Consequently, when sources and
geophones are located on the Earth’s surface, a single frequency seismic source will resclve
the entire wavenumber spectrum of the squared slowness up to a maximum value of 2w/ vp.

To see in detail how the entire squared slowness spectrum is resolved and how the non-
constant background relates to the constant background case, I will divide the spectrum into
four components. These are derived from the four terms of equation (11). Thus, equation
(13) can be written as the sum of four inversion terms

SWk(E+8)) = I'™ + I't + It 4+ 17

exp[~i(v,d} + 7,d;))]
= —bu(ks, k) 47,7, + Wexp{ i(7.d; +7,d+)]
= ©%) Fh ke + mexp[ i(7.dT + 75d})]
+ ghy expl~i(nd; + 7,d;)]
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2
__bu(k., k) 4,7, ) s o
T (k)R (C(,Q)C(—g)) G*(knk(§ + )G (ke k(E+ ), (14)

where the asterisk indicates conjugate transpose. The division by f(k,) is deconvolution
to remove the source signature and the division of some terms by reflection coefficients
allows for the strength of the deeper reflection. As in equation (11), the vectors §*, 7,

g" and g~ span 180 degrees each. The first term, the I*~ term is the usual homogeneous

background term. The part of the squared slowness spectrum resolved by this term is
shown in Figure 5 (a). It was evaluated at a single frequency w by letting the vectors §*

and g~ span through the appropriate 180 degree ranges (c.f. Figure 4 where § and g both

spanned 360 degrees) and using symmetry to fill in the wavenumber spectrum for &, < 0
(i.e. I assume that the velocities are real so the wavenumber spectrum has 2D conjugate
symmetry). Similarly, the spectra resolved by the other three terms are also shown in
Figure 5. It is clear that the usual homogeneous background term (the It~ term) leaves
big holes in the spectrum, particularly in the low vertical wavenumbers. The three extra
inhomogeneous background terms fill the rest of the spectrum. In particular, the I** and
I~ terms fill in the low vertical wavenumbers. Furthermore, the It~ term is the inverse
reflection scattering term for waves incident from above while the I™* term is the inverse
reflection scattering term for reflected waves incident from below. Similarly, the I*+ term is
the inverse transmission scattering term for waves incident from above while the I~ term
is the inverse transmission scattering term for waves incident from below (see Figure 2 for
a ray diagram of the corresponding four scattering terms). Note that I*~ and I~* resolve
the same part of the wavenumber spectrum. Two holes are in this spectrum in exactly in
the place where I** and I~ are resolved. Figure 5 illustrates the complimentary nature of
the I+~ and I+ migration-like terms with the I** and I~ reflection tomography terms.

Observe that the ™+ term derived from the second order §~* scattering term so no first
order conclusions can be drawn from the presence of this term. If this term was included in
an inversion of noisy data, the reliability of the solution would decrease by a factor of order
O(§u,8W). I will continue to reference (—+) terms for completeness although no practical
significance should be attached to such terms.

THE TOMOGRAPHIC TERMS REVEALED

To illustrate the migration and tomographic inversion terms when the reflector depth is
known, consider an inversion of the synthetic data shown in Figure 6. It was generated by
modeling through a background consisting of a circular velocity anomaly embedded in the
upper halfspace of a two-halfspace model (Figure 7 (a) ). The source wavelet was missing
both high and low frequencies being a fourth derivative of a Gaussian curve. An iterative
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inversion to solve for the velocities was carried out (i.e. equation (14) was evaluated).
The initial model used in the inversion was the two-halfspace model. This model was
identical with the model that was used to generate the synthetic data except that the
circular anomaly was missing from the upper halfspace. The inversion result (Figure 7 (b)
} contains the circular anomaly and two weak V shaped features roughly emanating from
the source location at zero km and passing through the velocity anomaly. These Vs are the
contributions from the tomographic terms I*t and I~ and look like the ray trajectories
for the transmission scattering terms §++ and §~~ shown in Figure 2. The migration
terms It~ and I~ have sharpened the outline of the circle and slightly repositioned the
deeper reflector. The repositioning is seen as a flat event in the inversion result shown in
Figure 7 (b). If many shot gathers were used in the inversion, the velocity anomaly would
have been illuminated from many different directions (just like the human body in medical
imaging). Hence a more complete picture (without V’s) would be obtained as will be seen
in the following example. Only one shot gather was used in this inversion to illustrate
the effects of the different inversion terms. Also, the reflector depth was supplied (i.e.
the initial inhomogeneous background velocity consisted of the true two halfspace model).
The following examples demonstrate that iterative inversions do not require knowledge of
reflector depth.

RELATIONSHIP TO ITERATIVE INVERSION

To illustrate the concept of obtaining both high and low wavenumbers simultaneously
without prior knowledge of an inhomogeneous background model, I will use the algorithm
derived by Tarantola (1984) and extended and tested by Mora (1987a,1987b). This method
performs an elastic inversion by conjugate gradient iterations. I will restrict the calculations
to the constant density acoustic case (shear velocities equal to zero and density fixed) in
order to simplify the interpretation of the results. The algorithm is based on the elastic
wave equation. It attempts to match an observed wavefield with a synthetic wavefield
generated by modeling through some velocity model. When the match between the two
wavefields is good then the algorithm has converged to the most probable velocity model
under the assumptions of least squares (i.e. Gaussian errors in the data and Gaussian
distributed velocities). From Mora (1987a}, the P-wave velocity perturbation at the (n+1)-
th iteration §v™*(x) in terms of the data perturbation at the n-th iteration Su™(z,,t) =
ug(2g, ) — Uobi(2g, t) is

sv™N(x) o« 3 / dt [VIG™(zs,x,1) * f(2z0r )] VIG (20, s —1) * b0 (24,20, 1)) + €,
] 14
(15)

where u,3,(2,,t) is the observed seismic data and * denotes convolution over time and
u(r) = V.U(r) where U(r) is the displacement vector. Equation (15) is applied iteratively
in a conjugate gradient algorithm until the data perturbation is zero. At this point, synthetic
data generated from the velocity model matches the observed data u,,(z;,t). For small
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velocity perturbations and no damping, the iterative time-space domain expression given
by equation (15) yields exactly the same solution as the frequency-wavenumber domain
expression given by equation (14). This is easily seen by integrating equation (14) over the
data space (sources, geophones and frequency) and inverse transforming to the time-space
domain

§W(r) ZE [é(z,,z, —t) % £z, t) * C:'(z,,ﬂg, —t) * fu(z,,z,, t)]r:o

=y f dC(e0p ) * f 20 OIS Clegr, —t) # 86z 2z0nt)] (16a)

where

s G VT cos(8)G
G = e ¢ (16b)

is & normalized Green's function in two dimensions and & is the angle of wave propagation.
1t is clear that, when restricted to the acoustic case, the equations of Mora (1987a) given

by equation (15) are the essentially the same as the inversion formulas of this paper given
in equation (16). Differences are:

(i) the Green’s functions have been scaled differently because Vt = divergence correction #
1/|G| except if incidence angles are small (i.e. cos(8) ~ 1} and the velocity model is homo-
geneous (i.e. has no reflectors) so C is unity,

(ii) there is & convolution in equation (15) with the source wavelet whereas there is a
deconvolution with the source wavelet in equation (16),

(iii) equation (15) has a damping term and is applied iteratively.

The conjugate gradient iterations ensure that the synthetic data matches the observed
data and hence corrects (though perhaps inefficiently) for all of these differences. To speed
the convergence of the iterations, one could easily enough deconvolve rather than convolve
with the source wavelet and rescale the Green’s functions. In particular, one could allow for
the reflection strength by dividing equation (15) by the C' factor as was done in equation
(16). Mora (1987c) described this concept and in particular observed that

fortl = I 4+ T+ I T e ~ [ O 4O + I 4 e

= [migration — like terms] + [reflection — tomographic — like terms] + [damping term)]

a7
leading to the conclusion that the convergence could be sped up by boosting the reflection-
tomographic terms (ie. J** and J~7). Clearly, the boost factor should be about equal
to the inverse of the reflection coefficient at a representative angle of incidence denoted C.
Specifically, use in the iterative formula

1
St = [JtT 4+ 6,13.7‘*] + %{JH + 77 e = 20 4 5[4'*“ +J771+¢€ , (18)
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where I assumed that J=t =~ J+~ because J~* supplies about the same information as
J*~ (Figure 5). Note that the reflector in the following example is strong (i.e. C = 1) s0
it was not necessary to boost the tomographic terms to achieve rapid convergence. Recall

that the J*—, J** and J~~ inversion terms all derive from first order scattering effects
and thus have the same reliability.

EXAMPLES WHEN REFLECTOR DEPTHS ARE NOT KNOWN

Iterative inversion without deeper reflectors

Both of the following examples used a fourth derivative of & Gaussian curve as the
source wavelet. This is a narrow-band wavelet that is missing both low and high frequencies.
Therefore, there can be no questions as to whether low wavenumbers present in the inversion
solutions are due to low frequencies in the source (i.e. low wavenumbers in the inversion

solution cannot be attributed to the presence of low frequencies in the source wavelet because
there were none).

Figure 8 shows one of the five shot gathers used in the inversion which was generated
by finite difference modeling over a circular anomaly embedded in a homogeneous halfspace
(Figure 9 (a) ). There is no deep reflector (i.e. C = 0 in equation (17)) so that the inversion
formula given by equation (15) implicitly contains only the usual migration-like term (the
I*~ term). An inversion was performed using a homogeneous starting model. Figures 9
(b) and 9 (c) shows the inversion result after one and fifteen iterations. The mismatch
after fifteen iterations was small (about 12%) so the algorithm has largely, though not
completely, converged. The fifteen-iteration result contains only high wavenumbers and
looks very similar to a migration result (the first-iteration resuit). This is because the
background model was homogeneous and there were no deeper reflectors.

Iterative inversion with deeper reflectors

Now consider the same model but with a strong deeper reflector. The starting model
was again homogeneous so the reflector location was not assumed to be known a priori. The
deep reflector is strong so no boosting of the reflection-tomographic terms was necessary
(see the description of boosting after equation (17)). One of the five shot gathers used
in the inversion is shown in Figure 10. The true model and the one- and fifteen-iteration
inversion results are in Figure 11. The first-iteration result is the same as in the previous
example except that the deeper reflector has been imaged. However, after fifteen iterations,
the circular anomaly region, particularly its interval velocity, is better reconstructed and
contains both high and low wavenumbers (ie. both its boundaries and its interval velocity



90

have been found). In other words, the interval velocity inside the circular region is now
almost constant and the circular anomaly located by the inversion has almost exactly the
same appearance as the true circular anomaly of Figure 11 (a). By comparison, the result
shown in Figure 9 (c) looked like a high pass filtered version of the true anomaly. One reason
the anomaly is not more perfectly reconstructed by the inversion is that fifteen iterations
were not adequate for the conjugate gradient algorithm to completely converge. Also, there
are small smear artifacts due to the finite number of geophones (101 along the Earth's
surface) and sources (five located every 0.5 km starting from 0.0 km).

Discussion of inversion results when the reflector depths were unknown

The initial model used iz both the above examples was constant and had a velocity
equal to that of the upper halfspace in the true model. Therefore, the first iteration of the
inversion was essentially a migration and located approximately the reflectors (see Mora
(1987a) for a discussion of why the first iteration of an inversion is similar to a migration).
The first example had no deeper reflectors so the extra tomographic terms did not come
into play and only the high wavenumbers could be resolved.

However, the second example had a deeper reflector. Once it was approximately located
by the first iteration, the three extra terms (one migration and two reflection tomographic
terms) discussed earlier had an effect in the inversion. These helped better reconstruct:
(i) the underside of the circular region (the I"% term of equation (14) which is significant
in this example because C =~ 1) and, (ii) the interval velocity (the I** and I-~ terms of
equation (14)). Subsequent iterations adjusted the velocity model in order to best match the
wavefield computed from this model to the “observed” wavefield. Both the reflector location
and the interval velocity model were adjusted simultaneously as the iterations proceeded.

DISCUSSION

Iterative inversion

1 have shown that low vertical wavenumbers in velocity are recovered in an inversion
when the background velocity contains sharp discontinuities. The examples illustrate that
iterative inversion that updates the velocity model can obtain both high and low wavenum-
bers in the velocity model. At least two iterations are necessary to solve for the velocities if
a smooth velocity model is used as the starting guess (i.e. no a priori knowledge of reflector
locations is assumed). The first iteration will approximately locate the reflectors and the
second will solve for the interval velocities. Only two iterations are required provided (i) the
problem is linear (i.e. there are small velocity perturbations, infinite offsets and Gaussian
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noise), and (ii) a Newton algorithm rather than a conjugate gradient algorithm is used (i.e.
1/|G| is applied). Typically, velocity perturbations are not so small and offsets are finite
so the inverse problem is nonlinear. Counsequently, more than two iterations are usually re-
quired to obtain the complete solution even with a Newton algorithm. Actually, it is often
more efficient to use a conjugate gradient method and iterate rather than a Newton method
when the velocity model is complex. This is because the inverse Hessian (or equivalently
1/|G]) required by Newton algorithm’s is typically very expensive to compute in comparison
to some conjugate gradient iterations. Future research will be required to investigate the
utility of the low-wavenumber reflection tomographic terms in the inversion formulas when
gradient based inversion schemes are used. This is especially true when many reflectors
are present because the boosting factor {1/C) required by the tomographic terms becomes
spatially variable.

Resolution of reflector location and interval velocity

The first iteration essentially does a depth migration and therefore approximately locates
the reflectors. If the velocity model is not quite correct, the positioning of reflectors is
slightly incorrect. One may ask whether this would unduly affect the inversion. Does the
analysis in this paper remain valid considering I assumed that the reflector location was
known? Would mispositioning of reflectors affect the ability of the algorithm to resolve the
low wavenumbers? The quick answer is “no” provided there are enough offsets to remove
{or partially remove) ambiguities between the reflector positions and interval-velocities.

Considering the position of the reflectors is influenced by the initial low-wavenumber
velocity model, there is certainly some interaction between the low and high wavenumbers.
Consider a single source and single geophone experiment. In that case, it is impossible to
resolve between the depth of a reflector and the interval velocity down to that reflector (i.e. if
traveltime t = z/v is observed then we cannot differentiate between an increase in velocity
v and a decrease in depth z). However, when several sources and geophones are used,
the shapes of the reflection events helps distinguish interval velocity from reflector depth.
Also, as the number of illumination angles of waves passing through the upper halfspace are
increased, the resolution between depth and velocity increases. This is why the example with
five sources and 101 geophones converged to a good solution even though the reflector depth
was not specified. Hence, I conclude that while the low and high wavenumbers do interact as
the iterations proceed, they can be resclved from one another if enough conjugate gradient
iterations are performed. The iterations slowly reposition the reflector(s) and update the
interval velocities until the solution is obtained (see Figure 9 (c)).

Local minima

One further difficulty with inversion schemes is that they may converge to local minima
{on the square error functional that measures the mismatch between observed and synthetic
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data). This is avoided by starting with a velocity model that is sufficiently close to the so-
lution. In my experience with seismic inversion, sufficiently close means the initial velocity
model must describe the kinematics of wave propagation to within about a half a funda-
mental wavelength of the seismic source wavelet. In order to obtain this starting velocity
model, an initial inversion step (perhaps interpretive, such as velocity analysis) may still be
required.

The likelihood of a local minima is lessened when doing iterative inversion that vary the
high- and low-wavenumber velocity model. This is because the velocity model can converge
on the low wavenumbers from the top of the model down as the iterations proceed. Thus,
throughout the iterations there will always be an “uppermost portion of the model” that
obeys the half a wavelength criterion. Consequently, provided the iterations are not too
expensive, it may not even be necessary to do the velocity analysis in order to do a complete
inversion for all wavenumbers. Alternatively, Mora (1987a) suggested how to redefine the
objective function to be sensitive to the low wavenumbers and perhaps less nonlinear.

Incomplete data

In this paper, I derive and plot the wavenumber spectra of velocity perturbations that
can be resolved from a single frequency seismic source when offset ranges are infinite. I
showed that all wavenumbers could be resolved up to some maximum value, namely, double
of the frequency of the seismic source {see Figures 3 and 4).

In real experiments where seismic sources are band-limited and offsets are restricted to
some finite range, some parts of the wavenumber spectrum simply cannot be resolved using
surface seismic data. Figure 12 shows the part of the wavenumber spectrum that can be
resolved from such incomplete (and more realistic) data. Figure 12 was obtained by the
same procedure that was used to generate Figure 3 by letting § +, 87, ,§+ and g’ span an

angle less than 180 degrees (to allow for a finite offset range) and with sources ranging over
a “band” of frequencies.

Of course, in real surveys where sources and geophones must be at discrete locations,
the resolved wavenumber spectrum is also discrete.

CONCLUSIONS

It is crucial in inversion and diffraction tomography of surface seismic data to use an
inhomogeneous background velocity in order to resolve the entire wavenumber spectrum
of the velocity model. Iterative inversion that varies the background velocity model (both
high- and low-wavenumber components) can find all wavenumbers in the velocity spectrum
except those that cannot be resolved due to incompleteness of the data set (e.g. finite offset
ranges etc).
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These kinds of inversion are like a combination of iterative migration and reflection to-
mography. The high wavenumbers (the reflector model) are obtained by migration terms
and the low wavenumbers (the upper halfspace interval velocities) are found by diffrac-
tion tomography terms. Both the reflector model and the interval velocities are obtained
simultaneously and automatically in iterative wave equation inversion schemes.

Because the low wavenumbers can be reconstructed in iterative inversion, elastic inver-
sion schemes such as Tarantola (1984) and Mora (1987a) will soon be extendible to perform
“complete” inversion of seismic data for all wavenumbers in the spectra of the elastic param-
eters (see Mora 1987c). On a computer that is capable of sufficiently fast wave simulations
such as the CRAY-3 or the 2.5 Gigaflop highly parallel parallel Connection Machine®?!
(Hillis, 1986), these iterative wavefield inversion methods may soon overtake in utility the
efficient but partial solutions of velocity analysis and migration.
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source/geophone surface ——on

incident waves scattered waves

Figure 1: Basic plane wave exper- |
iment showing plane waves inci-
dent upon a velocity anomaly em-
bedded in a layer over a halfspace.

source

Figure 2: Raypaths correspond-
ing to the four different scattering
terms. The first superscript refers
to the incident ray direction while
the second superscript refers to
the scattered ray direction (+ is
downward and — is upward). For
example, §t~ has a downgoing
incident ray and an upgoing scat-
tered ray.
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Figure 3: The part of the
wavenumber spectrum of the kS
squared slowness model that can ¢ 4 kz

be resolved using a single plane
wave source.

Figure 4: The part of the
wavenumber spectrum of the
squared slowness that can be re-
solved using a point source (ie. a
sum of plane waves at all angles).




Figure 5: (a) The part of the
wavenumber spectrum of squared
slowness that can be resolved
from the I*~ inversion term (ie.
the usual imaging term). This is
essentially the same as Wu and
Toksoz (1987), Figure 12 (a}, ex-
cept that their spectrum was for
a wide-band source rather than a
single frequency. This is identi-
cal to the part of the wavenum-
ber spectrum of squared slowness
that can be resolved from the I-+
inversion term (i.e. the underside
imaging term).

Figure 5: (b) The part of the
wavenumber spectrum of squared
slowness that can be resolved
from the I inversion term (i.e.
the downward path tomographic
term), This is identical to the
part of the wavenumber spectrum
of squared slowness that can be
resolved from the I~ ~ inversion
term (i.e. the upward path tomeo-
graphic term).
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Figure 6: Shot gather generated
from the model shown in Figure

7 (a).

Figure 7: (a) The true model cor-
responding to the synthetic data
shown in Figure 6. Black indi-
cates a negative perturbation and
white a positive perturbation rel-
ative to the acoustic impedance
in the upper layer. The veloc-
ity perturbation of the circular re-
gion relative to the layer velocity
was 10%.

Figure 7: (b) Ten iteration inver-
sion result. The starting model
was a layer over a halfspace that
was identical to the true model
except that that the circular ve-
locity anomaly was not present.
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Figure 8: Shot gather generated
from the model shown in Figure

9 (a).

Figure 9: (a} True model cor-
responding to the synthetic data
shown in Figure 8. Black indi-
cates a negative perturbation and
white a positive perturbation rel-
ative to the acoustic impedance
in the upper layer. The veloc-
ity perturbation of the circular re-
gion relative to the layer velocity
was 10%.

Figure 9: (b} One-iteration in-
version result plotted as the per-
turbation relative to the homoge-
neous starting model

Figure 9: (c) Fifteen-iteration in-
version result plotted as the per-
turbation relative to the homoge-
neous starting model.
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Figure 11: (a} True model cor- s .
responding to the synthetic data
shown in Figure 10. Black indi- ® mm
cates a negative perturbation and \E_, et NS il
white a positive perturbation rel-
ative to the velocity in the upper
layer. The velocity perturbation
of the circular region relative to
the layer velocity was 10%.
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Figure 11: (b} One-iteration in- T
version result plotted as the per- o
turbation relative to the homoge- i~
neous starting model. é

Figure 11: (c) Fifteen-iteration
inversion result plotted as the
perturbation relative to the ho-
mogeneous starting model.
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Figure 12: The part of the
wavenumber spectrum that can
be resolved when the offset
range is finite and the source is
band-limited. The dark shaded
region is the best resolved part
because it receives contributions
from by all frequencies in the
band. The light shaded region
is resolved by progressively less
frequencies as one moves further
from the darker region.
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