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Abstract 

In order to extend our fundamental knowledge on the deformation and fracture of 
porous, amorphous particles under compressive and shear forces, we have devel- 
oped a computer model within the framework of percolation theory. This 'compu- 
tational physics' approach, which has been chosen especially in view of the 
complex nature of the fracture mechanism, would not have been feasible without 
parallel-computing facilities. 

Experimental data from Side Crushing Strength (SCS) tests on porous catalyst 
carriers show a wide variance in elasticity and breaking strength. We should like 
to find the physical parameters that determine these properties. 

The computer model is based on a two-dimensional network of Hooke-type springs 
with an eigenlength and a load limit. We have calculated the configuration of the 
spring network under a macroscopic strain. Individual springs that are stretched 
beyond a critical length break irreversibly. The implementation of the model on a 
Transputer network will be discussed. 

The stress-strain relations of an SCS test and our model show a similar behaviour. 
The force goes up linearly with the t'elative compression unless a breakage occurs. 
The system breaks into two main parts after one or two avalanches of breakages. 

Introduction 

The mechanical strength of amorphous material has recently been receiving in- 
creased international attention. In contradiction to the description of linear- 
response behaviour (elasticity, conductivity) it is believed that the mechanical 
strength of heterogeneous material cannot be modelled by an effective medium 
approximation. Since a propagating crack interacts strongly with its surroundings 
there is an intrinsic spread in the mechanical strength of non-crystalline material; 
the strength seems to have a statistical nature. Samples of identically prepared 
porous amorphous material might have mechanical strengths that vary by an order 
of magnitude. 

Although in practice a deformation experiment on a rigid body seems to be of a 
three-dimensional nature, we shall only discuss two-dimensional deformation ex- 
periments in this paper. We plan to look at three-dimensional deformation exper- 
iments in the future, tn two dimensions the mechanical linear-response behaviour 
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of a structure is fully determined by two independent deformations. Other defor- 
mations can be seen as a combination of these two. We choose to characterise the 
structure with the Young modulus Y and the shear modulus #. The Young modulus 
is the proportion between the pressure p, i.e. the perpendicular-force density, and 
the strain, the relative shortening in the direction of the pressure. 

F perp Z~u 
P - A - Y ~ (1) 

The shear modulus is the proportion between the parallel-force density g and the 
angle of deformation 0. 

Fparallel 
g - A - /z e (2) 

If we increase the force density, non-l inear effects can be observed. This might be 
a form of plasticity, i.e. a decrease in the derivative of the stress with respect to the 
strain, or a failure, i.e. a discontinuity in the stress as a function of the strain. We 
want to understand the connection between the microscopic properties of the 
amorphous structure and the maximal force it is able to resist. 

We are especial ly interested in understanding the behaviour of catalyst carriers as 
observed in the so-called Side Crushing Strength (SCS) test. In the SCS test a sin- 
gle particle is slowly deformed by a plunger which pushes with a constant velocity, 
whi le the force needed is recorded. The catalyst carriers are made of porous 
amorphous sil icon oxide. The production mechanism of these catalyst carriers 
causes a wide range in characteristics. The catalyst carriers look more or less 
round and have an average diameter of 2-3 mm. There is a large variance in 
porosity. Even after el iminating these effects, the SCS test results seem to have a 
statistical nature. After selecting catalyst carriers within a small range of size and 
weight, we performed about 50 SCS tests. The results are presented in Fig. 1. Be- 
yond the spread in elasticity there is a variance in the ult imate strength as well. 
The cloud of points indicates that some kind of correlation between these observ- 
ables exists. Simi lar spreads in results have been obtained in deformation exper- 
iments on composites and polymer systems [1]. 

We aim for a better understanding of the fracture mechanism in (porous) amor- 
phous material. Due to the production mechanism there wil l always occur a spread 
in properties within an ensemble of catalyst carriers. A theoretical model would 
give us the opportunity to concentrate on the importance of a specific parameter. 
Later on these results could be embedded in a mathematical model to be used for 
interpreting and guiding deformation experiments on real amorphous material. 

There are several ways to describe the breaking phenomena in amorphous struc- 
tures theoretical ly. In the first place one can divide the global structure into finite 
elements by giving each finite element specific properties such as stiffness and a 
yield criterion, the fracture mechanism can" be observed using finite elements 
methods. Another approach looks at the problem from a microscopic point of view 
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(Fig.l) Results of the SCS tests on porous amorphous catalyst carriers 
(silicon oxide) within a small range of size and weight. 

and makes use of quantum chemistry. Here, the amorphous structure is built up 
from atoms. An increment of strain implies that the distances between 
neighbouring atoms will change according to their interatomic potential function. 
If the distance becomes too large the force of attraction gets too weak and the bond 
will break. A third way to describe the fracture mechanism stands midway between 
the preceding ones. The amorphous structure is modelled by randomly cutting a 
number of bonds in an artificial regular grid. This approach within the framework 
of percolation theory is most suitable for our problem. The statistical nature of the 
strength properties makes it inevitable that a lot of data have to be calculated. To 
gather these data cheaply and quickly, parallel-computing facilities can/must be 
used. Because of its regular grid and simplicity the percolation model lends itself 
admirably to simulating a deformation experiment. 

In the next chapter we shall give some more information on percolation theory. 
After that the model and its parallel implementation are discussed. This paper is 
completed with a summary of some preliminary results. 

Percolation theory 

In order to obtain more fundamental knowledge on the deformation and fracture of 
porous, amorphous particles under compressive and shear forces, we have devel- 
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oped a computer model. The output of the model will be interpreted with 
percolation theory [2] . Percolation theory describes the global behaviour of dis- 
ordered material. It has been successfully used to describe for instance the elec- 
trical properties of random multiphase material and the diffusion of a liquid into a 
porous structure. The application to the mechanical behaviour of these materials 
is relatively new. The main aspect of the theory is that the calculations are made 
on an artificial network. The effective properties, rescaled on the number of nearest 
neighbours, are only dependent on the dimensionality of the structure. Finite-size 
scaling theories have been developed to interpret numerical results of calculations 
on finite lattices. 

It is out of the scope of this paper to give an extensive introduction on percolation 
theory. Therefore we recommend the excellent book of Stauffer E2] . tn order to 
get some feeling for percolation theory, we should like to treat the electrical 
breakdown model, which is developed to describe the electrical failure of disor- 
dered material. There are some authors who extend the results of the electrical 
breakdown model to describe the mechanical failure as well. At the end of this 
chapter we shall give arguments against the latter approach. 

If one puts a mix of conducting and isolating balls into a box, one can simulate the 
electrical behaviour of porous amorphous material. The percentage of isolating 
balls is a measure of the porosity. Since it is easier to make numerical simulations 
on regular lattices, a better approach is to start with a square network of resistors. 
The porosity is introduced by giving a certain percentage of the resistors an infinite 
resistance. Distributing the 'porosity' in a random way results in an amorphous 
structure. As mentioned before, there is a difference between the results of the two 
models due to the fact that the number of neighbours of a ball in a random packing 
is different from the number of neighbours in a square grid. But after rescaling, the 
results are identical. We must, however, be careful since finite-size effects may in- 
fluence the results considerably. The calculation to be done is to solve the system 
of linear equations given by Kirchoff's rules. This determines the total resistance 
of the network defined as the ratio between the voltage and the current. This 
percolation model is able to simulate the electrical linear-response behaviour of 
an amorphous material. Effective medium approximation techniques are able to 
describe these properties as well. The main advantage of the percolation model 
is that we can extend it to the non-linear response behaviour. The electrical 
breakdown of the structure can be simulated by introducing a critical current for 
every resistor in the network. If the current through a resistor exceeds the critical 
current, the resistor will break down. In the simulation, this breakdown is effected 
by giving the resistor an infinitely large resistance. 

We can now observe the following behaviour. There exists a l inear relationship 
between the current and the voltage up to a certain critical voltage. Then there will 
be a drop in the total current through the network due to the breakdown of a single 
resistor, followed by a redistribution of the current. This redistribution may lead to 
a failure elsewhere in the network. This may be the start of an avalanche of failures 
leading to a global breakdown. 

Extrapolating the results from the electrical breakdown model to a mechanical 
breakdown model is very dangerous. In the first place there is only a change in the 
distribution of the current if failure occurs. In real mechanical deformation exper- 
iments, there are besides changes in the stress distribution local deformations of 
the material itself. Apart from this, it is nearly impossible to extrapolate the results 
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from the electrical breakdown model not only to structures under tensile load but 
also to structures under compressive or shear load. The spring model introduced 
in the next chapter is able to simulate these deformation experiments directly. 

Elastic spring models 

Conventional approaches 

Sahimi and Goddard [3] have introduced a class of models for cohesive failure in 
disordered solids, based on networks of Hooke-type springs with a load limit. They 
placed such a network under a macroscopic strain. After calculation of the network 
configuration, springs that are stretched beyond a critical length break irreversibly. 
They find, that the macroscopic behaviour, from ductile to brittle breakage, depends 
on the form of the distribution of the spring constant and the critical length. They 
determined the effective shear modulus of porous systems and found a difference 
between the behaviour of an unbroken system, i.e. a system with an initial porosity 
that is randomly distributed and the behaviour of a broken system, i.e. a system 
with an initial lower porosity where some cracks are already present. 

However, we want to simulate the attrition of a porous material under a 
compressive rather than a tensile load. Therefore we need to make some modifi- 
cations to the previous model. The most impodant one is the introduction of an 
eigenlength of every spring. Thus, if we now compress the system we need a force. 
Again the configuration of the network is calculated and springs which are 
stretched beyond the critical length are broken. 

By introducing a non-vanishing eigenlength of a spring, we stepped outside the 
class of problems that can be solved using linear algebra routines. Prior to the in- 
troduction of an eigenlength the hamiltonian, i.e. the energy function, of the spring 
system, could be written as 

H -  C ~ )2 )2 
2 [ ( Xbegin -- Xend 4- ( Ybegin -- Yend ] (3) 

springs 

The equilibrium state is the minimal energy configuration of the spring network. 
Displacement of one of the end points would give an increase in energy. So the 
equilibrium state can be found by searching for the configuration of the springs 
where all derivatives with respect to one of the coordinates of an end point of a 
spring vanish. An exception has to be made for those end points which have some 
kind of constraint, for instance the presence of a wall. Only the 'free points' are free 
to move. The square lattice is the most simple two-dimensional lattice. The 
hamiltonian of an N x N lattice of springs with a vanishing eigenlength can be 
written as 
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C H - 
2 

N - I  N-1 

- - x , + , j )  + + 

t = 0 ] = 0  
_ )2 ,~2 

( x i j  xU+ 1 4- ( Yi j  - Y i j + t ,  ] 

(4) 

Differentiation with respect to the free points, i = 0_N - 1 and j = 1..N - 2 , of the 
hamiltonian 

d H  d H  - 0 and - 0 (5) 
dxi, j dYi, j 

gives a set of 2N(N - 2) l inear equations 

4 xi ,  j - X i + l ,  j - x i , j +  1 - x i _ l j  - x i j _  1 = 0 

4 y i j  - Y i+ l j  - YU+I - Y i - I j  - YJj-1 = 0 (6) 

Together with the boundary conditions, for instance Yi,0 = 0 , 0 _ < i <  N , one can 
find the minimal energy configuration using l inear algebra. 

By introducing the eigenlength U 0 one obtains the hamittonian 

C H - 
2 

N-1 N--t 
y 2 

{ [  ~ ( X i j  - X i + l j )  2 + (Y i j  - i+ lJ)  

i = o j = o  

[ ~ / ( X i  J _ Xi j+ 1)2 4- ( y i j  -- Y i j+ l )2  

_ Uo ]2 + 

_ % - i  2 } 

(7) 

which gives a system of coupled non-l inear equations if one uses (5). It is therefore 
impossible to apply the above simple l inear algebra solution. After some prel imi- 
nary studies we chose an algorithm that makes use of the forces of the individual 
springs in finding the minimal energy configuration. The method is described in 
more detail in the next paragraph. Since these calculat ions are rather t ime- 
consuming we opted for a parallel implementat ion of the algorithm. 

E i g e n l e n g t h  m o d e l  

The program Trigrid simulates the behaviour of a porous amorphous material un- 
der pressure, tt calculates the posit ions of the end points of Hooke-type springs with 
an eigenlength in a 2-D t r iangular  network. The simulated particle has the form of 
a hexagon, which consists internal ly of a large number of congruent tr iangles. The 
springs are connected to each other on the tr iangle vertices. Initially, each spring 
has its eigenlength, which equals the tr iangle side. The porosity of the particle is 
modelled by the distr ibution of the springs across the tr iangles. The porous mate- 
rial modelled in this way is amorphous, i.e. non-crystall ine. 
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At a certain macroscopic strain the program Trigrid calculates iteratively the mini- 
mal energy configuration of the spring system. This is done in two phases. First the 
spring properties, i.e the stretch and orientation, are calculated from the coordi- 
nates of the end points of the springs. In the second phase all end points are shifted 
in an appropriate way. The iteration stops if the configuration approaches its equi- 
librium. The convergence criterion used is that the sum of the absolute displace- 
ments becomes small enough. After approaching an equilibrium, global information 
such as the force upon the network is calculated, if one or more springs have 
reached a length which is greater than the critical length, all those springs are 
broken and at the same macroscopic strain the configuration of the springs will be 
calculated again. 

Before we go into deeper detail on the iterative finding of the minimal energy con- 
figuration we give a sketch of the main program. 

Program Trigrid 

initialise 
repeat 

press { increase strain } 
repeat 

repeat 
calculate spring properties 
calculate new positions 

until equilibrium 
break to long springs 

until stable { no spr ings broken in this i te ra t ion}  
until breakdown { smal l  g loba l  e last ic i ty  } 

The status of every spring is represented by five fields: spring constant, 
eigenlength, stretch, c.,ff and c "fr Where C~ rr and C~ e represent the orientation of - - ×  - - y  • 

the spring. C~ fr is the inner product between a vector C of length spring constant in 
the direction of the spring and a unit vector on the x-axis. After calculating the 
spring properties, the force on each point can be calcutated as follows 

c.ef f 
F x = stretch x ~x (8) 

neighbours 

~ eff 
Fy = stretch x vy (9) 

neighbours 

If two springs are attached to each other on one side and are bound at the other 
end point, there is a minimal energy configuration of this simple structure with the 
common end of the springs on the straight line between the two fixed end points. 
If the common end is displaced from the equilibrium position, the springs exert a 
force upon the common end. This force is proportional to the displacement from the 
equilibrium position. The corresponding effective spring constant depends on the 
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direction of the displacement. Closer examination reveals that one needs to handle 
the movements in x- and y-direction separately. The corresponding effective spring 
constants are 

Cx e'' = I l (lo) 
ne ighbours  

ceff = e l f  Ic ,l 
ne ighbours  

Each point is shifted according to Hooke's Law 

,-, ef f  
A x  = F x i - x  (12) 

r'eff (13) z~y = Fy / ~y  

Parallel implementat ion 

In the parallel implementation, the initial hexagon is embedded in a parallelogram. 
This parallelogram is split up in P x P (P = 6) smaller ones, and all computations 
for the springs contained in a single small parallelogram are performed by one 
process. Since springs from different small parallelograms can be connected; 
communications between processes dealing with the neighbouring parallelograms 
are needed. The small parallelograms have 2-D coordinates (p.i, p j )  , with 
0 < p.i, p j  < P. Two parallelograms (p.io, P.Jo) and (P.il, P.Jl) are neighbouring iff 

Ip.i o - p . i l l  <_1 ^ I P , J o - P . J l t - < I  . (14) 

Each process performs an iterative computation. At a certain macroscopic strain 
the configuration of the springs is calculated. First, the positions on the boundary 
of the parallelogram are communicated. The communications occur in two phases, 
one horizontal and one vertical, with the effect that the positions of the springs in 
parallelograms which touch only in one point ( Ip.io - p . i l l  = 1 ^ IP.Jo-P.Jl l  = 1 ) 
are communicated over distance 2. This communication technique is well known; 
it is sometimes applied in domain decomposition computations [4]. 

Communication of spring properties never occurs; the only information that is 
communicated consists of the coordinates of the positions on the border. After the 
communications of the border positions, the spring properties, i.e the stretch and 
orientation, are calculated locally. All points are displaced according to (12) and 
(13). The sum of the absolute displacements is collected. The equilibrium is found 
if this sum is small enough. 

After approaching an equilibrium, global information such as the force upon the 
network, is collected. If one or more springs have reached a length, which is 
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(Fig,2) The transputer system exists of 36 T80O transputers connected 
to each other in a mesh structure. Communication with the 
outside world is clone via the root processor in a PC. 

greater than the critical length, all those springs are broken and at the same 
macroscopic strain the configuration of the springs will be calculated again. 

The distribution and collection of global information is done via the west border of 
the transputer network (Fig,2). 

Results 

The program Trigrid has been developed to perform calculations on a parallel 
transputer system (36 floating-point processors), Preliminary results were ex- 
tracted from test calculations on a single transputer. 
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If one starts with a non-porous structure, the structure is not amorphous but has a 
lot of symmetries. In consequence, the structure remains symmetric during the 
breaking process. We observed that the breaking process starts in the middle of the 
structure and propagates towards the border of the structure. For structures made 
of springs with a critical length that exceeds the eigenlength by 1 to 10 percent, the 
whole breaking process takes place at one strain. During the breaking process 
deformations in the spring structure occur. This can be made visible by plotting the 
broken and unbroken structures across each other (see Fig.3). 

u n b r o k e ~  b r o k e ~  

(Fig.3) A small system of 156 springs without porosity. Shown are the 
configurations of the springs just before and just after an 
avalanche of breakages. The critical length in this simulation is 
10 % above the eigentength. Owing to this large critical length 
the deformation of the system is clearly visible. 

The spring network and a porous amorphous material behave in a similar way. In- 
creasing the strain leads to a higher stress intensity in the spring network. At a 
certain strain the length of one of the springs exceeds the critical length. The 
breaking of one spring may lead to a total collapse of the spring network at the 
same strain. In most cases global failure is established after one or two avalanches 
of failures. For non-crystalline structures it is difficult to see if the system is broken 
or not. To make the failure better visible we chose another representation of the 
network. Instead of plotting lines for every unbroken spring we plot a coloured tri- 
angle if and only if at all three sides of the triangle an unbroken spring is present. 
A typical deformation experiment (Fig.4) has been performed on a network of 600 
springs with an approximated porosity of 10 %. The breaking process starts in the 
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(Fig.4) 

(Fig.5) 

A system of 600 springs with a porosity of I0 %. tn the first 
configuration an avalanche of breakages is about to start. After 
two avalanches the system is almost broken. The critical length 
in this simulation is 1% above the eigenlength. 
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The stress-strain behaviour of the same simulation as in Fig.4. 
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middle of the structure and after two avalanches of failures the structure has fallen 
apart into two halves. The effective elasticity and strength can be obtained from the 
stress-strain behaviour of the same experiment (Fig.5). 

Two results characterise the strength of the structure: F . . . .  the maximum force on 
the structure and din,×, the strain at the maximum force. In our model we can vary 
macroscopic parameters such as the form, size and porosity of the structure, as 
well as microscopic parameters such as the spring constant and critical length of 
an individual spring. Our goal is to develop a mathematical model that describes 
the impact of changing these parameters. This mathematical model can then be 
used for interpreting and guiding real deformation experiments on amorphous 
material. 

As a start we look at the way in which the elasticity depends upon the porosity of 
the structure. In fact this is a well-known phenomenon and our results (Fig.6) do 
agree with results presented elsewhere. Since the elastic behaviour of the struc- 
ture is a l inear response behaviour, even analytical methods such as the effective 
medium approximation can be used to derive the porosity dependency of the 
elasticity. The elasticity of a structure decreases linearly towards the rigidity 
percolation threshold, i.e. at a porosity of about 35 % [5 ] .  
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Dependency of the elasticity on the porosity for a system of 
600 springs of a hexagonal form in a triangular lattice. 

More interesting are the results on the strength of the structure. Far more calcu- 
lations are needed before we are able to understand these results. A spread in 
results is obtained no matter what representation is chosen. A plot of Fro,, against 
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dmax for different structures with the same porosity is seen as a cloud of points. The 
form and orientation of the cloud indicates that there is a correlation between these 
two variables. We should like to find two variables that are independent of each 
other. If two independent variables can be found, this may lead to a better under- 
standing of the relative importance of the various parameters for the mechanical 
strength of the amorphous material. The distribution of these independent variables 
may be of a simple form. Preliminary results (Fig.7) indicate that Fm~ x/din,× and 
din, × seem to be uncorrelated. These independent variables may be modelled sep- 
arately and other variables of interest can be derived after taking the appropriate 
convolution. 
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Correlation between the maximum strength over the relative 
compression and the relative compression itself for a system of 
600 springs with a porosity of 20 %. The critical length is 2 % 
above the eigenlength. 

4.0 

Finally we conclude that the tr iangular spring model seems to be a good candidate 
to describe the mechanical strength of (porous) amorphous material. We aim to 
develop a mathematical model that describes the mechanical strength of amor- 
phous material. The combination of computer simulations with real experiments 
seems to be worthwhile. A great many calculations are needed before we are able 
to obtain reliable statistics using finite size scaling methods. The only possibility 
is then to use cheap and fast computer facilities. Because of the short range inter- 
action, parallelisation possibilities were embedded in the model. We established a 
linear speed up for our implementation, i.e. the same problem is solved n times as 
fast on n processors as on one processor only. 
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After this paper had been presented at the Shell conference on parallel computing, 
we became aware of two new papers that have a close link to this work. Tang and 
Thorpe [6] examined the elastic properties of a random network of Hooke-type 
springs under tension. For small strains they determined the linear response 
behaviour in two ways: by simulation and by using an effective medium approxi- 
mation. They were especially interested in the transition that takes place if the 
eigenlength is changed continuously from 0 to the initial spacing of the lattice. 
Beale and Srolovitz [7-J analysed the distribution function of the breakdown 
stresses of a system of springs with vanishing eigenlength under tensile load. Their 
simulations indicate that the Duxbury-Leath distribution is more appropriate than 
the Weibull distribution, tn contradiction to the less complicated tensile [7] and 
shear [3] loads, to our knowledge no simu.lations of failure mechanisms under 
compressive load have yet been published. 
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