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Abstract

This paper presents a new algorithm to implement causal ordering. Causal ordering was first
proposed in the ISIS system developed at Cornell University. The interest of causal ordering
in a distributed system is that it is cheaper to realize than total ordering. The implementation
of causal ordering proposed in this paper uses logical clocks of Mattern-Fidge (which define
a partial order between events in a distributed system) and presents two advantages over the
implementation in ISIS: (1) the information added to messages to ensure causal ordering is
bounded by the number of sites in the system, and (2) no special protocol is needed to
dispose of this added information when it has become useless. The implementation of ISIS
presents however advantages in the case of site failures.

Keywords: distributed algorithms, ordering.

1. Introduction

The notion of global time does not exist in a distributed system. Each site has its own clock,
and it is impossible to order two events E1 and E2 occurring on different sites of the system
unless they communicate. It is however often necessary to order events in a distributed
system,

One possible construction of a total ordering of events in a distributed system is described in
[Lamport 78]. It is built using logical clocks defined in the same paper. To progress however,
the algorithm requires each site to have received at least one message from every other site

in the system, which means systematic acknowledgements of messages.



i
{5.
’i

220

There does however exist a weaker ordering than total ordering: causal ordering. The
implementation of such an ordering needs less message exchanging (no acknowledgements
like the ones above are needed), and can prove to be sufficient in some applications.

This causal ordering should not be confused with the causality in the definition of logical
clocks, which we call here "causal timestamping”. Let us give an example enabling us to
distinguish causal ordering from causal timestamping. Suppose an event SEND(M1),
corresponding to the site Si1 sending message M1, and timestamped with logical time Ti.
Suppose then a second event SEND(Mz2), with timestamp T2, occurring on site Sz after Sz has
received message Mi. Lamport’s logical clocks ensure that Ti<T2. Thanks to this "causal
timestamping", event SEND(M1) precedes event SEND(Mz2) for every site in the system which
will ever know of these events. This does not say anything about the order in which the
messages M1 and M2 arrive at any given site in the system. Causal ordering of the events
SEND(M1) and SEND(Mz) means that every recipient of both M1 and M2 receives message
M1 before message Mz. This is not automatically the case in a distributed system, as shown

in figure 1, where site S3 gets message Mz before message M1, even though event SEND(M1)
occurs before event SEND(Mz2).

S1 M1 Mx

S2

A\
S3 N N

Figure 1. An example of the violation of causal ordering.

Causal ordering is described in [Birman 87] and has been implemented in the ISIS svstem
developed at Cornell University [Birman 88a). The implementation of causal ordering which
we present here differs however from that of ISIS. It presents two advantages: (1) the
information added to messages to ensure causal ordering of events is bounded (in the sense
defined in section 4.2) by the number of sites in the system, and (2) the implementation does
not require any complicated algorithm to clean up this additional information. The
implementation of ISIS presents however advantages in the case of site failures. Causal
ordering is also achieved through the conversation abstraction [Peterson 87]; this
implementation however, uses explicit "send before" relations between messages, which is not
the case in ours. The rest of the paper is organized in the following way: in section 2, we
formally define causal ordering and show the usefulness of this notion. In section 3, we
briefly present the idea of the implementation of causal ordering in ISIS. Finally in section 4,
we develop a new algorithm to implement causal ordering.
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2. Causal ordering of events

Causal ordering is linked to the relation "happened before" between events, noted "—", which
we classically define as the transitive closure of the relation R described below (to simplify,
we shall speak of sites rather than processes). Two events E1 and Ez are related according to
R, iff any of the following two conditions is true:

1. E1 and E2 are two events occurring on the same site, E1 before Ez;

2. E1 corresponds to the sending of a message M from one site, and E2 corresponds to
the reception of the same message M on any other site.

With the relation —, we can formally define the causal ordering of two events E1=SEND(M1)
and E2=SEND(M2), noted E1°~Ez, as follows:

E1°—Ez2 iff (if E1—Ez2, then any recipient of both M1 and M2 receives message
M1 before message Mz2)

To illustrate the usefulness of causal ordering, consider the handling of some replicated data
on every site of a distributed system [Joseph 86, Birman 88b]. Each site controls one copy of
the replicated data and can update it. To ensure mutual exclusion of updates, let’s introduce
a token. The site in possession of the token can update the data. Every write operation Wi on
the local copy performed by a site S is immediately broadcasted to every other site (see
figure 2).

In the example of figure 2, we have SEND(W1)—SEND(W:z2)—SEND(W2)—=SEND(W4).
Precedence of SEND(W2) over SEND(W3) is ensured by the sending of the token, since (1)
SEND(W2)—SEND(token), and (2) reception of the token happens before SEND(Ws). The
causal ordering ensures that every site receives the updates in the same order (i.e. the order
in which they happened initially). So every site updates its local copy in that order, which
ensures global consistency of the set of copies.

It is important to realize that this ordering between events in the distributed system is not a
total, but only a partial ordering. To see this, just consider a second replicated data, modified
independently from the first one, and controlled by another token. Let’s note Xj the updates
of this data. Causal ordering of the events SEND(X;j), ensures again that every site sees these
updates in the same order. However, one site S may well receive first some operation Wi and
then Xj, whereas a second site ' might receive Xj before Wi. This shows that causal ordering
of events is weaker than total ordering. Construction of a total ordering is however more

expensive to achieve in terms of number of messages exchanged. The low cost of the
implementation of causal ordering makes it an interesting tool for the development of
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distributed applications. Note that in the example above, if W and X are independent, there
is no need for causal ordering of SEND(Wi) and SEND(X;).

5w

S2

N gl
W 3\\\} WN

Figure 2. Handling of replicated data using causal ordering.

3. Implementation of causal ordering in ISIS

The implementation of causal ordering in ISIS is described in [Birman 87]. However, ISIS
implements causal ordering together with atomic broadcasts (atomic broadcasts ensure that a
broadcasted message is received by all sites that do not fail, or by none). For clarity, we shall
only be interested here in the realization of causal ordering, The idea is the following: every
message M carries along with itself every other message sent before M it might know of. To
achieve this, every site S handles a buffer (noted BUFF_S) which contains,
emission, every message received or sent by S (that is, every message preceding any future
message emitted by S). Sending a message M from S to any site S’ will require the following
actions: message M is first inserted into buffer BUFF_S, a packet P is then built containing
all the messages in BUFF_S, and finally this packet is sent to the destination site S' of M.

in their order of

When it arrives at ', the following actions are executed for every message in P: (1) if the

message is already in buffer BUFF_S' (every message is given a unique id), it has already

arrived at S' and is ignored, Else the message is inserted in BUFF_S'; (2) every message in
the packet, of which § is the destination site, is delivered to S' in the correct order.
As an example; consider figure 1. The packet sent from site S1 to Sz (resulting from the

emission of message Mx) contains, in order, messages M1 and Mx. The packet sent from S2 to
S3 (resulting from the emission of message Mz) contains messages Mi, Mx, and M2
(transmission of Mx is not necessary, but does take place if the algorithm described in
[Birman 87] is respected). So message M1 is carried from site S1 to S3 over two different
paths: <81,8s> and <S1,52,Ss>.

message Ma,

In this way, site Sz will always receive message M1 before

The algorithm, as described here, still has one major drawback: the information contained in
BUFF_S increases indefinitely. Some protocol must be added to retrieve obsolete messages
from the buffers. The simplified idea is the following: periodically each site S independently
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builds a request packet P containing the ids of messages in its buffer BUFF_S. Packet P is
broadcasted to every other site. When some site §’ receives the packet, it notes the source site
S along with the identifiers (the corresponding messages must not be sent to S any more!) and
acknowledges back to S. When S has received an acknowledgement from every site, the
messages identified in packet P can be deleted from BUFF_S. This is because, if messages
sent from S’ to S are received in the order of emission, every message that could have been
identified in P and nevertheless sent from §' to S meanwhile, will have been received by S
before it receives the acknowledgement; afterwards, these messages will not be sent from S’
to S any more. Note that the protocol initialized by S does not allow S’ to delete meséages
from its own buffer: some message M identified in P could still be on the way to S, sent by

another site S”. After deleting message M from BUFF_S', §' would not be able to recognize
the replicated message M.

4. Another algorithm to implement causal ordering
4.1. Some reflexions on the violation of causal ordering

The basic idea of our algorithm is the following. Rather than carrying around with a message
every message which precedes it, let's try to answer the following question when a message
M arrives at a site S: will any message preceding M arrive at S in the future? If the answer is
yes, message M must not be delivered immediately. It will only be delivered to S when every
message causally preceding M has arrived, For the moment, let’s try to answer an easier

question: is it possible to know that the causal ordering has been transgressed when a message
arrives at a site?

If we consider Lamport’s logical clocks, we can state the following proposition:

Proposition 1: if the causal order has been violated, then there exists a message M,

timestamped T(M ), which arrives at destination S when the local time T(S) is greater
than T(M).

Proof: consider two messages M1 and M2 sent to S, such that SEND(M1)—~SEND(M2). It
follows from the definitions that T(M1)<T(Mz). Suppose the causal ordering has been
violated, i.e. M2 arrives at S before Mi. After delivery of Mz, the logical time at S becomes

greater than T(Mz): T(Mz2)<T(S). Therefore, when M1 arrives at S, T(S) is greater than T(Mu),
which completes the proof.

However, the converse of Proposition | is not true, as shown in figure 3 where a message M,
timestamped T(M), arrives at site S which has logical time T(S) such that T(M)<T(S). This
does not mean that the causal order has been violated, which shows that T(M)<T(S) is a
necessary, but not sufficient, condition for causal ordering violation.
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S1 T(s1)=10 T(51)=11

(M1,10)
(M2,11)
s2 3
T(82)=15 T{52)=16 7
ol (Ms,13)

T(S3)=0 T(s3)=12 T(ss); 13

Figure 3. Transgression of causality cannot be detected with Lamport's logical clocks.

So there is no way of answering our second question about causality violation knowing only
T(S) and T(M). The problem with Lamport's logical clocks is that they define a total order,
whereas there exists only a partial ordering of the events in a distributed system.

A logical clock defining a weaker, partial order is the tool which will be sufficient to infer
that the causal ordering was transgressed. This logical clock was recently proposed in
[Mattern 89] and [Fidge 88]. For the sake of clarity, lets rapidly recall the principle. The
logical time is defined by a vector of length N, where N is the number of sites in the system.
We will note this logical time VT (vector time), VT(S) for the logical time on site S, and
VT(M) for the timestamp of message M. The logical time of a site evolves in the following
way (see figure 4):
- when a local event occurs at site Si, the e entry to the vector VT(Si) is incremented
by one: VT(Si)[i}:=VT(Si)[i]+1.
- when Si receives a message M, timestamped VT(M), the rule states:
- for j=i, VT(Si)[j}:=VT(Si)[j]+1;
= for j#i, VI(Si)[jl=max(VT(Si)[j], VI(M)[j]).

S1 <100> <2,0,0> <3.3,0> <4,3,0>

= S
S2 M <2,2,0>
<2,1,0> 3 <23,0>
S3
> b

<22,1> <222> <4,3.3>

Figure 4. Mattern-Fidge logical clocks.

We also define the ordering relation "<" between logical vector times as follows: VT1<VTz iff

VTi[i]<VTz[i], for all i. This relation is trivially reflexive, antisymetric and transitive. Having

defined relation <, it is possible to show that, given two events E1 and Ez, then E1—E2 iff
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VT(E1)<VT(Ez2), where YT(E) is the value of VT(S) just after occurrence of event E on site
S. In other words, events Ei1 and Ez are concurrent iff not(VT(E1)<VT(Ez2)) and
not{VT(E2)<VT(E1)).

The logical time in the system being so defined, we now proceed to prove the following
proposition:

Proposition 2: the causal ordering of events in the system is violated iff there exists a
message M, timestamped VT(M), which arrives at destination S when local time
VT(S) is such that VT(M)<VT(S).

Proving the implication "causal ordering violation => there exists M, VT(M)<VT(S)" is similar
to the proof given above concerning Lamport’s logical clocks. To prove the converse, we
need the following lemma (the proof is given in [Schiper 89]):

Lemma 1: consider an event E1, timestamped VT(E1), occurring at site Si. For every
event E2 such that VT(E1)[i]<VT(Ez)[i], Ex—E2 is true.

Using lemma 1, we can now prove "there exists M, VT(M)<VT(S) = causal ordering
violation".

Proof: Suppose a message M was sent to site S by site Si. If VT(M)<VT(S), then in particular,
VT(M)[i]<VT(S)[i]. Consider M' the message which made VT(S)[i] take its current value
(recall S#Si!). Then VT(M')[i]=VT(S)[i]. By lemma 1, it follows from VT(M)[i]JsVT(M')[i] that
SEND(M)—SEND(M"). Since M’ arrived at S before M, the causal ordering has been violated.

4.2. The causal ordering algorithm

We are now going to present our algorithm for achieving causal ordering. As in the algorithm
described in section 3, we also associate with each site S a buffer, noted ORD_BUFF_S,
which will be sent along with the messages emitted by S. However, the contents of this
buffer are not messages, but ordered pairs (8',VT), where §' is a destination site of some
message and VT a timestamp vector. Unlike the earlier buffer BUFF_S, this one is bounded
in size in the following sense: it holds at most (N-1) pairs, where N is the number of sites in
the system. Note however that the time vectors in this buffer are not bounded, since their
entries depend on the number of events having occurred on each site. The existence of an
algorithm enabling to bound the time vectors in the system is an open problem. The causal
ordering algorithm is composed of three parts:

- the insertion of a new pair in ORD_ BUFF_S when site S sends a new message;

- the delivery of a message and the merge of the accompanying buffer with the

destination site's own buffer;
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the deletion of obsolete pairs in the site’s buffer (this part needs no exchange of
messages).

4.2.1. Emission of a message

Consider a message M, timestamped VT(M) the logical time of emission, and sent from site

S1 to site Sz. The contents of ORD_BUFF_S: are sent along with the message. After the

message is sent, the pair (82,VT(M)) is inserted in ORD_BUFF_S: (note that this pair was

not sent with M). This information will be sent along with every message M’ emitted from S

after message M. The meaning of this pair in the buffer is that no message carrying the pair

can be delivered to S2 as long as the local time of 82 is not such that VI(M)<VT(Sz). This

ensures that any message M’, emitted after M with destination S2, will not be delivered

before M, because the only way for S2 to have a logical time greater than YT(M),

is to
receive message M or a message M’

which depends causally on M, ie. SEND(M)—SEND(M?).
However, no message emitted after M will be delivered to S2 before its logical time is greater
than VT(M).

What happens if ORD__BUFF_Sl already contains a pair (S2,VT) when (S2,VT(M)) is to be
inserted in the buffer? The older pair can simply be discarded. To see this,

we need the
following lemma (see also point 4.2.2 and [Schiper 89] for a proof);

Lemma 2: for any site S, and any pair (S'VT) in buffer ORD_BUFF_S, the logical
time VT(S) at S is such that: VT<VT(S).

Since, by lemma 2, VT is a time vector such that VI<VT(M), the pair (S2,VT) becomes
obsolete after the insertion of the pair (S2,VT(M)). It follows that a
at most (N-1) pairs, that is at most one for
with,

n ordering buffer contains
every site different from the site it is associated

Note that for the protocol to be correct there is no need to su

ppose that messages sent
between

two given sites arrive in the order in which they are emitted. If a message M2 was
to overtake message M1, then Mz would carry knowledge of M1 in its accompanying buffer,

and so the protocol ensures proper delivery independently of the order of arrival of
messages.

Let's complete this point by noting that the algorithm adjusts well to the case of broadcasting
a message M to a set DEST of destination sites. The solution consists of sending to every site

S in DEST, in the buffer accompanying M, all the pairs (S, VT(M)),
5'#8S.
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4.2.2. Arrival of a message

Suppose a message M arrives at its destination site S2. If the buffer accompanying M contains
no ordered pair (S2,VT), then the message can be delivered. If such a pair does however
figure in that buffer (there is at most one), message M cannot be delivered to Sz as long as
VT<VT(Sz) is not true.

When a message can be delivered to site S2, two actions must be undertaken: (1) merge the
accompanying buffer with the destination site’s own buffer, and (2) update the site's logical
time. Consider the first point. Suppose the existence of a pair (S,VT), S#£S2, in the buffer
accompanying message M. If ORD__BUFF_ Sz does not contain any pair (S,...), then (S,VT) is
introduced in the buffer (if S=S2, the pair need not be introduced in ORD_BUFF_Sz2). Now,
if a pair (5,VT1) already figures in the site’s buffer, the meaning of these two pairs is the
following:

- (S,VT1): no message can be delivered to S as long as VT1<VT(S) is not true;

- (8,VT): no message can be delivered to S as long as VT<VT(S) is not true.
Conjunction of these two conditions can be translated into a single pair (S,VTsup) where
VTSUP=sup(VT1,VT}I. Indeed, VTsupP is the smallest time vector such that VTi<VTsup and
VT<VTsup.

Note finally that delivery of a message forces the local time to progress, so that delivering of
another message may be possible.

4.2.3. Example

Figure 5 shows an example illustrating a few typical situations solved by the causal ordering
algorithm. In this figure, the end of an arrow points to the moment at which a message
arrives at a destination site, whereas the corresponding circled number indicates the order in
which the messages are delivered. Consider messages Ms and Ms sent to site Si. The events
SEND(Ms) and SEND(Ms) are concurrent, so messages Ms and Ms are delivered in the order
of arrival. Now consider messages M1, M4 and Ms, sent to site S3. The order of emission is
SEND(M1)—SEND(M4)—SEND(Ms). The messages are delivered in this order.

4.2.4, Deletion of an obsolete pair in the ordering buffer

As has already been indicated, the number of pairs in the ordering buffer of a site is
bounded. It can however be interesting to delete obsolete pairs from a buffer. The simplest
solution consists of comparing message timestamps with buffer timestamps when messages are
delivered. Namely, if message M, timestamped VT(M) and sent by site S1, is delivered to site
S2, then compare VT(M) with the time vector of the pair (S1,VT) in ORD_BUFF_Sz. If
VT<VT(M), then the pair has become obsolete and can be deleted from the local buffer,
since the local time on Si is already greater than VT.

1

sup(VT1,VT2)[i]=max(VT1[i],VT2[i])
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4.2.5. Proof of the algorithm

Up to this point, we have tried to justify each step of the causal ordering algorithm. This
however cannot be considered as a valid proof of its correctness. We are going to show in
two steps that the causal ordering is indeed respected. The first step is the proof of the
safety of the algorithm, the second its liveness.

S1 <1,00,0> <2,0,0,0> <3,0,0,0>

M3

s2 W@ <2200 23005

<2,1,0,0> \'“ \ds
S3 \;@ % s (L

)

\ \ /T@) <1,0,1,0>
\
\
4 Vo \o  fw

<2,301> <3.3,02> <3303>

The circled numbers indicate on each site the delivery order of messages

ORD_BUFF_S1 ORD_BUFF_S2

before emission of M1: empty after delivery of M2: (83,<1,0,0,0>)
(= carried by M1) (= before emission of Md)
% before emission of M2:  (53,<1,0,0,0>) before emission of MS:  (53,<2,2,0,03)

before emission of M3:  (52,<2,0,0,0>) after emission of M5: (53,<2,2,0,0>)
& (53,<1,0,0,05) (54,<2.3,0,05)
£ - after emission of M3: (52,<2,0,0,05)

(53,<1,0,0,0>)
(54,<3,0,0,0>)

ORD_BUFF_S3 ORD_BUFF_S4

after delivery of M1: emply after delivery of M5: (53,<2,2.0,0>)
after delivery of M4: . empty after delivery of M3: (82,<2,0,0,0>)
after delivery of Mé: (52,<2,0,0,0>) (53,<2,2,0,0>)

(= before emission of M§)
after emiszsion of M6: (52,<2,0,0,0>)
($3,<3,3,0,3>)

Figure 5. Example of the causal ordering algorithm.

Proof of the algorithm.

1. Safety: We must show that the handling of messages by the algorithm respects the causal
ordering, i.e. if two messages M1 and Mz are sent to some site S and SEND(M1)—SEND(Mz2),
then message M1 is delivered to site S before message M2, An equivalent statement is; if

message M1 is sent to site S, then no message M2 such that SEND(M1)—SEND(Mz2) is
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delivered to S until Mu itself has been delivered to S. This is what we are going to show. But
first let's infer a couple of remarks from the algorithm.

Remark 1: by definition of the relation "happened before", it follows from
SEND(M1)—»SEND(Mz2) that there exists some maximal sequence Eo,..,Em of events such that
SEND(M1)=Eo—E1—..»Em-1—Em=SEND(M2) (we define maximality as follows: for all
O<k<m, and for every event E not in the sequence, Ek—E—Ek+1 is not true). This sequence
need not be unique, but does exist. Then either event E1 is the delivery of M1 on its
destination site S, or, by maximality, it is a local event on the emission site Si of Mi1. The
first case will not be considered in the proof since we will suppose message M1 has not yet
been delivered. In the second case, the pair (S,VT(M1) has been introduced in
ORD_BUFF_Si when event E1 occurs. By point 4.2.2, we then have VT(Mi1)<VT where
(S,VT) is the pair accompanying message Mz to S.

Remark 2: consider again message M1 and site Si sending M1, As suggested in sections 4.1
and 4.2.1, the only way for any other site ' to have a local time with VT(M1)[i]JsVT(S")i] (or
more generally such that VT(M1)<VT(S')) is to have received a message M such that
SEND(M1)—SEND(M).

We can now proceed with the proof. We are going to show by induction on the events of
destination site S that until message M1 sent by Si is delivered, none of these events is the
delivery of a message M such that SEND(M1)—SEND(M).

Base step: consider E(S)1 the first event on destination site S and suppose E(S)1 is not the
delivery of Mi1. Before event E(S)1 occurs, VT(S)[i]=0, as every other component of VT(S).
For every message M in the system such that SEND(M1)—-SEND(M), M is accompanied by a
pair (S5,VT), and VT[i]21>VT(S)[i] (by remark 1, and since E(S)1 is not the delivery of
message Mi1). So VT<VT(S) is not true. Therefore, in application of the algorithm, event
E(S):1 is not the delivery of message M.

Induction step: now consider E(S)n the n*® event on S and assume as induction hypothesis
that none of the preceding events E(S)1,.,E(S)n-1 on S is the delivery of a message M such
that SEND(M1)—SEND(M). If M1 has not yet been delivered, it follows from this hypothesis
and remark 2 that VT(E(S)a-1)[i]<VT(M1)[i]. Now remark 1 says that, if VT is the time
vector of the pair (S,VT) accompanying a message M with SEND(M1)—SEND(M), then
VT(M1)[i]eVT[i], so VT is not such that VT<VT(E(S)n-1)=VT(S). The algorithm then ensures
that E(S)n is not the delivery of a message M such that SEND(M1)—SEND(M).

We can thus infer that, as long as message M1 has not been delivered to S, no message
happening after M1 can be delivered to that site.
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2. Liveness: To complete the proof, we must still show the liveness of our algorithm,

i.e. that
in the absence of failures every message in the system is indeed delivered.

Proof: ad absurdo. Suppose some message M has arrived at site S, and is never delivered. At
the time of arrival, M was accompanied by a pair (S,VT) such that, for some i,
VT(S)[i]<VT[i]. The number of messages that must be delivered to S before M is finite (it is
smaller than the sum of (VT[i]-VT(S)[i]) over all such i). In the absence of failures and after
some finite time, all these messages will have arrived at S. If every such message had been
delivered, then we would have VT(S)>VT and M could be delivered: contradiction. (This is
because if VT(S)>VT is not true, again VT(S)[i]J<VT[i], for some i. Let’s call n=VT[i]. Then

the n'® event on site i was the emission of a message M’ for S. If M’ has been delivered to

site S, then VT(S)[i]> VT(M')[i]> VT[i]: contradiction.)

So there exists at least another message M" which will not be delivered to S and should be
before M. If (S,VT") is the pair corresponding to S in the accompanying buffer of M’, then
YT'<VT and VT'[i]<VT[i] for some i. We can thus apply the same reasoning to M’ as to M,
which completes the proof by finite decreasing induction,

4.3. Failures

Up to this point, we have not considered failures (this is because our implementation
preserves the causal ordering even in the case of failures). Some failures however can have
surprising effects. Consider figure 6, where message M1 is sent from site Si to site S2 before
message M2 is sent to site Ss. A communication failure might prevent message Mi from
arriving at its destination, but not message M2 from arriving at Ss, though sent afterwards.
To see this, consider the following sequence: message M1 is sent to S2, but arriv

es with a
parity error; then Mz is sent but site S1 breaks down before retransmission of Mi

is done.

51 M1 M2
) 1
X
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s2 b \
.\H :
S3 N

Figure 6. Possible effect of the failure of site S1.

What effect does this have on the causal ordering algorithm? Referring to figure 6, we see

that message Ms will arrive at site S2 together with a pair (S2,VT(M1)). If M1 is not

delivered, M3 will never be! As a matter of fact, site S3 will never be able to communicate
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with site Sz again (meaning messages from S3 will never be delivered to S2), since every other
message from S3 to Sz will pile up behind message M3, waiting for message Mi. For the same
reason, any site having received a message from site S3 will be prevented by the algorithm of
communicating with site S2. This of course is not a satisfying way to implement causal
ordering in the case of failures.

Solutions to this problem can be conceived, but, as we will see, they need some sort of
rollback mechanism to be introduced (i.e. in figure 6, for site S2 to recover a state preceding
delivery of message Mz2). Let's note that the ISIS implementation resists to this kind of
failure, since message M1 (which is at the heart of the problem) is sent to site Sz along two
different paths: <S1,S2> and <S1,53,S2>, so that message M3 cannot arrive at Sz before Mi.
This example clearly suggests that the only way to completely solve the problem of failures
without rollback is an implementation like the one of ISIS.

Let's show how failures could be treated in our context. Once a failure has been discovered
(in the example of figure 6, most likely by site S2) the remaining working sites must first
agree to the time of failure, and then take appropriate actions to rewind their own logical
time. Consider a failure of site Si (site number i). To reach a global agreement on the time of
failure, each site S must proceed as follows:
- consider the set P={(S,VTj)} of all pairs accompanying a message Mj waiting to be
delivered to S;
- consider then the subset Pk={(S,VTijk)} of P of pairs such that VTik[i]>VT(S)[i].
These pairs carry evidence of some message, emitted by the broken down site Si,
and not yet delivered to S;
- consider finally the number MIN(S)=min, (VTjk[i]}. MIN(S) indicates the number on
Si of the oldest event SEND(M) such that message M was never delivered to site S.
When considering the minima of MIN(S) over all the remaining working sites S, we get
globally the oldest event SEND(M) on Si such that message M was never delivered. Call N
this event number on Si. The failure must have occurred on site Si after event (N-1). Every
site S such that VT(S)[i]>(N-1) must rewind its clock. A general way of doing this is to
introduce a rollback mechanism. Depending on the considered application's semantic

however, there could exist a cheaper solution (or no solution at all).

5. Conclusion

We have shown in this paper how pairs (S5,VT), composed of the destination site of some
message, and of a Mattern-Fidge logical time vector, make it possible to ensure causal
ordering. Such a pair (5,YT) carried by a message M says that the message cannot be
delivered to site S before the local time VT(S) has become greater than VT. Actually, the
pair (S,VT) indicates that at least one message preceding M must still be delivered to S.

Compared to this, the implementation of ISIS forces any given message to carry along every
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causally preceding message in the system, whereas in our scheme, the message carries only
some bounded information concerning their existence. On the other hand, we have seen that
the implementation of ISIS does not need any special mechanism to treat failures, which can
also be of advantage depending on the considered application. Actually a precise quantitative
evaluation of the costs of these algorithms should be done. Depending on the characteristics
of the application (semantics, real time aspects, etc...) the better suited algorithm could be
chosen. We do not rule out the possibility of an algorithm combining advantages of both the
ISIS system and our own implementation. Moreover, and independently from these
considerations, we think that the proposed causal ordering algorithm will contribute to a

better understanding of ordering problems in a distributed system, and, in particular, of the
relation of causality.

Acknowledgments

We would like to thank the referees for their useful comments.

References

[Birman 87] K.Birman, T.Joseph, "Reliable Communications in Presence of Failures", ACM
Trans. on Computer Systems, Vol 5, No 1 (Feb 1987), pp 47- 76.

[Birman 88a] K.Birman et al., "ISIS - A Distributed Programming Environment", Cornell
University, June 1988.

[Birman 88b] K.Birman, "Exploiting Replication", in Lectures Notes Arctic'88, Tromso, July
1988,

[Fidge 88] C.Fidge, "Timestamps in Message-Passing Systems That Preserve the Partial

Ordering", Proc. of the 11th Australian Computer Science Conference, Univ of Queensland,
Feb 1988.

[Joseph 86] T.Joseph, K.Birman, "Low Cost Management of Replicated Data in Fault-

Tolerant Distributed Systems", ACM Trans. on Computer Systems, Vol 4, No 1 (Feb 1986),
pp54-70.

[Lamport 78] L.Lamport, "Time, Clocks, and the Ordering of Events in a Distributed
System", Communications of the ACM, Vol 21, No 7 (July 1978), pp 558-565.

[Mattern 89] F.Mattern, "Time and Global States of Distributed Systems", Proc. of the

International Workshop on Parallel and Distributed Algorithms, Bonas, France, October 1988,
North-Holland 1989.

[Peterson 87] L.Peterson, "Preserving Context Information in an IPC Abstraction", IEEE Proc.
of the 6" Symp. on Reliability in Distributed Software and Database Systems, March 1987,

[Schiper 89] A .Schiper, J.Eggli, A.Sandoz, "A New Algorithm to Implement Causal Ordering",
Rapport Interne 89/02, EPFL-Laboratoire de Systémes d’Exploitation, April 1989.

SYI

Pa

+ Comput
* Couran

Abstragt

The syny
indistingu:
provide he:
rectional :
only O(n) 1
still O(nl
of [Burns,
lity, cont
elected is

1. Intre
We addr
ption that
[Angluin,
blem (call
exists, it
known to t
minate wit
regquires
their prot
presented
assumptior
ging O(n)
derickson,
simultanec
We prou
nism. Its
has to be
for distri
manage to
names fror

trade a sr

This work
and by the




