Skip to main content

Robust decompositions of polyhedra

  • Geometric Algorithms
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 405))

Abstract

We present a simple and robust algorithm to compute a convex decomposition of a non-convex polyhedron of arbitrary genus. The algorithm takes a topologically correct representation of a non-convex polyhedron S and produces a worst-case optimal O(N 2) number of topologically correct representations of convex polyhedra S i , with ∪ i S i = S, in O(nN 2 + N 4) time and O(n N + N 3) space, where n is the number of edges of S, N is the total number of notches or reflex edges. Our algorithm can be made to run in O((nN + N 3) logN) time if robustness is not desired. The robustness of the algorithm stems from its ability to handle all degenerate configurations as well as to maintain topological consistency, while doing floating-point numerical computations. The convex decomposition algorithm is independent of the precision used in the numerical calculations. With slight modifications it also yields a triangulation of the polyhedra into a set of tetrahedra.

Supported in part by ARO Contract DAAG29-85-C0018 under Cornell MSI, NSF grant DMS 88-16286 and ONR contract N00014-88-K-0402.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajaj, C., (1989) “Geometric Modeling with Algebraic Surfaces”, The Mathematics of Surfaces III, edited by D. Handscomb, Oxford University Press, to appear.

    Google Scholar 

  2. Bajaj, C., Dyksen, W., Hoffmann, C., Houstis, E., Korb, T., and Rice, J., (1988) “Computing About Physical Objects”, Proc. of the 12th IMACS World Congress, Paris, 642–645.

    Google Scholar 

  3. Bajaj, C., and Dey, T., (1988) “Robust Decompositions of Polyhedra”, Computer Science Technical Report, Purdue University, CER-88-44.

    Google Scholar 

  4. Bajaj, C., and Dey, T., (1989) “Robust Computation of Polygon Nesting” Proc. Intl. Workshop on Discrete Algorithms and Complexity, Fukuoka, Japan, to appear.

    Google Scholar 

  5. Chazelle, B., (1980), “Computational Geometry and Convexity”, Ph.D. Thesis, CMU-CS-80-150, Computer Science, Carnegie-Mellon University.

    Google Scholar 

  6. Chazelle, B., (1984), “Convex Partitions of Polyhedra: A Lower Bound and Worst-case Optimal Algorithm”, SIAM J. on Computing, Vol. 13, No. 3, pp. 488–507.

    Article  Google Scholar 

  7. Chazelle, B., and Palios, L., (1989), “Triangulating a Non-convex Polytope” Proc. of the 5th ACM Symposium on Computational Geometry, Saarbrucken, West Germany

    Google Scholar 

  8. Dobkin, D., and Silver, D., (1988), “Recipes for Geometry and Numerical Analysis”, Proc. of the Fourth ACM Symposium on Computational Geometry, Urbana, Illinois, 93–105.

    Google Scholar 

  9. Edelsbrunner, H., (1987), “Algorithms in Combinatorial Geometry”, Springer Verlag.

    Google Scholar 

  10. Edelsbrunner, H., and Mucke, P., (1988), “Simulation of Simplicity: A Technique to Cope with Degenerate Cases in Geometric Algorithms” Proc. of the Fourth ACM Symposium on Computational Geometry, Urbana, Illinois, 118–133.

    Google Scholar 

  11. Edelsbrunner, H., and Guibas, L., (1989) “Topologically Sweeping an Arrangement”, J. of Computer and System Sciences, 38, 165–194.

    Article  Google Scholar 

  12. Fortune, S., (1989) “Stable Maintenance of Point-set Triangulations in Two Dimensions”, Manuscript.

    Google Scholar 

  13. Greene, D., and Yao, F., (1986), “Finite-Resolution Computational Geometry” Proc. 27th IEEE Symposium on Foundations of Computer Science, Toronto, Canada, 143–152.

    Google Scholar 

  14. Guibas, L., Salesin, D., and Stolfi, J., (1989) “Building Robust Algorithms from Imprecise Computations”, Proc. 1989 ACM Symposium on Computational Geometry, Saarbuchen, West Germany, 208–217.

    Google Scholar 

  15. Hoffmann, C., Hopcroft, J., and Karasick, M., (1987), “Robust Set Operations on Polyhedral Solids”, Dept. of Computer Science, Cornell University, Technical Report 87–875.

    Google Scholar 

  16. Hoffmann, K., Mehlhorn, K., Rosenstiehl, P., and Tarjan, R., (1986), “Sorting Jordan Sequences in Linear Time using Level Linked Search Trees”, Information and Control, 68, 170–184.

    Article  Google Scholar 

  17. Karasick, M., (1988) “On the Representation and Manipulation of Rigid Solids”, Ph.D. Thesis, McGill University.

    Google Scholar 

  18. Lingas, A., (1982), “The Power of Non-Rectilinear Holes”, Proc. 9th Intl. Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, Springer Verlag, 369–383.

    Google Scholar 

  19. Milenkovic, V., (1988), “Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic”, Ph.D. Thesis, CMU Tech. Report CS-88-168, Carnegie Mellon Univ., Pittsburgh.

    Google Scholar 

  20. O'Rourke, J., and Supowit, K., (1983), “Some NP-hard Polygon Decomposition Problems”, IEEE Trans. Inform. Theory, 29, 181–190.

    Article  Google Scholar 

  21. Ottmann, T., Thiemt, G., and Ullrich, C., (1987), “Numerical Stability of Geometric Algorithms”, Proc. of the Third ACM Symposium on Computational Geometry, Waterloo, Canada, 119–125.

    Google Scholar 

  22. Rupert, J., and Seidel, R., (1989) “On the Difficulty of Tetrahedralizing Three Dimensional Nonconvex Polyhedra”, Proc. of the Fifth ACM Symposium on Computational Geometry, Saarbrucken, West Germany, to appear.

    Google Scholar 

  23. Segal, M., and Sequin, C., (1985), “Consistent Calculations for Solids Modelling”, Proc. of the First ACM Symposium on Computational Geometry, 29–38.

    Google Scholar 

  24. Sugihara, K., (1988), “A Simple Method of Avoiding Numerical errors and Degeneracy in Voronoi diagram Constructions”, Research Memorandum RMI 88-14, Department of Mathematical Engineering and Instrumentation Physics, Tokyo University.

    Google Scholar 

  25. Sugihara, K., and Iri, M., (1989), “A Solid Modeling System Free from Topological Consistency”, Research Memorandum RMI 89-3, Department of Mathematical Engineering and Instrumentation Physics, Tokyo University.

    Google Scholar 

  26. Yap, C., (1988) “A Geometric Consistency Theorem for a Symbolic Perturbation Theorem” Proc. of the Fourth ACM Symposium on Computational Geometry, Urbana, Illinois, 134–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. E. Veni Madhavan

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bajaj, C.L., Dey, T.K. (1989). Robust decompositions of polyhedra. In: Veni Madhavan, C.E. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1989. Lecture Notes in Computer Science, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-52048-1_49

Download citation

  • DOI: https://doi.org/10.1007/3-540-52048-1_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52048-1

  • Online ISBN: 978-3-540-46872-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics