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A b s t r a c t  

MEC is a tool for constructing and analysing transition systems modelizing pro- 
cesses and systems of communicating processes. 

From representations of processes by transition systems and from a representation 
of the interactions between the processes of a system by the set of all allowed global 
actions, MEC builds a transition system representing the global system of processes 
as the synchronized product of the component processes. 

Such transition systems can be checked by computing sets of states and sets 
of transitions verifying properties given by the user of MEC. These properties are 
expressed in a language allowing definitions of new logical operators as least fixed 
points of systems of equations; thus all properties expressed in most of the branching- 
time temporal logic can be expressed in this language too. 

MEC can handle transition systems with some hundred thousands states and 
transitions. Constructions of transition systems by synchronized products and com- 
putations of sets of states and transitions are performed in time linear with respect 
to the size of the transition system. 

I n t r o d u c t i o n  

The  not ion of transition system plays an i m p o r t a n t  role for describing and  s tudying 
processes and  sys tems  of communica t ing  processes. A simple way to represent  pro- 
cesses, in t roduced  for instance in [10] and widely used in m a n y  works on semant ics  and 
verification of processes,  is to consider tha t  a process is a set of  states and tha t  an 
action or an event makes  the  current  s ta te  of the process to change; thus the possible 
e l emen ta ry  behaviours  of the process are represented by transitions: each t ransi t ion 
contains the  current  s ta te  of the process, the  new s ta te  it enters  and  the n a m e  of the 
act ion or event  which caused this change. Transi t ion systems are also used to describe 
sys tems  of communica t ing  processes, and not only individual processes; the  s ta tes  of 
the sys tem are the  tuples of  s ta tes  of its components  and the t ransi t ions of the systems 
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are tuples of transitions of the components, provided these transitions are allowed - or 
obliged - to be executed simultaneously. Arnold and Nivat [12,3,1] have named this 
construction, which is implemented in MEC, synchronization product. 

Once a system of processes is represented as a transition system, one can extract, 
from this transition system, some informations about the behaviour of the system of 
processes it represents. It is what we call analysis of a transition system and it amounts 
to computing the set of states or the set of transitions which satisfy some property of 
interest when looking at the behaviour of the system. For instance it is easy to check if 
the transition system has "deadlocks", i.e. states in which no transition is executable, or 
states in which every executable transition leads to a deadlock; a very simple algorithm 
can give the set of all these states. Thus an analyser is simply a tool which computes 
the set of all states or of all transitions of a given transition system satisfying some given 
property. The main feature of such an analyser is obviously the family of properties of 
states and transitions it can deal with. 

In the systems Cesar  [14] and eme [6], properties of states are expressed by formulas 
of branching time temporal logics. Given a formula F and a transition system .A, these 
systems compute the set F~t of states of A satisfying F (or, at least, decide if the "initial 
state" of .A belongs to F.a). In MEC we adopt a slightly different point of view, in some 
sense more algebraic than logical [7]. Let w be some logical operator and let F = 
w(F1,... ,Fn) be a formula. For a transition system .A, the set F.a of states satisfying 
.4 depends on the sets (F~).a of states satisfying Fi, thus Fct = w~((F1).4,..., (Fn)~t), 
where w~t is an operator defined on the cartesian product of the powerset of states 
with the powerset of states as a range. Then formulas can be considered as expressions 
which have to be evaluated, in a way very similar to what happens in programming 
languages with arithmetic or boolean expressions. Thus the language used in MEC 
to express properties consists in variables and constants ranging over the powerset of 
states and on the powerset of transitions, and of sorted operators; the basic mechanism 
implemented in MEC is the execution of assignments variable := expression, exactly 
like in programming languages. 

It remains to define the basic operators which can be used to build expressions. 
We can take the operators of branching time temporal logics (which are computable 
in linear time with respect to the size of the transition system) but, also, any other 
kind of operator which is easily computable. For instance in MEC we use the operator 
which associates with a set of states the union of the strongly connected components 
intersecting this set; although this operator is not really a logical operator, it is as easy 
to compute as the other ones, because of the Tarjan's algorithm [16] which is linear too. 

Another feature of MEC is that the set of basic operators used to build expressions 
can be extended, in the same way that the set of operators in arithmetic expressions 
can be extended, in some programming languages, by defining new functions (especially 
recursive functions). It is well known that temporal logic operators can be characterized 
as least fixed points of equations [15,8,6], and this observation has led to the definition of 
the g-calculus as an extension of branching time temporal logics [13,11]. MEC provides 
for the definition of new operators characterized as least fixed points of systems of 
equations [7] and then its expressive power is at least as powerful as the expressive 
power of alternation-depth-one/z-calculus defined by Emerson and Lei [9]. Indeed these 
new operators defined by systems of equations are still computable in linear time, like the 
basic ones, because of the Arnold-CrubilM's algorithm [2] to solve fixed point equations. 
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1 T r a n s i t i o n  s y s t e m s  

1.1 Labelled transit ion sys tems  

A labelled transition system over an a lphabe t  A of actions or events is a tuple  ,4 = 
< S , T , a ,  15,,,k > where 

• S is a finite set of states, 

• T is a finite set of transitions, 

• a , /3  : T ~ S are the  mapp ings  which associate with every t ransi t ion t its source 
8tare a(t)  and its target state fl(t), 

• ,k : T ~ A labels a t rans i t ion t by  the  act ion or event ~(t)  which causes this 
t ransi t ion.  

We assume tha t  there  never exist two different t ransi t ions with the same label be- 
tween the  same  two states ,  i.e. the m a p p i n g  < a ,  A,/5 >: T ~ S x A x S is injective. 

1.2 Parametr ized  transit ion sys tems  

A pa rame t r i zed  t rans i t ion sys tem is a labelled t ransi t ion sys tem given with  some sets 
of  designed s ta tes  and  some sets of  designed transist ions,  called paramete rs .  The  role of  
these p a r a m e t e r s  is to give some addit ional  informations on the t ransi t ion system; it is 
the  case when some s ta tes  play a special role or when some transi t ions play a special role 
which is not  specified by  the label of  the transi t ion.  Some example  of  such si tuations 
will be  given below. 

E x a m p l e  1. Let us consider a boolean variable. I t  has two states,  denoted by 0 and  
1, according to the  current  value (0 or  1) of  the variable. The  set A of actions per formed 
by  such a boolean  variable  contains 

t o O  which means  tha t  the variable is set to 0, 

t o l  which means  tha t  the  variable is set to  1, 

i s 0  which tests  whether  the value of the variable is 0, 

i s l  which tests  whether  the  value of the variable is 1, 

e which does nothing.  

The  first two actions modi fy  the value of the variable, i.e. its s tate,  in an obvious 
way. T h e  two tests  can be executed only if the variable has the  tes ted value, and  this 
value is not  modified. The  last  action, when executed, does not change the value of the  
variable.  As we shall see la ter  on, (example  3), this null action is a way to express the 
possibi l i ty of  occurrence of events  which does not modify  the s ta te  of  the variable. The  
t rans i t ion  sys tem represent ing this variable is given in figure 1, in the  input  fo rmat  of 
MEC.  



transition_system b < width = 

0 I -  e -> 0 , 

toO -> 0 , 

tol - >  i , 

isO -> 0 ; 

1 I - e  - > 1 ,  
toO -> 0 , 

to1 -> I , 

isl -> 1 ; 

< initial = { 0 } >. 

120 

0 > ;  

Figure 1: The  transit ion system for a boolean variable in MEC 

In this figure one can notice the last line < i n i t i a l  = { 0 } >. which defines a 
parameter ,  named "initial", reduced to a single state, 0. This  parameter  is used to say 
that  the state  0 has some special property,  indeed it is the initial state of the transi t ion 
system: the initial value of the variable, before any action is performed,  is 0. 

E x a m p l e  2. Let us now consider the Peterson 's  a lgori thm for mutual  exclusion of 
two processes. This algori thm uses three shared boolean variables, f l a g  [0] ,  f l a g [ l ] ,  
and t u r n ,  all three initialised to 0. Each one of the two processes executes the program 
given in figure 2 where me is equal to 0 and o t h e r  is equal t o  1 for the first process, 
and me is equal to 1 and o t h e r  is equal to 0 for the second one. This  p rogram can also 
be represented by a t ransi t ion system, states of which are the locations in the program 
and transit ions between locations are labelled by elementary actions performed in the 
execution of the program. We also consider a special action e which does not change the 
state, which means that  a process can stay idle at every moment .  The  MEC description 
of this t ransi t ion system is given in figure 3. 

In this t ransi t ion system there are three s ta te  parameters:  

i n i t i a l  which indicates the start ing location, 

cs which indicates the location where the process is in its critical section, 

ncs  which indicates the location where the process is not  in its critical section. 

There  is also a t ransi t ion parameter:  it is the set of all transit ions marked as having 
the proper ty  rob. These transitions are those executed by the processes when it tries 
to enter  its critical section. 

Indeed this t ransi t ion system is obta ined by interpret ing the command  WAIT( . . .  
0K . . .  ) in the following way: this command  can be executed only if one of the two 



proc( me , other ) = 

while true do 

begin 

{NCS} 
{mutexbegin} 

{CS} 

{mutexend} 

end 
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O: ... ; 

flag[me] := 1 ; 

I: turn = me ; 

2: WAIT (flag[other] = 0 

3: ... ; 

flag [me] : = 0 ; 

OR turn = other) ; 

Figure 2: The Peterson algorithm 

transition_system proc < width = 0 >; 

I- e 

my_flag_to_l 

I- e 

turn_to_me 

2 I- e 

->0 , 

-> I <property=(mb)>; 

-> 1 <property=(mb)>, 

-> 2 <property--(mb)>; 

-> 2 <property--(mb)>, 

is_other_flag_O -> 3 <property=(mb)>, 

is_turn_other -> 3 <property=(mb)>; 

3 I - e  - > 3 ,  
my_flag_to_O -> 0 ; 

< initial = { 0 } ; cs = { 3 } ; ncs = { 0 } >. 

Figure 3: The transition system for a process in MEC 
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conditions is satisfied; in this case the execution of the process reaches the critical sec- 
tion. It  looks like idle waiting. Another  in terpre ta t ion  of this c o m m a n d  (busy waiting) 
could be: the process tests the first condition; if it is t rue it reaches the critical section, 
otherwise it tests  the second condition; if it is true it reaches the critical section, other-  
wise it executes WAIT again. This  in terpre ta t ion  will yield another  t ransi t ion system. 

2 Synchronized systems 

Let us consider n t ransi t ion systems .4i over the a lphabets  A~ of actions,  for i = 1 , . . . ,  n. 
Let us assume tha t  these t ransi t ion sys tems represent  processes and  shared objects  
const i tu t ing a sys tem of interact ing processes.(For simplicity, f rom now on, we shall also 
call processes the shared objects  since they are also represented by t ransi t ion systems).  
T h a t  means  tha t  some action in some process can be executed only s imultaneously 
with some other  action in some other  process, or, on the opposite ,  cannot  be  executed 
s imul taneously  with some other  action of some other  process. Let us call global action 
a vector  < a l , . . . ,  an > where a~ belongs to Ai. Such a global act ion is executed when 
the actions ai are s imul taneously  executed by the n processes. Thus  the interact ions 
between the processes of a sys tem can be represented by the set of all global actions 
which are allowed to be executed and in [3], it is advocated  tha t  this kind of specification 
of the interact ions between the processes of the processes of a sys tem is general  enough 
to  formalise most  of the concurrent  sys tems of processes. 

2.1 Synchronization c o n s t r a i n t s  

As explained above, the interact ions between the processes ¢41 of a sys tem are repre- 
sented by  a subset  [ of AI x - . .  x An, called a synchronization constraint. 

E x a m p l e  3. Let us consider again Pe te rson ' s  mutua l  exclusion a lgor i thm for two 
processes. It  is a represented by a sys tem containing two t ransi t ion sys tems p r o c  
described in figure 3 and  three boolean variables b described in figure 1. T h e  second 
line of figure 4 gives the list of the t ransi t ion systems of this system. The  o ther  lines 
are the elements  of the synchronizat ion constraint;  these elements  are just  those we get 
when obeying the following rules. (Here we temporar i ly  come back to the distinction 
between processes and  variables). 

1. \Ve assume this sys tem runs  on a single processor; therefore the two processes can- 
not execute s imultaneously a non null action; moreover  the two processes cannot  
be idle simultaneously.  

2. Each act ion pe r fo rmed  by a process consists in set t ing or test ing a variable. When  
a process executes such an action, the  corresponding variable executes the corre- 
sponding action and  the other  variables execute the  null action. 

2.2 Synchronized product 

Given a vector  < A t , . . . , A n  > of t ransi t ion systems,  each ~4~ = < S~,Ti, ai, fli,~i > 
over the a lphabe t  A~, the free product of < A1 , . . .  , A s  > is the t ransi t ion sys tem 
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synchronizationsystem peterson 

< width = 5 ; list = (proc,proc,b,b,b) > ; 

(my_flag_to_O .e .toO .e .e ) ; 

(my_flag_to_l .e .tol .e .e ) ; 

(e .my_flag_to_O .e .too .e ) ; 

(e .my_flag_to_l .e .tol .e ) ; 

(turn_to_me .e .e .e .toO ) ; 

(e .turn_to_me .e .e .to1 ) ; 

(is_other_flag_O .e .e .isO .e ) ; 

(e .is_other_flag_O .isO .e .e ) ; 

(is_turn_other .e .e .e .is1 ) ; 

(e .is_turn_other .e .e .isO ) 

Figure 4: The  system representing Peterson 's  algori thm 

< S, T, c~, fl, )~ > over A1 x . . .  x AN defined by 

S = S l x . . . x S , , ,  

T = T l x . . . x T , , ,  

= < >, 

= < > ,  

: , ( t , , . . . , t , , )  = < > .  

In some sense, the free product  represents the evolution of the vector of transit ion 
systems when no constraint  is set on the actions which can be performed simultane- 
ously. In case of a synchronizat ion constraint  some transit ions of this free product  
will never appear  : those which are labelled by a vector of actions not allowed by the 
synchronizat ion constraint.  Hence we have the following definition. 

Given a vector < M1 , . . . ,  M,~ > of transit ion systems, each .Ai over the alphabet  A~, 
and a synchronizat ion constraint  I included in A1 × . . .  x A,~, the synchronized product 
of < .A1,...  ,.A,~ > with respect to I is the transit ion system < S, Tl, a,t~,:k > over 
A1 x .--  × An where 

• < S ,T ,a ,  fl,)~ > is the free product  of .A1,... ,.As; 

• Tx is the set of transi t ions t = <  t l , . . . ,  tn > of T having their label A(t) = 
< A l ( t l ) , . . . , A n ( t , , )  > i n I .  

Indeed the synchronized product  computed  by MEC is only a sub-transi t ion system 
of the synchronized system defined above. Each transit ion system A~ = < Si, Ti, a~, ~ ,  Ai > 
which is a component  of a synchronization system is assumed to have a parameter  
i x x i t i a l ,  as it is the case for the transi t ion systems described in examples 1 and 2. 
This pa rame te r  defines a subset initiall of Si and the parameter  i n i t i a l  of the product  
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is defined as the subset init ial  = initial1 x . . .  x initialn. The set of global states of 
the synchronized product of MEC is the set Reach( in i t ia l )  of global states which can 
be reached from ini t ial ,  i.e. the states of init ial  and the targets of paths having their 
sources in init ial .  The set of global transitions of the synchronized product of MEC is 
the set of global transitions having both their sources and their targets in Reach(ini t ial) .  

E x a m p l e  4. The synchronized product, computed by MEC, of the synchronization 
system pe te rson  given in figure 4 is given in figure 5. It was obtained by executing the 
MEC command sync (pe t e r son , r e s )  ; where res  is the name given to the product. 

3 E lementary  c o m p u t a t i o n s  

The general form of a computation command in MEC is 

variable := expression; 

the ezpression is evaluated and its value is assigned to the variable. The value of an 
expression is either a set of states or a set of transitions. 

3 .1  S e t  v a r i a b l e s  

Variables used by MEC are of two different sorts according to the kind of set they can 
be assigned. A variable is implicitely declared when it appears for the first time in the 
left hand part of an assignment command and its sort is the sort of the expression (if 
the sort of the expresssion can be unambiguously determined, otherwise the assignment 
is rejected). Every declared variable is displayed on the terminal with the number of 
objects (states or transitions) of its value. Parameters are considered as variables with 
an initial value. 

3.2 Expressions 
Expressions are built up from variables and operators. Among these operators are 
set-theoretical (or boolean) operators union, intersection, and difference as well as the 
constants "empty", denoted by { }, and "all", denoted by *. 

Some others operators are primitive and will be described below. New operators can 
be defined by the users and this will be explained in the next section. 

Finally there are some other ways to define sets of states and sets of transitions. We 
will not list all these ways here and we refer to the user manual [4]. 

E x a m p l e  5. Let us consider the transition system res  of figure 3 constructed by 
MEC, which will be our running example from now on. 

First of all we want to know if the mutua l  exclusion property is verified, i.e. if the 
two processes can be or not both together in their critical section. Let us remind that 
the set of states in which a process is in its critical section is defined by the parameter 
cs as shown in figure 2. Therefore we have just to know whether there are (global) 
states in which 
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transition_system res < width = 5> ; 

e(O.O.O.O.O) - (e.my_flag_to_l.s.tol.e) -> e(O.l.O.l.O) , 
(my_flag_to_l.e.tol.e.e) -> e(l.O.l.O.O) 

e(l.O.1.0.O) - (e.my_flag_to_l.e.tol.e) -> e(1.1.I.1.0) , 
(turn_to_me. e. e.e.toO) -> e(2.0.I.0.0) 

e(2.0.1.0o0) - (e.my_flag_to_loe.tol.e) -> e(2.1.1.1.O) , 

(is_other_fla.e.e.isO.e) -> e(3.0.1 0.0) 

e(3.0.1.O.O) - (e.my_flag_to_l.e.tol.e) -> e(3.1.1 1.0) , 
(my_flag_to_O.e.toO.e.e) -> e(O.O.O 0.0) 

e(O.l.O.l.O) - (e.turn_to_me.e.e.tol) -> e(0.2.0 1.1) , 

(my_flag_to_l.e.tol.e.e) -> e(l.lol 1.0) 

e(l.l.l.l.O) - (e.turn_to_me.e.e.tol) -> e(1.2.1 I.I) , 
(turn_to_me.e.e.e.toO) -> e(2.1.1 1.0) 

e(2.1.1.1.O) - (e.turn_to_me.s.e.tol) -> e(2.2.1.i.I) ; 

e(3.1.1.1.O) - (e.turn_to_me.e.e.tol) -> e(3.2.1.I.I) , 

(my_flag_to_O.e.toO.e.e) -> e(O.l.O.l.O) ; 
e(2.2.1.I.0) I- (e.is_turn_othe.e.e.isO) -> e(2.3.1.I.0) ; 

e(2.3.1.i.0) I- (e.my_flag_to_O.e.toO.e) -> e(2.0.1.O.O) ; 

e(O.O.O.O.l) I-(e.my_flag_to_l.e.tol.e)-> e(O.l.O.l.l) , 
(my_flag_to_l.e.tol.e.e) -> e(l.O.l.O.i) ; 

e(l.O.l.O.l) I- (e.my_flag_to_l.e.tol.e) -> e(l.l.l.1.1) , 
(turn_to_me.e.e.e.toO)-> e(2.0.1.0.0) ; 

e(0.1.0.1.1) I-(e.turn_to_me.e.e.tol)-> e(0.2.0.1.1) , 

(my_flag_to 1.eotol.e.e) -> e(1.1.1.1.1) ; 
e(0.2.0.1.1) I- (e.is_other_fla.isO.e.e) -> e(0.3.0.1.1) , 

(my_flag_to 1.e.tol.e.e) -> e(1.2.1.1.1) ; 
e(0.3.0.1.1) I-(e.my_flag_to_O.e.toO.e)-> e(O.O.O.O.1) , 

(my_flag_to_l.e.tol.e.e) -> e(l.3.1 1.1) ; 
e(1.1.1.1.1) I- (e.turn_to_me.e.e.tol) -> e(l.2.1 1.1) , 

(turn_to_me.e.e.e.toO) -> e(2.1.1 1.0) ; 
e(1.2.1.1.1) I- (turn_to_me.e.e.e.toO) -> e(2.2.1 1.0) ; 
e(2.2.1.1.1) I- (is_turn_othe.e.e.e.isl) -> e(3.2.1 1.1) ; 

e(3.2.1.1.1) I- (my_flag_to_O.e.toO.e.e) -> e(0.2.0 1.1) ; 
e(1.3.1.1.1) I-(e.my_flag_to_O.e.toO.e)-> e(1.0.1.0.1) , 

(turn_to_me.e.e.e.toO) -> e(2.3.1.1.0); 
< initial = { e(O.O.O.O.O) } >. 

Figure 5: A synchronized product 
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(i) the first component  is in the value of cs in the first t ransit ion system of the 
synchronization system p e t e r s o n ,  

(ii) the second component  is in the value of cs in the second transi t ion system of the 
synchronization system p e t e r s o n .  

The  sets of states satisfying (i)  and (ii) are respectively denoted by c s  [1] and cs [2]; 
hence the set of states not satisfying the mutual  exclusion proper ty  is defined and /o r  
computed by the assigmnent nok := cs [ 1 ] / \ c s  [2] ; 

After execution of this command,  it appears  on the screen tha t  the value of nok is 
a set of states which has 0 element. [] 

3.3 Primit ive  operators 

Let us denote by a and ~- the sorts "set of states" and "set of transit ions".  We can use 
the following opera tors  s r c  of sort v ~ a, t g t  of sort 7- --* a,  r s r c  of sort cr ---, T, r t g t  
of sort a --* ~'. Th e  in terpreta t ion of these operators  is as follows, for a given transit ion 
system < S, T, ~, fl, A >: If Q is a set of states included in S and R a set of transit ions 
included in T,  then 

src(R) = {ol(t) l t  6 R } ,  
tg t (R)  = {•(t) l t  e R } ,  

r t g t ( e )  = e e } .  

In other  words s r c ( R )  and t g t ( R )  are respectively the sets of sources and targets  of 
transitions in R and r s r c ( Q )  and r t g t ( Q )  are their  reciprocals : the sets of transitions 
having their source and their target  in Q. 

E x a m p l e  6. If Q is a set of states, the set Pred(Q) is the set of all states which are 
the source of a t ransi t ion whose target  is in Q. If q is a variable whose value is Q, 
Pred(Q) is the value of the expression s r c ( r t g t  (Q)).  

In a similar way Succ(Q) is the value of the expression t g t ( r s r c ( Q ) ) .  
If T denotes a set T of transitions, the expression s r c  ( T / \ r t g t  (Q)) evaluates to the 

set of sources of transit ions in T having their  target  in Q and t g t  ( T / \ r s r c ( Q ) )  to the 
set of targets of transit ions in T having their source in Q. [] 

We also use the  binary operator  l oop  of sort v~- --~ v defined by t 6 loop(R ,  R')  if 
and only if t belongs to a pa th  p such that  

(i) the source of p is equal to its target ,  

(ii) every t ransi t ion of p is in R', 

(iii) some transi t ion o f p  is in R, 

In o ther  words, a t ransi t ion t is in loop(R ,  R') if it belongs to some loop in R'  containing 
some transit ion in R. 
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E x a m p l e  7. Let us now look for a firelock in the transit ion system r e s .  
Roughly  speaking there is a livelock if there is an infinite execut ion where 

( i)  bo th  processes are always in their  "mutexbegin" ,  and 

(ii) none of the processes remains "inactive" forever. 

Condi t ion ( i)  means tha t  bo th  processes are t rying to enter  their  critical section 
and never succeed; condition (ii) means that  bo th  processes are really t rying to enter 
their  critical section : if one of the processes stays idle forever surely it will not enter 
its critical section and could even prevent  the other  process to enter.  

Since the only waiting action is denoted by e, a process is active during a transit ion t 
if the corresponding component  of the label of this transit ion is not equM to e. Therefore 
the sets of transit ions in which the first and the second processes are active are computed 
by activel := !label[l] # "e"; and active2 := !label[2] # "e"; The set of 

t ransi t ions in which both  processes are in their "mutexbegin" is computed  by l l  := 
mb [1 ] / \m b  [2] ; 

If there  is a liveloek, there is a "loop" p such that  

(i)  all its transit ions are in l l ;  

(it) it has an infinite number  of transit ions in a c t i v e l ;  

(iii) it has an infinite number  of transit ions in a c t i v e 2 .  

The  set l l 0  of transit ions belonging to a loop satisfying (i)  is computed  by 
110 := lo0p  (* ,  11) ; the set 111 of transitions belonging to a loop satisfying (i)  and (it) 
is computed  by 111 : = loop  ( a c t i v e l ,  110) ; finally the set 112 of transit ions belonging 
to a loop satisfying (i),(ii) and (iii) is computed  by 112 := l o o p ( a c t i v e 2 , 1 1 t )  ; Here 
again this set is empty, tD 

4 T h e  d e f i n i t i o n  o f  n e w  o p e r a t o r s  

4.1 Preliminary example 
Let us consider some given transit ion system .A. Let us consider the set Reach(initial) 
which was used in the definition of the synchronized product  (cf. 2.2). Indeed for every 
set Q of states one can define the set Reach(Q) containing Q and the targets  of paths 
having their  source in Q. Thus  Reach can be considered as an opera tor  of sort a --* a 
and one c a n  think of adding it to the primitive operators.  

But  we can also remark that  this operator  can be formally defined in the following 
way. Let us consider the opera tor  Succ defined in example 6. We have the following 
equMity: 

Reach(Q) = Q u S cc( Reach( Q ) ) (1) 

We have even more: not  only Reach(Q) is a solution of the equat ion 

x = Q u S cc(X) (2) 
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but  it is the least set of states (for inclusion) satisfying this equation. 
Therefore we can give Reach the following definition: for every set Q of states, 

Reach(Q) is the least solution of (2). This definition is expressed in MEC by 

function reach(Q : state) return X: state ; 

begin 

X = Q \/ tgt(rsrc(X)) 

end. 

Once this function is defined, the operator  r e a c h  can be used in expressions exactly like 
primitive operators;  its sort is a -+ a,  as expressed by the first line of the definition. 

4.2  Systems of equations 

We are now going to formally define the systems of equations which can be used to 
define new operators  in MEC. 

B a s i c  o p e r a t o r s  Let D be the heterogenous algebraic signature with two sorts, a 
and ~', containing the following operators  [7] : 

0~, 1~, 0~, 1~ : constants of sorts a and 7-; 

tA~, N~, - ~  : binary operators  of sort act ........ ~ c~; 

U,, N~, - ,  : b inary operators  of sort ~-r ..... ~ ~'; 

8rc, tgt : b inary operators  of sort  r ~ c~; 

rsrc, rtgt : b inary operators  of sort cr ~ v. 

If ,4 ---< S, T, a ,  fl, A > is a t ransi t ion system, it is given a D-s t ruc ture  in the following 
way : 

• The set of elements of sort (resp. is p(S) (resp. 

• The interpretat ions of the operators  in a t ransi t ion system .4 have been previously 
defined. 

All these operators ,  but  - ~  and - , ,  have monotonic  interpretat ions with respect 
to set inclusion. 

S i g n e d  t e r m s  Let X~ = { x l , . . . ,  x~} and Y,~ -- {Yl , . . . ,  y,,} be two sets of variables 
of sort a and v. We can build terms with these variables and the operators  of D. If t is 
such a term, its in terpreta t ion t~t will be a mapping from p (S)  ~ x p (T )  m into p (S)  or 
p (T)  according to the sort of this term. 

Since the in terpreta t ion of a difference opera tor  is not  monotonic,  the interpreta t ion 
of a term is not necessarily monotonic.  However we can consider that  the interpreta t ion 
of a difference becomes monotonic  if its first argument  is ordered by inclusion and its 
second argument  is ordered by the inverse relation : containment.  

This led us to consider two kinds of order on p (S)  and p(T) ,  inclusion and contain- 
ment.  We shall denote  these powersets by p+(S)  and p+(T)  (resp. p - ( S )  and p - ( T ) )  



129 

when we wish to make clear tha t  they are ordered by inclusion (resp. containment) .  
For each sort ,  we consider two kinds of variables : positive variables ranging over a 
powerset  ordered  by inclusion and negative variables ranging over a powerset ordered 
by conta inment .  Let X + and X -  be two sets of positive and negative variables of sort 
a,  Y+ and Y -  two sets of positive and negative variables of sort r and Z~ et Z~. two set 
of "parameters" ,  which will be interpreted as arb i t rary  sets. 

We inductively define the sets of positive and negative terms of sort or, T + et T,- ,  
and of positive and negative terms of r ,  7-+ and T,- by 

, X + c T + , X - c T - ~ - , Y + c T + , Y - c T - ~ - ;  

• {Op, lp}UZpc~+n~- ;  (p=a,r);  

• if tl  and ta belong to 7-pc then tl  Up t2, tl A e t2 belong to 7-p¢; (p -- a, r ;  ( = +,  - ) ;  

• if t belongs to 7 " / t h e n  arc(t) mid tgt(t) belong to 7"J; (( = + , - )  ; 

• if t belongs to 7-~ then rare(t) and rtgt(t)  belong to 7-/; (~ = + , - ) ;  

• if t~ belongs to 7-p¢ and t2 belongs to ~¢' then tl  - e  t2 belongs to 7-pC; (p = a, r ;  
< q,q' > : <  +,-- >, < - , + > ) ;  

If t is a te rm of 7-p~ its in terpreta t ion t.4 is then monotonic  or ant imonotonic  (accord- 
ing to the value of ¢) when the values of variables in Z are fixed and values of other  
variables are ordered according to their  sign. 

E x a m p l e  8. If Z~ is a parameter  of sort r ,  Z ,  a parameter  of sort a ,  X+ a positive 
variable of sort  a and Y_ a negative variable of sort r ,  then Z, A~. rtgt(l~ -~  X+) is a 
negative t e rm of sort r and Z~ U~ (1, - - r  arc(Y_)) is a positive te rm of sort a. El 

Systems of equations Let us consider the following sets of variables : 

x +  { x ,  +, + = . . . , X , L  

x -  = { x ~ , . . . , x ~ } ,  

y +  = {YI+ , . . . ,Y+} ,  

y -  = {Y~-,.. . ,Y,~,}, 

z ,  = { z , , . . . , z p } ,  

z~ = { z l , . . . , z ; , } ,  

We consider the sets of terms T + ,  T~-,7-r+,T~- built  with these variables. 

A system of equations E is 

{ x ?  = u~+ll < i < n} u {x~- = u~l l  < i < ~'} 
{Y~+=v+l l < i < m }  u {Y£=v['ll<i<m'}. 

where u + e 7" 2 , u~" E 7"a-, v + e 7 + ,  v~" e 7-r-" 

U 
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With a system of equations E and a transit ion system ,4 we associate the ordered set 

DI = p+(S)" x p-(S) w x p+(T) ~ x p-(T) m' 

and the set 

D2 = p (S)  p x p (T)  / 

ordered by the empty  order.  Then  ~ defines a mapping  

EA : DI x D2 ,~ D1 

This mapping is monotonic  with respect to the order  defined componentwise on D1 and 
D1 x D2. Thus  it has a least fixed point  #EA : D2 ) D1. 

Now if we choose one of the signed variables, by composing #~.a with the project ion 
of D1 on its component  associated with this variable, we get a mapping from D2 in p (S)  
or p(T) ,  according to the sort of the variable. Thus  we can assume tha t  a new operator  
is defined by : 

• the list of sorted parameters ,  

• the list of sorted and signed variables, 

• the selected variable defining the result,  

• the list of equations,  one for each variables. 

The  interpreta t ion of such an opera tor  in any transi t ion system will be the mapping 
defined above. 

E x a m p l e  9. Let us consider the two terms of the example 8. The  parameters  they 
contains are Zr and Z~, and the variables are X+ and Y_. Let us consider the two 
equations 

x +  = - .  

Y- = m n .  x + )  

For every transit ion system ,4 this defines a mapping from p (T)  × p (S)  in p (S )  × p(T);  
if we choose X+ as principal variable we get a mapping from p (T)  × p (S)  in p(S) .  

Let us call u n a v o i d a b l e  this opera tor  for some reasons which will be explained 
below. In MEC its definition will be wri t ten  

function unavoidable(Zt :trans ; Zs : state) return X: state; 
vat Y:_trans 
begin 

X = Zs \/ (* - src(Y)); 
Y = Zt /\ rtgt(* - X) 
end. 

Let us remark  that  negative variables are specified by an "underscore" preceding their  
sort. 
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The name "unavoidable" given to this operator comes from the following property. 
Let A be any transition system, Q some set of states and R some set of transitions. Then 
a state s belongs to unavoidable(R,  Q) if and only if every maximal path in .A (i.e. an 
infinite path or a finite path whose last state has no successor in ,4) originated in s and 
containing only transitions in R contains a state in Q. In particular unavoidable(T,  0) 
is the set of states s such that every maximal path originated in s is finite. This can 
be considered as a definition of "deadlocking" states, since once in such a state it is 
impossible to start an infinite computation. 

C o m p u t a t i o n  of  least  f ixed po in t s  If an expression contains an operator defined 
by a system of equation it remains to evaluate this expression. This amounts to com- 
puting the value of op(Z~,.. .  Z~) when the values of Z1 , . . . ,  Z~ are known and thus 
to computing the least fixed point of the equations defining op when the parameters 
occuring in these equations are given. This can be done in time linear with respect to 
the size of the transition system (i.e. number of states and number of transitions, using 
an algorithm described in [2]). Thus all computations performed by MEC are done in 
a time linear with the size of the transition system. 

5 A n  e x a m p l e  of  u s e  

MEC has been used to check some mutual exclusion algorithms. It allowed to discover 
that Burns's algorithms [5] contained livelocks in the case of four processes. 

The transition system obtained by synchronizing four processes, four boolean flags 
and a "turn" variable, representing the symmetrical Burns's algorithm with four pro- 
cesses has 65 016 states, 260 064 transitions stored in about 13 Mbytes of memory. On 
a Sun 3/60, it takes 20 minutes of CPU to construct this product and 11 minutes to 
compute unavoidable  using the linear algorithm of Arnold and Crubill~. 
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