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1 I n t r o d u c t i o n  

A typical distributed algorithm for communicating processes is designed to be applicable 
to a family of networks with similar topology. Such a topology has some finite number 
of process types and different number of processes. A few examples are: choosing a 
leader in a ring (of any size) [L], mutual exclusion (in a ring) [D], distributed termination 
detection (in any connected network [F], or in a ring [FRS]). An algorithm of this kind 
can be described by associating with each process type a program with a specified set of 
communication ports, together with rules to combine processes of these types (by pairing 
ports) to admissible networks. 

In many cases, the program of each of the processes is finite-state. Thus, application of 
such an algorithm to a specific network is also a finite-state program. Hence, an algorithm 
of this kind can be viewed as an infinite family of finite-state programs. 

Automatic verification of finite-state distributed programs by means of temporal logic 
model checking has been widely investigated ICES], [LP], [QS], [EL], [B], [SC] and suc- 
cessfully used [BCDM], [RRSV], [CBBG], [DC], [MC]. A model checking algorithm de- 
termines whether a finite-state distributed program satisfies a temporal logic formula by 
searching all possible paths in the global state graph induced by the program. 

Recently, the problem of automatic verification of infinite families of finite-state pro- 
grams was studied by several researchers ([CG], [SG]). However, these works dealt only 
with algorithms designed for a very restricted class of network topologies. More impor- 
tantly, they didn't take advantage of the fact that every such infinite family of programs 
originates from one distributed algorithm. We exploit this observation to suggest a for- 
malism for the description of algorithms that is, on the one hand, close to the designer's 
view of a distributed algorithm and, on the other hand, facilitates automatic reasoning 
about the described algorithm. We believe that our formalism will help to significantly 
narrow the gap between algorithm design and algorithm verification. 
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The main contributions of this paper are: 

• We suggest a new formalism for the description of algorithms designed for networks 
with similar topology and different numbers of processes. Our formalism handles 
network topologies consisting of a fixed number of process types, each of which has 
a fixed number of communication ports. 

• Based on this formalism, we develop a new method for the automatic verification 
of algorithms described by means of that formalism. 

The formalism that  we suggest is a context-free network grammar that derives net- 
works of processes. With each derived network, a finite-state program is associated. In a 
network-grammar, the nonterminals represent subnetwork types (with possibly unpaired 
ports). The initial variable T represents the network type (with no unpaired ports), and 
terminals represent (instances of) process types. 

Following is an example of a grammar that  generates a family of ring networks with 
any number of processes. For simplicity, the processes are all of the same type a. Both 
the nonterminal A and the terminal a have ports L and R, representing the left port and 
the right port, respectively. The right hand side of the production rules specify how ports 
are paired. 

L lZ 

a 

L R L - - R  L R 
~ i ~  ~ ~ A ~ a ~  

R .~L_L a R ~ L 
~--A---~ --* -- a - ~  

The derivation of a ring of size 4 in the grammar above is: 

¢ LAR A a ~--- a r--. a 
T ~ ~ a ~ L R. a L  

Another important notion presented here is the communication behavior of a sub- 
network P,  given its environment Q (which is also a subnetwork). The communication 
behavior of P given Q, denoted by P:Q, is a new subnetwork, which records all the com- 
munications of P,  which are in accord with Q, and represents all the others by some 
dummy communications. 

The communication behavior is used as the main tool for reasoning about algorithms 
defined by means of network grammars. Its definition is motivated by the following 
observation: when replacing in a network N = PIIQ the subnetwork P with another 
subnetwork P', PIIQ and P'IIQ an equivalent (to be formally defined later) if P and P '  
have the same communication behavior given the same environment Q. 

Following [CG] we would like to show that all programs derived from a given algo- 
rithm, satisfy the same specification, written in a specification language presented below. 
Showing that,  we will be able to prove that an algorithm satisfies some specification in 
general by considering only one of its small derived programs. For any given algorithm, 
we employ induction on the derivation of its networks by a network-grammar to prove 
that all the derived programs are equivalent. 



153 

As the specification language we introduce LTL 2 , a two-leveled linear-time tempo- 
ral logic. Its basic formulas are any Indexed Linear Temporal Logic (ILTL) formulas, 
similar to those defined in [CGB], except that  linear-time operators are used instead of 
branching-time operators. The logic LTL 2 is defined by applying a second level of linear- 
t ime operators. A typical LTL 2 formula is: 

AF(V AGFa, -~ A AFbj) 
i j 

where V~ AGFai and Aj AFbj are its basic ILTL components. This formula is satisfied by 

a program provided that along every computation of the program eventually the following 
will be true: if for some process i, ai holds infinitely often along every computation, then 
for every process j, along every computation, bj will eventually hold. A model for our 
logic is a labeled state transition graph or Kripke structure that represents the possible 
global state transitions of some network of finlte-state processes. 

Our paper is organized as follows: Section 2 describes processes, networks and network 
grammars. Section 3 presents the logic LTL 2 and its semantics with respect to Kripke 
structures. Two notions of equivalence are defined over Kripke structures, and are shown 

to imply each other. Section 4 introduces the communication behavior of a process given 
its environment, and shows how communication behaviors are used for algorithms verifi- 
cation. Section 5 presents a procedure to determine if an algorithm given by a network 
grammar satisfies an LTL 2 specification. 

2 P r o c e s s e s  a n d  N e t w o r k s  

2.1 Combining Processes 

Our model of communication is described by means of synchronization communications 
along channels. The model is similar both to CCS combination [M] and to OCCAM's 
model of communications [I]. Each process is associated with a set of communication 
action names (referred to also as ports), e denotes the non-communication (internal) 
actions of a process. When two processes P and Q are combined to construct a new 
process PIIQ, some of their ports are paired together. A pair of ports represents a channel 
of communication between P and Q. The channel is used merely for synchronization, i.e. 
no data  is transferred. The unpaired ports of P and Q become the ports of PNQ. A 
process with no unpaired ports is called a network. 

A process P is a 7-tuple, P = (ACTp,  APp,  IF, Sp, Rp,  so p, Lpt ,  where 

• ACTp  is a finite set of actions (ports) that  does not contain e. 

• APp  is a finite set of atomic propositions. 

• IF is a finite set of indices. 

• Sp is a finite set of states. 

• Rp C Sp x (ACTp  U {e}) x Sp is a labeled transition relation. We write 81 -~ s2 to 
indicate that  (sl, a, s2) E Rp.  
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• 8 0 p is t h e  initial s t a t e .  

• Lp : Sp -'+ 2 (APPxIp) is the function that  labels each state with a set of indexed 
atomic propositions. We will write ai instead of (a, i) .  

Let P and Q be two processes, with disjoint sets of indices, Ip and IQ. Let Np : 
ACTp --* A C T  and NQ : ACTQ -=, A CT  be two 1-1 renaming functions, for some set 
of actions ACT.  We say that  two ports, ap and aQ, are paired together if g p ( a p )  : 

NQ(aQ). The combination of P and Q using Np and NQ, is a new process, PHQ = 

< A CTPII Q, APPII Q, IPii Q, SPII Q , RPII Q, So PIIQ, LPilQ > , where 

APPIIQ = APp e APQ 

IpIi Q = IF u IQ 

s ll q = (sp x sq) 

LPi, Q ((sp, sQ)) = Lp(sp) U LQ(SQ) 

So PIlQ ---- ( so P '  sO Q) 

Rp]l Q = 

{((sp,sQ),e,(+,sq)) 

{((SP, SQ),Np(ap),(sIp, aQ)) 

{((sp, sQ),NQ(aQ),(sp,s'Q)) 

3 ap, aQ: (sp, ap, SIp) e Rp, (SQ, aQ, SIQ) e RQ 

ge(ap) = g q ( a q ) } u  

(sp, e, 8:0) • Rp} U 

• Rq}u 
Np(ap) ¢ NQ(ACTQ) and (Sp, ap, S~p) • Rp}  U 

NQ(aQ) • Np(ACTp) and (SQ, aQ, s~Q) • RQ} 

Sometimes i t  will be useful to use a renaming function that  leaves the names of the 
ports unchanged. We then use the identity renaming function, denoted by Z. 

The empty process 0 = (ACTo, APo, Io, So, R~, So o, Lo), is the process for which ACT¢ = 
APo = I$ = no = 0, so = {So 0} and L0(so $) = 0. 

We say that  two processes, P and Q are isomorphic if ACTp = ACTQ, APp = APQ, 
IF = IQ and there is an isomorphism function h : Sp --~ SQ such that  h(so e) = (So Q), 
(sp, ap, dp) E Rp 4---->. (h(sp), ap, h(s~p)) e RQ and for every state sp, Lp(sp) = 
Ld (sp)). 

L e m m a  1 For every process P, P[[O with Np = Z is isomorphic to P. 
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2.2 Associat iv i ty  of  Combination 

Combination of processes is commutative, i.e., PIIQ is isomorphic to QIIP. However, 
combination is not associative in the usual way. When three processes P, Q and R are 
combined to a network (P}}Q)[IR, four renaming functions are needed. First Np and 
NQ are used to construct P]]Q. Then Npll Q and Nn are used to combine (PIIQ)IIR. 
Similarly, to combine P II(QIIR), the renaming functions N~, N~, N~tln and N~, are needed. 
The following theorem implies that combinations of a network may be defined such that 
associativity will hold up to isomorphism. 

Theorem 1 (Associa t iv i ty  of Combina t ion)  Given a network (PIIQ)[[R combined 
using Np,  NQ,NpIIQ , and Nn,  there exist N ~ , N ~  and N '  n such that the following net- 
works are isomorphic: 

1. The given network (PIIQ)NR. 

2. (PIIQ)IIR combined using N'p,N~,N'n,  and N~H Q = Z. 

3. PII(QIIR) combined using N'p, N~,N'R, and N~lln = E. 

P r o o f  Let the new renaming functions be defined as follows: N~ = Np, N~ = NQ, and 
N'n(a ) = Np~Q(Nn(a)) for every action a e ACTn.  

First let us show that exactly the same ports are paired together by the new renaming 
functions as were paired by the given ones. Since N~,tl Q = N~lln = Z, we need only to 
consider the following: 

• g p ( a p )  = NQ(aQ) g (ap) = 

• gpllQ(gq( q)) = gR(a ) .'. '.. = Y (aQ) = N ; ( a R )  

• NpttQ(gp(ap)) = Nn(an) .'. '.. Np(ap)  = NFt]Q(Nn(an) ) < :. N'p(ap) = Y~(an)  

This directly implies the isomorphism of the first and second networks. Moreover, the 
above implies that N~, N~ and N~ are sufficient to determine the pairing of ports regard- 
less of the order in which the processes P,  Q and R are combined. 

Now we define a mapping function from states of (PIIQ)IIR to states of PII(QItR) 
and show that the two networks are isomorphic with respect to that function. Let the 
isomorphism function h : S(piiQ)ll n -~ Spll(Qiln ) be: 

h = ( s p , ( s Q , s . ) )  

To show that P[I(Q[[R) and (PIIQ)IIR are isomorphic, we consider only the require- 
ments on the transition relations, as all others are immediate. Since there are no unpaired 
ports in either network, all the transitions are labeled by e, and R(pllQ)ll n contains six kinds 
of transitions: Internal transitions of either P,  Q or R, and communication transitions 
involving either P and Q, P and R, or Q and R. For similar reasons, RpII(QIIR ) contains 
the same six kinds of transitions. By looking at each of the possible kinds of transitions, 
we can see that 
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( ,q ,  ,R)), e, ( 6 ,  e ... :. 

, Q], R ) ) )  E Rpli(Q]IR ) 

[] 

2 . 3  N e t w o r k  G r a m m a r s  

The formalism we suggest for the description of distributed finite-state algorithms is a 
Network Grammar, G = (~, A, ;D, T).  P,* is the set of networks combined of instances of 
process in N. The grammar defines a subset of networks combined using the production 
rules. 

• The terminals, E, are process types, which are processes with a singleton set of 
indices. 

The nonterminals, A, are subnetwork types, each of which represents an unspecified 
process with a specified set of action names. For a subnetwork type A, this set is 
denoted by ACTA. 

Subnetwork types B and C may be combined together using renaming functions 
NB and Nc, defined over ACTs and ACTc, respectively. Similar to process combi- 
nation, the renaming functions specify those action names (ports) in B and C that  
are paired together. ACTBIIC, the set of actions names of BIIC , contains all the 
unpaired action names of B and C after renaming. 

is the set of production rules. A production rule in a network grammar specifies 
how subnetwork types and process types should be combined. For A E A, B,  C E 
(E U A),  (A, (B, NB), (C, Nc)), abbreviated to A --* BItC, describes a derivation in 
which A is replaces by BIIC. It is required that ACTA = ACTBIIC. For simplicity 
we assume that each production rule is a binary rule of the form A ~ BIIC. A 
unary production rule may be obtained by replacing C with the empty process. It 
is not allowed for both B and C to be 0. 

The start  symbol T represents a subnetwork type with an empty set of action names. 

Each instance of a process type has a unique index value. Variables of G, other than T, 
can derive processes with unpaired ports. 
We consider only grammars in which every symbol is reachable, and derives at least one 
subnetwork of terminals. 

We used our formalism to define algorithms for a family of networks with nontrivial 
topologies. 
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3 T h e  l og i c  LTL 2 

LTL ~ is a two-leveled linear t ime temporal  logic. It is defined by means of two types of 
formulas: local and global. Let A P  be a set of atomic propositions, which are indexed by 
a set of index variables IV .  A local formula is either: 

• ai, i f a E A P a n d i E I V .  

• "~f, f V g and l U g ,  if f and g are local formulas. 

A global formula is either: 

• V~ A f ( i )  and V~ E f ( i ) ,  if f ( i )  is a local formula that  has exactly one free index 
variable i. We will refer to this type of global formulas as basic formulas. Basic 
formulas have no free index variables. 

• -~f, f V g and lUg ,  if f and g are global formulas. 

An LTL 2 formula is either A f or E f , where f is a global formula. 
We define the semantics of LTL 2 with respect to a Kripke structure 

K = (AP, I, S, R, So, L) 

where 

• A P  is the set of atomic propositions. 

• I is the set of index values. 

• S is the set of states. 

• R C S × S is the transition relation, which must  be total in both  of its arguments.  
We write sl  --~ s2 to indicate tha t  (sl,s2) E R. 

• So is the initial state. 

• L : S ~ 2(APxI) is the indexed proposition labeling. 

We define a path in K to be a sequence of states, v = s l , s2 , . . ,  such tha t  for every 
i > 1,sl --~ si+l. v i will denote the suffix of v starting in s~, and f i r s t ( r )  will denote the 
first s ta te  in v. We only consider infinite paths in K.  

We distinguish between two types of formulas. Formulas of the form -~f, f V g or l U g  
are pa th  formulas. Formulas of the form al, A f ,  E f  or Vi f are state formulas. We use 
the notat ion K,  v, J ~ f (K, s, J ~ f )  to denote that  the formula f holds along pa th  ~r 
(in a s ta te  s) for a subset J # O of the index values in the structure K.  The relation 
is defined inductively as follows: 
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K, s, {i} 

K, r ,  {i} 

K , r ,  J 

K, ~r, J 

K, % J 

K,r ,J  

K,s,J 

K,s,J 

K,s,J 

ai *~ ,~i e L(~) .  

al ¢=~ K, first(r), {i} ~ al 

~f  ¢~ g , r , g  ~ f. 

f V g  ~ K , r , J ~ f o r K , % J ~ g .  

lUg ¢~ there e x i s t s a I > l s u c h t h a t  K , r  l , J ~ g  

and for a t l l < j  <1  K, rJ ,  J ~ f .  

Vl f ¢4. K, first(r), J ~= Vi f. 

Vi f ¢v there exists an io E J such that  K, s, {io} ~ f .  

A f  ¢=~ for every path r starting in s K, r ,  J ~ f .  

E f  ¢* there exists a path r starting in s such that  K, r ,  J ~ f .  
We will use the following abbreviations: 

AIAf=~V~E~f, AiEf=~Y~A~f, Ff=trueUf and Gf=~F-~f 
For a formula f E LTL 2, we define BF(f) as the set of basic formulas in f . Let 5 v be 

some set of basic formulas over a set APy of atomic propositions. Given two structures 
K,K r, such that APK = APK, ~_ AP~ and two index sets Jg and JK', such that  JK C I s  
and JK, C Is,, we define two notions of equivalence with respect to .T. 

Specification equivalence: (K, JK) -j: (K', Jn,) if and only if 

Vf[BF(f)  C i ~ : g ,  soK, Jn ~ f ~=} g',son,,Jn, ~ f 

Computation equivalence: (K, JK) C5 (K', Jg,) if and only if 

1. For every path r starting in So K there is a path r '  starting in So K', partitions 
of both paths B1, B2, . . . ,  B~,B~, . . .  such that  for every j ,  Bj and Bj are both 
nonempty and finite, and for every state s in Bj, every state s t in B~, and for every 

f E Y ,  
K,s, JK ~ f .: :. K',s',JK, ~ f 

2. For every path r '  starting in So K' there is a path r starting in so K that satisfies 
the same conditions as above. 

T h e o r e m  2 (K, JK) =--3 (K',JK,) if and only if (K, JK) Cy (K',JK,). 

Proof First we note that  once we refer to the basic formulas as atomic propositions, 
LTL 2 is reduced to a variant of LTL without the next-time operator. This variant also 
includes a single top level path quantifier which is either A ("for all paths") or E ("there 
exists a path") .  

We show that  both the specification equivalence and the computation equivalence cor- 
respond to LTL-equivalence of structures labeled by the basic formulas in ~'. 
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We define a function h i  that transforms a pair (K, JK) to a structure (without an index 
set) labeled by F .  

hi(K,  Jg) = (.~', S, R, So, LI) 

where L I ( s )  = { f l f  • .T and K, s, JK ~ f}  • 
According to the semantics of LTL 2 and LTL: 

Vf  [BF(f) C ~1:  K,s, Jg ~LTL 2 f ~ hi(K, Zg), s ~LTL f 

(Z,  JK) - - I  ( g ' ,  JK') if and only if hi(K,  JK) --=LTL hf (g ' ,  .ILK) 

On the other hand, using a stuttering equivalence relation for LTL derived from the 
equivalence for PTL  suggested in [SG], hi(K,  JK) --=LTL hi (g ' ,  J~) if and only if 

1. For every path r starting in So g there is a path ~r' starting in So g ' ,  partitions of both 
paths B1 ,B2, . . . ,  ~ I B1, B2,... such that for every j, Bj and Bj are both nonempty 
and finite, and for every state s in Bj, every state s' in B~, Li(s) = L~(s'). 

2. For every path ~r ~ starting in So K' there is a path ~r starting in So K that satisfies 
the same conditions as above. 

Therefore (K, JK) - - t  (K' ,  JK,) if and only if (K, JK) C I  (K',  Jn,) .  [] 
It will sometime be convenient to refer to a network in a context which requires a 

structure instead. When this happens, the required structure is the one obtained from 
the network by omitting the transition labels (all of which are e). Since Kripke structures 
have total transition relations, so must the networks. 

In the remainder of the paper we refer only to finite Kripke structures. 

4 T h e  C o m m u n i c a t i o n  B e h a v i o r  

The communication behavior of a process P given an environment Q, is denoted by P:Q. 
Similarly to PIIQ, it is defined by means of P,Q,Np and NQ, but only in case the 
combination of PIIQ, using Np and AT@, results in a network (with no unpaired ports). 
The main differences between PIIQ and P:Q are: 

• Transitions of P:Q are labeled by e,~ or actions in ACTp. 

• A state s in P:Q is labeled by basic formulas, rather than atomic propositions. 

• P:Q has two special states sink and sink. All communications on channels between 
P and Q in which P is willing to participate while Q is not, are directed to sink. 
Similarly, communications in which Q is willing to participate but P is not, are 
directed to sink. This records the mutual influence of the environment Q and the 
process P by means of communication enableness. 

Given P, Q, Np and NQ such that Np(ACTp) = NQ(ACTQ), the communication 
behavior P:Q is formally defined as follows: 

P:Q = (ACTp:Q, BFp:Q, Sp:Q, Rp:Q, So p:Q, Mp:Q ) 

where 
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• ACTp:Q = ACTp 

• BFp:Q is a set of basic formulas, defined over APp, the set of atomic propositions 
of P.  

• Sp:Q = {sink,s-'~nk} U (Sp x SQ) where sink and sink are special states. 

• Mp:Q ((sp, sQ)) = { f i r  • BFp:Q and PllQ,(sp, sQ),Ip ~ ]} 

• Mp:Q(sink) = issink 

• Mp:Q(sink) = issink 

• S 0 P:Q = (S 0 p ,  SO Q) 

In order to define Rp:Q we need the following definitions: 

• A pa th  containing only e transitions of Q is called an e-path in Q. 

• e-closure(s) is the set of states that  are reachable from s by an e-path. 

Rp:Q = 

( ((sp,sQ),aP,(s~p,S~Q)) 

{ ((s,., .,~), e, (s:~, sQ)) 

{((s.,s~),a~,'s~n~) 

(sp,ap,sIp) • Rp and (sQ,aQ,S'Q) • RO, 

where Np(ap) = NQ(aQ)} U 

(sp, e,s~) • Rp}u 

(sq, e, 6 )  • Rq}u 
a (sp, ap, S'p) • Rp : ap # e and 

v 6 • e-closur4s¢)V(6,aq,s~) • R~: 

N.(ap)  # NQ(aQ)} U 

3(sq,aq, sb) • Re: Y~(ap) = g¢(aq) ~nd 

V(si,, ap, s~) • Rp: s~ ¢ e-closure(s,,)} U 

Explanation: Rp:Q is a union of 7 sets of transitions. The first one records the transi- 
tions in which P and Q cooperate. The second and the third contain internal transitions 
of P and Q, respectively. The fourth records the communications which are enabled by 
P but  disabled by Q in the current state, and all the states in its e-closure. The fifth set 
records the dual case, in which Q enables the communication while P disables it. The  
transition in both cases is labeled by an action in ACTp. The sixth and seventh sets 
contain self loops for sink and sink. 
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L e m m a  2 ((sp, sQ),a,(S'p,s'Q)) • Rp:Q e and only if ((sp,sQ),e, ls ' s' ~ P, Q)) • RPll Q. 
i.e., every transition in P :Q that does not result in either sink or sink has a corresponding 
transition in P[]Q, and vice versa. 

P r o o f  

• By the definition of Rp:Q: a transition, (($p, SQ)~ or, ( s ~  s~)) • Rp:Q if and only if 
one of the following conditions holds: 

1. (sp, ap, s'p) • Rp and (sQ,aQ,S'Q) • RQ, where Np(ap) = NQ(aQ) 

2. e, • R p  and = s'Q 

3. (SQ,e,s'Q) • RQ and sp = S'p 

• Because PIiQ is a network, and by the definition of RpliQ, ((sp, sQ),e,(S'p,s'Q)) • 
RPii Q if and only if one of the above conditions holds. 

• Therefore, ((sp, sQ),a,(S'p,S'Q)) • Rp:Q i fand only if ((sp,sQ),e,(S'p,S'o)) • Rpjl Q. 

[] 

We define 7r = So 24 Sl -% s2 ~ . . .  to be a path in P.Q, i fVi  > O(s~,a~+l,Si+l) • Rp:Q 

C o r o l l a r y  1 For every path in P :Q from the initial state, So 24 Sl -~ s2 --+ . . . ,  with 
a~ • ACTp U {e,'~}, that does not contain sink ovsi-h-~, So,Sl,S2,.. .  is a path in PIIQ. 

C o r o l l a r y  2 For every path in PIIQ from the initial state, So, Sl ,S2, ' . .  there exists a 
sequence of actions al,  a2, or3, .. • where oq • ACTp (3 {~,~} such that So -% st -% s2 ~ . . .  
is a path in P :Q. 

4 . 1  E q u i v a l e n c e  o f  C o m m u n i c a t i o n  B e h a v i o r s  

Two communication behaviors P:Q and P':Q' are equivalent (P:Q - P':Q') if 

1. ACTp:Q = ACTp,:Q, 

2. BFp:Q : BFp,:Q, 

3. For every path ~r starting in So p:Q there is a path It' starting in So PCQ, and partition 
of both paths B1 ,B2 , . . . ,  B~,B~, . . .  such that  for every j :  

(a) Bj and B~ are both finite, non:empty and contain only e and ~ transitions. 

(b) For every state s in Bj and every state s' in B~ Mp:Q(S) = Mp,:Q,(S'). 

(c) If last(Bj) 24 first(Bj+i) then last(B~) 24 first(B~+l). 

4. For every path ~r' starting in So p,:Q, there is a path 7r starting in So p:Q that  satisfies 
the same conditions as in 3. 

L e m m a  3 I f  P:Q - P':Q' then (PllQ, IP) =Byp:q (P'ItQ',IP,) 
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P r o o f  First we show that if P:Q - P':Q' then (PlIQ, Ip)  Csfp:Q (P'[[Q',Ip,). 

• P:Q =_ P':Q' therefore BFp:Q = BFp,:Q,. 

• The initial states of P:Q and P[IQ are both (s0 p, so Q), and thus are equal. Simi- 
larly, the initial states of P':Q' and P'I]Q' are equal, too. 

• Let ~r = So, S l ,S2, . . .  be a path in PIIQ starting in the initial state So PtlQ" 

By corollary 1 there is a path So p:Q -% Sl ~ s2 --* . . .  in P:Q. 

' ~ s ~ - ~ . . . i n  By the equivalence of P:Q and P':Q' there is a path So p,:Q, Z_~ sl 
P':Q', and a partitioning of both paths that satisfy conditions 3 of the equivalence 
definition above. 

By corollary 2, ~r' = So pqIQ,,S'~, s'2,.., is a path in P'[IQ'. The partition B1, B2,. . .  
and B~, B~,..., applied to lr and r '  respectively, satisfy the conditions of computa- 
tion equivalence of Kripke structures with respect to BFp:Q. 

• Similarly, for every a path in P'ttQ', starting in the initial state, there exists a path 
in P IIQ that satisfies the conditions of computation equivalence of Kripke structures 
with respect to BFp:Q. 

Thus, (PIIQ, IF) CSFp:~ (P'IIQ', IF,), and by Theorem 2, (PIIQ, I f )  --=SF~.:q (P'ttQ', IF,). 
[] 

Theorem 3 (3-Way Or thogonal i ty)  Let all the communication behaviors be defined 
over a fixed set of basic formulas. I f  P':(QI[R ) - P:(Q[IR), Q':(PIIR) - Q:(PIIR) and 
R' :(PIIQ) =_ R:(P]IQ) then P'  :(Q'IIR') - P:(QIIR). 

Essentially, the theorem says that it is sufficient to check the replacement of each com- 
ponent of a communication behavior separately to conclude that replacing all components 
at the same time results in an equivalent communication behavior. Due to lack of space, 
the proof is omitted. 

Corol lary  3 I f  P':Q - P:Q and Q':P - Q:P then P':Q' :- P:Q. 

Corol lary  4 I f  P':Q - P:Q then Q:P' =_ Q:P. 

4.2 Verification of Algori thms 

Verification of an algorithm means to verify all the programs it describes. The purpose 
of this section is to establish a theoretical basis for automatic verification of algorithms 
defined by network grammars. Let G = (~, A, :P, T) be a description of an algorithm, and 
let SPEC E LTL 2 be a specification to be verified for that algorithm. With every terminal 
and nonterminM symbol W E ~ U A we associate two representative processes w, ~ C ~*. 
w is the representative of the subnetworks derived from W by the grammar, while ~ is the 
representative of the possible environments for these subnetworks. For terminal symbols 
W E ~, w is (an instance of) process type W. The environment representative, {, of the 
start symbol T is the empty process 0. 

From now on, we only consider communication behaviors labeled by BF(SPEC). 
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L e m m a  4 I f  for  every production rule A --* Bi IC , 

V b ', c' e [if ^ then (b'llc'):a] 

then for  every W E E U A ,  and every w'  E E* such that W ~ * w ' ,  w'  :~ =- w . ~ .  

The proof is by induction on the number of productions in the derivation of w ~. 

L e m m a  5 For every production rule A --+ B}IC , i f  a:a - (b]lc):a , b:b _~ (a]lc):b and 

e:c =_ (a}lb):c , then Vb', c' E E* [ifb'  :b =_ b:b A c' :e -- c:e then a:a -- (b'llc'):a ] 

The proof is based on theorem 3. 

T h e o r e m  4 ( C o n s i s t e n t  G r a m m a r s )  I f  for  every production rule A -* BI IC , a:a = 
(bllc):n, $:b =_ (allc):b and e:c =_ (allb):c , then 

(t, So t, It ~ SPEC)  ¢~ Vt' E E* [T~*t ' ]  (t', So t', It, ~ SPEC)  

The proof is based on lemma 4, lemma 5 and the definition of specification equivalence. 
A network grammar is consistent  if is satisfies the conditions of theorem 4. Once the 

consistency of a grammar is established, the representative t, of the start symbol T, 
satisfies SPEC if and only if the algorithm does. 

5 T h e  V e r i f i c a t i o n  P r o c e d u r e  

Given a description of an algorithm by means of a network grammer G = (E, A,~P, T), 
and a specification SPEC, the verification procedure consists of the following steps: 

1. Find BF(SPEC) ,  the set of basic formulas in SPEC. 

2. For every W E F. W A choose a representative w E E*: 

(a) For every terminal, its representative is the process type associated with it. 

(b) For any symbol A that  does not have a representative, if there is a production 
rule A --+ BI]C , for which both B and C have representatives, then a =bt tc  is 
the representative of A. 

(c) Repeat step 2b until every symbol has a representative. 

3. For W E E U A choose an environment representative @ E E*: 

(a) For the start symbol T, the representative is the empty process 0. 

(b) For any symbol B that  does not have an environment representative, if there is 
a production rule A --* BI IC  (or A ---* CIIB), for which A has an environment 
representative a, then b =aNc  is the environment representative of B. 

(c) Repeat step 3b until every symbol has an environment representative. 
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4. For every production rule A --* B]]C construct the communication behavior of 
a:a,b:b,e:c, (bl[c):a,(allc):b , (a[Ib):c labeled by basic formulas in BF(SPEC). The 
labeling is determined using an LTL model checker. 

5. If G is consistent then apply an LTL model checker to t:0. The algorithm satisfies 
SPEC if and only if t:0 satisfies SPEC. 

6. If G is not consistent, out method is incompetent with the verification of the gram- 
m a r .  
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