
On-Line Model-Checking for Finite Linear Temporal
Logic Specifications

C l a u d e J A R D , T h i e r r y J E R O N
A D P re sea rch t e a m , I R I S A , C a m p u s de B e a u l i e u

F-35042 R E N N E S C e d e x F R A N C E

ja rd@ir i sa . f r , j e r o n Q i r i s a . f r

1 I n t r o d u c t i o n
If we restrict our attention to finite state programs (variables and communication chan-
nels if any range over finite domains), then the whole program can be represented as a
(generally large) finite graph. Each transition of this state graph is valued with the atomic
action which has just changed the state. Consequently, a finite s t a te program can be
viewed as a finite model over which temporal formulas can be evaluated. Checking that a
given finite model satisfies a given temporal formula is what one calls "model-checking".

We consider the linear time version of temporal logic (LTL) and atomic propositions
as actions [16]. Our terminology is no essential restriction and simplifies the transition
to the automata framework we use thereafter.

Models for linear logic are totally ordered computations. We restrict our attention to
finite computations. Extension to the infinite case will be discussed.

Classical model-checking as implemented in EMC [2] or XESAR [14] (for a branching
time temporal logic) is illustrated in the left part of figure 1. It is assumed that the
complete state graph is available before entering checking. This allows to use ei~cient
fixpoint algorithms to evaluate formulas. The main limitation is the amount of memory
needed to record the state graph. Because of the necessity, for the graph construction,
to compare each new state with those already generated, the performance collapse is
unavoidable, whatever coding and access techniques may be used. Avoiding the state
explosion problem was discussed in [3] for a branching time logic.

Our paper presents a first step to a complementary approach that we call "on-line
model-checking" and which tends to considerably decrease the state space needed. The
basic idea is to check during the slate enumeration (see figure 1). For that aim, the
temporal logic specification must be executed [15]. The logic specification is translated
into a finite automaton (here is the main algorithmical difficulty) which will value the
system states during enumeration. Decision of validity or rejection can then be reached
in finite t ime providing a large enough memory to store a number of states equal to the
depth of the state graph. A related technique is formally described in [8].

In section 2 we present the considered temporal logic. In the third part, we recall an
effective algorithm we designed to translate logic formulas into finite automata when they
are interpreted over finite computations. Section 4 exposes the model-checking algorithm

Figure h A classical verifier and an on-line verifier

program TL-specification

190

diagnostic

p r o g r a m TL-specification

I

diagnostic

and its properties. We then discuss an extension to the infinite case for a particular (but
rather large) class of formulas, called "deterministic".

2 T h e c o n s i d e r e d T L

Let E be a finite alphabet (the set of observable events, augmented with the invisible
action 7-). The temporal formulas over E (~') are built up from the atomic propositions
c~ 6 E using the boolean connectives -~, A, the unary temporal operator O ("next"),
the binary temporal operator U ("until"), and brackets [13]. Some abbreviations are also
considered : V (or), D (implies) and = are defined in the usual way, Vf 6 ~', C) f = "~O-~f
(strong next), <>f _= T H f (eventually) and o f = -~<>-~f (always).

Examples (E = {a, b, r}): ~1 = O(a ::~ C)(~aHb)) and ~o2 = Oa II Ob
The formulas are interpreted over finite nonempty sequences a = a0...c% (n > 1)

which length is [a I-
The satisfaction relation ~ between pairs (a, i) (where 0 < i <I cr 1) and formulas

is inductively defined as follows :

Ya E E, Y~,, ¢ 6 F ,
(cr, i) ~ -[- always, (~r, i) ~ "-~ i f f not ((~, i) ~ ~)
(o 4i) ~o~ i f f a i = ~ , (e , i) ~ A ¢ i f f ((o 3i) ~) a n d ((o 4 i) ~ ¢)
(o-,i)~O~, i f f (i=l~l-1) or((~, i+l)~)
(~r , i)~Lt¢ i f f 3j, i < j < l a l , ((a,j) ~¢)and(Vk, i < k < j , (a , k) ~)

We say that a computation ~ satisfies a formula ~ (~ ~ ~) ifr (~, 0) ~ v. we
can easily extend the possible interpretations with the empty sequence A by considering
A ~ ~ as defined by (A,-1) ~ ~.

A temporal formula ~ over E defines a set L(~p, E) of finite sequences s.t. :

L (~ , E) = { ~ c E * I ~ I = ~ }

Examples: L(~I, E) = (b U 7-)* W (av*b(b U v)*)* and L(~2, E) = b + U E* ab +
Let us now consider a finite transition system S = < Q, E, 6, q0 > where Q is the

finite set of states, E the alphabet of actions, 5 the transition relation and q0 the initial
state. The associated finitary language over an alphabet E is the set of all the possible
computations (¢ renames the invisible actions E - E into r)

L(S, E) = {¢(~), ~ e E* t 5(qo, a) e Q}

191

A transition system satisfies ~ iff all its finite computations on E satisfy ~ :

S k ~ o i f f V o ' E L (S , E) , a ~ o (i . e . L (S , E) C_L(~,E)

3 F r o m T L t o f i n i t e a u t o m a t a
The theory of linear time logic was linked to the automata theory several years ago. We
know that a language is TL-definable if and only if it is first-order definable, and that
first-order definability can be characterized elegantly in terms of "star-free" languages
(regular languages included in the closure of the finite word-sets under concatenation
and boolean operations only) [9].

Examples (E* is an abbreviation for --g) :

L(~I, E) = ~[S*a'~(E*bE*) U S*a-~(E*bS*)aE*]
L(~2, E) = b-~(S*(a U r)S*) U E* ab-~(S*(a U r)E*)

The above proposition was first applied in [11] to show the possibility of synthesizing
synchronization skeletons of protocols from their TL-specification. Since no efficient
and programmable algorithm was known to us, we developed a new one to perform the
translation of logic formulas into finite automata, based on the concept of derivatives (a
la Brzozowski [1]). We present the main results; proofs and examples can be found in
[4]. A similar technique is also used in [5].

3 . 1 D e r i v a t i v e s o f t e m p o r a l f o r m u l a s

A derivative of a formula ~ with respect to the finite sequence s is a formula Ds~ s.t. :

Yt E E*, t ~ D , ~ s t k ~

Satisfaction may then be characterized by the emplyness acceptation of a derivative :

Vs E E*, V~ E TL , s ~ ~ < ~ A ~ D ~

A derivative of qa with respect to a finite sequence o" can be found recursively :

Va E E, D o ~ - D ~ D o ~ and DA~ =--

The derivative of ~ with respect to a sequence a of unit length can be found recur-
sively :

D ~ , T = T

D~ - _L(V~ ~ ~, a 4 ~)
D~(~ A ¢) _= Dc,~ A D~¢
D~(~U¢) _-- -~(-~D~¢ ^ -~ (D~ A ~ A ~U¢))

Daa =- T
D~, ~o --- ~ D~,~o
D~ 0 ~ - -~(-~ A,~)
where ~ = -~(A~e=-~)

192

3 . 2 C o n s t r u c t i o n o f t h e a u t o m a t o n a c c e p t i n g L (~ , E)

Two temporal formulas are said boolean-equivalent (does not imply equivalence) if they
are equivalent according to the boolean calculus only.

Every formula ~ has only a finite number of non-boolean-equivalen~ derivatives. All
the dislinct derivatives can be calculated considering sequences of increasing length.

From all the previous propositions, we can calculate .A~ = (Q, E, 6, q0, F) , the au-
tomaton corresponding to the TL-formula ~:

* The set of states Q is the finite set of the non-boolean-equivalent derivatives of ~,

• The transition function is determined by the existence of a derivative
V ¢ , ¢ ' E Q , V a E ~ , ¢ '=~f(¢,c~) ¢V 3 z E E * , ¢ = D a ~ A ¢ ' = D , ¢ ,

• The initial state q0 is ~, and a state ¢ is a terminal state iff $ ~ ¢.

In order to illustrate the derivation process, we give in figure 2 the automata and
derivatives of the examples ~l and ~2.

Figure 2: A~l and , 4~

a ~" b, r

b
b

The TL-compiler has been implemented as a software package written in Pascal (2500
lines) and ,with usual properties, produces automata for about fifty temporal operators
formulas in a few seconds on a SUN workstation. TL formulas are represented by trees
(or- and and-formulas are considered as n-ary). Derivatives of some pure temporal
sub-formulas are kept during the computation to avoid re-derivation of previous terms,
since the derivation rules can produce common sub-trees. A conjonctive normal form is
generated in order to improve the boolean-equivalence testing.

4 Searching trans i t ions and checking
4.1 State searching

According to our "on-line" approach, we try to search all the computations of the
considered finite state system without recording the whole state space. This is possible if
we detect the loops by using a depth-first strategy and keeping the states of the current
computation path (the others may be replaced if necessary). We can then theoretically
reach all the states using only a memory bounded with the state graph diameter. Let
us note that in general there does not exist a continuous function linking the memory
size with the number of reached states [12] (as illustrated in section 4.3). Different
replacement strategies can be applied in order to speed up the search. Holzmann studied
replacement strategies in order to speed up the search [6] : he found that random selection
among the states to be deleted was the best management!

t93

Figure 3: The model checker algorithm
stack :---- 0; heap :-- 0;
push(qo S , qo ~, enabledS (qoS));
while stack ~ ~ do begin

i f top. enabled ~ ~ t h en begin
t := one_element_of(top.enabled);
top.enabled := top.enabled - [t];
qS := 8S(top.stateS ' t); q~ := 8~(top.state ~, t);
ir--,((qs, q~) e stack) then

if-~((qS, qV) E heap) t hen begin
T~ := cnabled~(q~); Ts := enableda(qS);
if-~ [Vx e Ts I (x e T~) ^ (~(q~ ,x) e F)] t hen error
else push(q S, qV, Ts)
end

end
else begin (* top.enabled = ~ *)

i f full(heap) t hen
replace (random (heap), top. state s, top. state ~)

else memorize(top.state s, top.state~);
pop (* backtrack *)
end;

end;
end;

4 . 2 C h e c k i n g

Let Ts C E and T~ C E be the sets of fireable transitions in a given state (so, qo) for the
transition system S and the automaton associated to a temporal formula ta respectively.
Since all the states of S are terminal states, the satisfaction relation can be reformulated
as follows :

S ~ i f f T s C T ~ a n d V c ~ E T s , 8(qo, c~)E F

where q0, 6, F refer to the automaton A~. This condition can be evaluated during the
search and then performs on-line checking. In the algorithm (see figure 3) we explicitely
manage a heap (with random replacement) of already generated pairs (system state,
au tomaton state) and a stack of triples (system state, automaton state, not yet fired
transitions) of the current path.

4 . 3 E x a m p l e

The example is a very simplified connect-disconnect protocol (see figure 4) which
was designed to provide an introduction to protocol validation [7]. Being concerned with
finite systems, we will only refer to the part of the state graph over the line n -- constant
where n is the size of the channel A - -~ B (the number of different states is then

g = [-~] + 3(n + 1)).
If we run the program with the formula true, which automaton is a single terminal

state, we generate all the states of the system. For a given n, we can modulate the
heap size HS to observe the variations in number of generated states NGS and in t ime

194

Figure 4: The connect-disconnect protocol and its infinite state graph

A B

-c ill I J If

I [,,lill[]

+:send
-:receive
a:open request
b,c:close request

(o,o,~,¢)

(1,0,~,~) \ ~I,1,~,~) ------+-~(1,0,~,~)

-b +a~ +a deadlock zone
/

+a b +a +a (1, O, baa,$)
. I I

n=4 , \(1,1,baba,%) +--~(1,O, ba a,c)
• b l ~ (O'O'baab''N~. a + ~ c . ' "

(V,O, baba,g) . o .

T according to that size (see figure 5). Those figures are only indications because the
program has not been optimized (no particular coding of the states) and it is run on a
very simple protocol. However we can make the following remark: when starting from
HS "~ N, we decrease HS, NGS stays for a long time very close to N (before explosion)
just because of the random replacement. So generation t ime is almost minimum and
searching t ime decrease. In our example, the best results are obtained with a heap size
near N Those observations can of course also be done with other formulas for which
the number of generated states only increase when loops of the automaton include some
of the state graph.

Hence, with a given memory size, we can very efficiently check protocols which
couldn't be analysed with methods requiring generation of all the different states and
then checking properties. When the checked formula is not valid on the state graph, we
don't need to generate all the states, because we stop as soon as the formula becomes
false. We think that those observations can be generalized for a lot of protocols because,
even if the curves are not the same, they certainly have a similar form.

195

Figure 5: Number of generated states and t ime in function of heap size

NC ~I T

n ----70

,--HS NT0 NS0 /v~o HS

5 Extens ion to the infinite computa t ions
We give here some hints of the extension of our approach to some kinds of infinite
computations. Considering a property given by a deterministic Biichi automata (as
advocated in [10]), an infinite sequence a is accepted if and only if it spells out infinitely
often a terminM state. Since we only consider finite state systems, it follows that the
system satisfies the property if and only if every fireable transition of the system is also
a transition of the Biichi automaton and if every elementary cycle of the state graph is
vMued by a terminal state of the automaton. The checking algorithm is basically the
same as for the finite case except that an error occurs when a loop is detected and all its
states are valued by non-terminal states of the automaton.

Figure 6: The irreducible non-deterministic Bfichi automaton of ~2

b

Application to temporal logic formulas is more disputable since a temporal formula
does not ever correspond to a deterministic Biichi automaton (see figure 6). If a formula ~
is deterministic, our translation algorithm gives the right deterministic Biichi automaton
A~o. To efficiently decide the determinism of a formula is yet an open problem.

6 Conclus ion
Avoiding state space explosion in model-checking algorithms is a good challenge to im-
prove the applicability of verification tools. We have presented, in that context, an
approach called on-line model-checking where satisfiability is checked during the state
generation process.

Though the entire validation has to be rerun for each new property, this approach is
interesting since it decreases the state space needed. We also have shown that for large
graphs, surprisingly the on-line technique may be better in time than the classical model-

t96

checking. Precise algorithms are given and they have been systematical ly experimented.
Nevertheless, we have only dealt with a simple context, considering finite computa-

tions and a basic linear temporal logic. Future works could be to t ransport the idea
towards branching t ime logics (may be difficult) and to find efficient algori thms to check
satisfiability of linear formulas on infinite computat ions (accessible).

R e f e r e n c e s
[1] J. Brzozowski. Derivatives of regular expressions. Journal of the Association of

Computing Machinery, 11(4):481-494, October 1964.
[2] E. Clarke., E. Emerson, and A. Sistla. Automatic verification of finite state concurrent

systems using temporal logic specification : a practical approach. A CM
SIGACT-SIGOPS, Syrup. Principles of Distributed Computing, 117-126, 1983.

[3] E. Clarke and O. Grumberg. Avoiding the state explosion problem in temporal logic
model checking algorithms. 6 th ACM SIGA CT-SIGOPS Syrup. Principles of Distributed
Computing, Vancouver, Canada, August 1987.

[4] O. Drissi-Kaitouni and C. Jard. Compiling temporal logic specifications into observers.
Technical Report 881, IRISA University of Rennes, July 1988.

[5] R. Groz. V~rification de propri~t~s logiques des protocoles et syst~mes r~partis par
observation de simulations. Th~se de doctorat de l'universite de Rennes I, No 194,
January 1989.

[6] G. Holzmann. Automated protocol validation in argos, assertion proving and scatter
searching. IEEE trans, on Software Engineering, Vol 13, No 6, June 1987.

[7] C. Jard and M. Raynal. Specification of Properties is Required to Verify Distributed
Algorithms. Technical Report 651, INRIA, Centre IRISA, Rennes, February 1987.

[8] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. 12 th Symposium on Principles of Programming Languages,
Austin, Texas, 97-107, 1984.

[9] R. Mac Naughton and S. Papert. Counter free automata. MIT Press, Cambridge, Avril
1971.

[10] Z. Manna and A. Pnueli. Specification and verification of concurrent programs by
V-automata. 14 th Symposium on Principles of Programming Languages, A CM, Munich,
1-12, January 1987.

[11] Z. Manna and P. Wolper. Synthesis of communication processes from temporal logic
specifications. A CM Transactions on Programming Languages and Systems, 6(1):68-98,
Junary 1984.

[12] J. Pageot and C. Jard. Experience in guiding simulation. Protocol Specification, Testing,
and Verification, Vl11, 1FIP, 207-218, June 1988.

[13] A. Pnueli. Applications of temporal logic to the specification and verification of reactive
systems: a survey of current trends. LNCS #224, Current Trends in Concurrency,
510-584, 1986.

[14] J. Richier, C. Rodriguez, J. Sifakis, and J. Voiron. Verification in XESAR of the sliding
window protocol. In 7 th 1FIP International Workshop on Protocol Specification, Testing,
and Verification, Zurich, Suisse, North Holland, May 1987.

[15] J. Sifakis. A response to amir pnueli's : specification and development of reactive
systems. 1FIP'86, Dublin, 1986.

[16] W. Thomas. A combinatorial approach to the theory of w-automata. Information and
Control, 48(3):261-283, 1981.

