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Abstrac t  

We present a theory of Modal Specifications which has been specif- 
ically designed in order to allow loose specifications to be expressed. 
ModM Specifications extends Process Algebra in the sense that speci- 
fications may be combined using process constructs. Moreover, Modal 
Specifications is given an operational interpretation imposing restric- 
tions on the transitions of possible implementations by telling which 
transitions are necessary and which are admissable. This allows a re- 
finement ordering between Modal Specifications to be defined extending 
the well-established notion of bisimulation. In the paper we present a 
logical characterization of the refinement--orderlng and derive charac- 
teristic logical formulas from any given Modal Specifications. Also, we 
explore the possibility of combining Modal Specifications themselves 
logically, and we briefly comment on the automation of refinement. 

1 M o t i v a t i o n  

We think of program development as being logically divided into three phases: a specifi- 
cation phase, in which a collection of desired properties of the final program is described; 
the implementation phase, in which the program or process with the desired properties is 
being developed; and finally, the verification phase, which consists of a formal justification 
of the correctness of the designed implementation with respect to the initial specification. 

Obviously, when developing large systems, we do not expect to be able to derive an 
implementation immediately from the initial specification So. Rather, we expect the im- 
plementation phase to consist of a series of small and successive refinements of the initial 
specification until eventually an implementation I can be extracted directly (so-called 
stepwise refinement). In order to guarantee the correctness of the extracted implementa- 
tion with respect to the initial specification each individual refinement step must preserve 
correctness; i.e. if Si+l is the refinement of Si, then any implementation correct with 
respect to Si+l must also be correct with respect to Si. Identifying a specification with 
its set of correct implementations, the implementation phase can thus be illustrated as a 
decreasing chain of sets: 

So _3 sl _3 . . . . . .  _3 s~ (1) 
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with the final implementation I being a member of Sn. 

Now, consider any intermediate specification as a partial implementation. That is, certain 
implementation decisions may have been made, but there still remains to be implemented 
a number of subcomponents according to given subspecifications. A refinement-step (see 
figure 1) will then simply consist of a refinement of one of the components. Moreover, the 
correctness of the global refinement-step ought to be immediately implied by the correct- 
ness of the refinement of the component, as this obviously will greatly simplify the task 
of verification. In this case, tile combined theory of the specification and implementation 
language is said to be compositional. 

S, 

I 
S~+l 

Figure 1: A refinement-step 

Through the study of examples it has become evident that the analyses involved in the 
verification of a refinement-step is often tedious and delicate even for moderate size ex- 
amples. Thus, it is rather clear that computer assistance is essential; not just to ensure 
the correctness of the verification but even to make the analyses feasible. However, it is 
important that the tools provided do more than just check and report the correctness (or 
lack of correctness) of a given refinement-step. The tool must also provide explanations of 
the answers they give: a correct refinement-step has most likely been preceded by several 
incorrect attempts; knowing why these attempts where erroneous would obviously be of 
great help in the pursuit of a correct one. 

Within the framework of Process Algebra - -  CCS being a prominent example - -  the lan- 
guages for specifcation and implementation coincide. The only difference (if any) between 
specifications and implementations will be their computational feasibility (in whatever 
model of computation that is used). The notion of correctness of an implementation with 
respect to a given specification may be defined as an abstracting equivalence between pro- 
cesses. Especially, the equivalence induced by the notion of bisimuIation [Park 80, MilS0] 
enjoys many pleasant properties: it admits a very elegant proof technique based on fixed 
point induction [Park 80]; it has an alternative modal characterization [HenMil 85]; it is 
preserved by all natural process constructions (including those of CCS) [Lar 86, SimS5, 
GroVan89] and thus supports compositionality; inequivalent processes can be distinguished 
by (probabilistic) testing [Abr87, LarSkou89]; and the equivalence of finite-state processes 
can be automatically decided in polynomial time [KanSmo83, PaigeTar]. In fact a fair 
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number of systems has recently emerged that will (among other things) support verifica- 
tion of bisimulation equivalence [CW, KanSmo83, Auto, Tau], though only the prototype 
system of [Tau] offers some explanation in case processes are inequivalent. 

So, what more can we ask for? Well, practical experience [LarMil 87, LT88b] has lead us 
to believe that Process Algebra is expressively too poor in order to provide a convenient 
specification language. Obviously, any specification you may care to write down in Process 
Algebra will limit the possible implementations to a single equivalence class. Thus, the 
inclusions in equation (1) simply reduces to equalities: 

S0 = $ 1  = . . . . . . .  Sn (2) 

We consider this undesirable, as it forces all decisions as to the behaviour of the imple- 
mentation to be made as early as in the initial specification. What seems to be needed 
is loose specifications - -  i.e. specifications which are possibly satisfied by more than a 
single equivalence class of processes - -  so that certain behavioural aspects can be left to 
be decided later. 

Also, in any compositional proof method, it is essential that one can express the be- 
havioural constraints which is imposed upon each subsystem by the others, since it may 
be difficult to obtain a sufficiently simple subspecification for the subsystem's behaviour 
in the absence of the constraint. Again, loose specifications seems to be called for (see 
also [LarMil 87, HutLar89]). 

In [LT88b] a theory of Modal Specifications was put forward with the specific intention of 
allowing loose specifications to be expressed. Modal Specifications extends Process Algebra 
in the sense that  specifications may be combined using process constructs. Moreover, 
Modal Specifications is given an operational interpretation imposing restrictions on the 
transitions of possible implementations by telling which transitions are necessary and 
which are admissable. This allows a refinement ordering between Modal Specifications to 
be defined extending in a natural way the notion of bisimulation. 

In section 2 we give a short review of Modal Specifications and refinement. In section 
3 we present a logical characterization of the refinement ordering, hereby providing the 
theoretical foundiation for explaining incorrect refinement--steps. In section 4 we derive 
logical formulas characterizing a given Modal Specification. This allows the reasoning 
about refinements between Modal Specifications to be addressed in a more conventional 
logical framework. In section 5 we explore the possibility of combining Modal Specifica- 
tions logically; and finally in section 6 we comment on automating the reasoning about 
refinements between Modal Specifications. 

2 Modal  Specifications and Refinements  

Modal Specifications is given an operational description in the style of [P181], using labelled 
transition systems. Modal specifications impose restrictions on the transitions of possible 
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implementations by telling which transitions are necessary and which are admissible. The 
transition systems for Modal Specifications therefore have two transition relations: ---*u 
describing the required transitions and ----*<> describing the allowed transitions. 

Def in i t ion  2.1 A modal transition system is a structure S = (S,A, --- '*o, ~o), where 
S is a set of  specifications, A is a set of actions and ----~r~, ~<>C_ S x A × S,  satisfying 
the condition ~csC ~.<>. Also, we shall impose the restriction of  image-finiteness on 
----~<>, i.e. for  all T E S and a E A we assume the set {T '  I T  a><> T ' }  to be finite. 

The condition ~c~C---*~ says that anything required is also allowed, ensuring that any 
modal specification is consistent. Thus, our use of modalities is a deontic one. The 
behaviour of processes themselves is assumed to be given in terms of a standard labelled 
transition system P = ( P , A ,  .... ~). We will view processes as specifications where all 
requirements are necessary ones, as reflected in the derived modal transition system S = 
(P, A, ..... ~D,---*o), with ..... ~u= .~<>=----*- 

Now, when is a specification S a refinement of another specification T,  in the sense that it 
allows fewer implementations? Intuitively, we would expect that any behavioural aspect 
allowed by S should also be allowed by T; and dually, that the behavioural aspects which 
are alreadiy guaranteed by the weaker specification T must also be guaranteed by S. Using 
the derivation relations ..... *u and ---~<> this may be formalized by the following notion of 
refinement. 

Def in i t ion  2.2 A refinement R is a binary relation on S such that whenever S R T  and 
a E A then the following holds: 

1. Whenever  S a <> S' ,  then T a <> T '  for  some T t with S'  R T ' ,  

2. Whenever  T a ~  T ' ,  then S - - - ~  S I for  some S' with S ' R T ' .  

S is said to be a ref inement  of  T in case (S, T )  is contained in some ref inement R.  We 
write S <3 T in this case. 

A straightforward generalization allows us to compare specifications from different modal 
transition systems (essentially by applying the above definition to disjoint sums of modal 
transition systems). In particular, if p <1 S, where p is a process (viewed as a specification 
through the derived modal transition system) and S is a specification, we will say that p 
is an implementat ion of S. 

For R a binary relation on S let TE(R) be the binary relation on S induced by the above 
definition. That  is, T4(R) is the set of pairs (S, T) satisfying for all actions a the clauses 
1 and 2. Then, define <1 n inductively by <3 o = S x S and <1 n+l = T4(<ln). Then - -  due 
to the assumption of image-finiteness - it can be shown that <3 - - - f-),>0 <3". 
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Now, the defined refinement relation <3 enjoys many pleasant properties: ,3 is itself a 
refinement; in fact the maximal one. Also, <3 is a preorder (reflexive and transitive), 
supporting design through stepwise refinement as illustrated in (1). However, <3 is not in 
general an equivalence but allows looseness in specifications. As an example the weakest 
specification U is one which constantly allows any action, but never requires that  any 
action must be performed. Operationally, U is completely defined b y / 4  -aD o L/ for all 
actions a. It  is easily verified that  S <3 U for any modal specification S. If  - -*~- - - - -*o  
(e.g i. when the modal transition system is derived from a process system) the notion of 
refinement specializes to that of bisimulation [Park 80, Mil80]. 

Pl P2 b P3 a P4 

Figure 2: Potential implementations 

Figure 3: Specifications of a-sender and a- t ransmit ter  

E x a m p l e  2.3 An a-sender is a process that  will never refuse to perform the action a 
as long as the observer asks for nothing else. Examples of a-senders are the processes 
Pl and P2 in figure 2, whereas P3 and P4 are examples of processes not being a-senders 
(they may both refuse to do a after one a action). The notion of an a-sender may be 
specified operationally as S in figure 3. The transition S -'-%o S guarantees that  any 

implementation can perform a and become an a-sender. The transitions S b*o U, 
b # a, allows further an implementation to perform any action different from a, after 
which no restrictions is imposed (indicated by b/). Now, it is perfectly simple to construct 
refinements proving Pl <~ S and P2 <3 S. Also, it may easily be argued that  -~(Pz,P4 <3 S). 
A similar but slightly wider class of processes is that  of a- t ransmit ters ,  consisting of all 
processes possessing an infinite a-computat ion.  Thus, besides Pl and P2, also P3 is an a -  
transmitter,  whereas P4 is not. Operationally, we may specify the concept of a- t ransmit ter  
as T in figure 3. Clearly T is more liberal than S, since it has the additional a-transit ion 
T __~a U, allowing an implementation to perform a without necessarily becoming an 
a- t ransmit ter  again. It  is easily proved that  {(S,T),(/4,5/)} is a refinement, and hence 
that S <3 T. [] 

Modal Specifications is an extension of Process Algebra in the sense that  specifications 
may be combined using the process constructs from Process Algebra. In particular, a 
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single generic static construct on specifications is introduced in [LT88b] and investigated 
through examples in [HutLar89]. Here, we shall only assume that  specifications are closed 
under I (parallel composition without synchronizations) and + (summation),  with the 
operational semantics satisfying the following constraints: S I T  -----%m V if and only if 
either V = S l I T with S a; m S I or V = S [ T t with T a) m T I where m ranges over [], ~;  
S + T %m V if and only if either S ----%m V or T --'-~m V again with m ranging over 
0, <>. It  is easily proven that  parallel composition as well as summation preserves <3. 

E x a m p l e  2.4 Recall the modal specification of an a-sender S in figure 3. Now, con- 
sider combining an a-sender with some other process. We may then wonder whether the 
combined system itself will be an a-sender. Provided the combination is that  of paral- 
lel composition respectively summation, the question is simply whether /4  ] S respectively 
U + S is a refinement of S. In f a c t / d i s  <3 S holds as {(/diS , S), (L/IS, L/), (U tU,L/)} is a 
refinement, showing that  a parallel composition of an a-sender with any process is again 
an a-sender. In the case of summation/.4 + S <3 S does not hold as /4  + S a;O U can 
only be matched by S ---%<> S, but L/5~S as L/can not match S a~o S. To ensure that  
the combined process is again an a-sender it seems necessary that  both processes in the 
summation are a-senders.  If  this is the case we are certain to obtain a new a-sender as 
S A- S <3 S is easily seen to hold. If, however, one of the processes is only an a- t ransmit ter  
we cannot be certain to obtain an a-sender as T + S 5~S. [] 

3 Logical  Character iza t ion  of  R e f i n e m e n t  

In example 2.4 we may consider 12 + S as an at tempted refinement of the Modal Specifi- 
cation S. However, as U + S 5~S, obviously the a t tempt  is an erroneous one. In order to 
guide towards a correct refinement, we should explain why the a t tempt  was erroneous. 

Below we shall present a logical characterization of refinement which will provide us with 
the theoretical foundation for such explanations. The characterization extends the modal 
characterization of bisimulation by Hennessy and Milner [HenMil 85] and was indepen- 
dently discovered by G6rard Boudol [Bou89]. The characterization identifies a specification 
with it 's properties in such a way, that  the more refined (or concrete) a specification is the 
more properties it enjoys. Thus, an explanation of U + S ~ S  simply consists in exhibiting 
a property enjoyed by S but not by U + S. 

The formulas of Hennessy-Milner Logic, ~4 is given by the following abstract  syntax: 

F : : = t t t  f f [ F A G I F V G [  (a)F[[a]F 

where a E Act. 

Our interpretation of Hennessy-Milner Logic is an intuitionistic one relative to a Modal 
Transition System S = (S, A, ......... Do, ,<>). We define the satisfaction relation, ~C_ S x M ,  
inductively as follows: 
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1. S ~ t t  ¢ ~ t t  

2. s ~ f f  ¢ , f f  

3. S FVGc*(S F) or(S C) 

4. S F ^ G ¢* (S F) and (S G) 

5. S ~ (a)F ~ 3S'.S a)DS'AS'  ~ F  

6. S [a]F 

Note, that for processes our interpretation of Hennessy-Milner Logic coincides with the 
standard interpretation in [HenMil 85]. The intension of the above definition is the fol- 
lowing: whenever a modal specification S satisfies a property (a)F, any implementation 
of S must have an a-transition leading to a state satisfying F; dually, whenever S satisfies 
a property [a]F any a-transition of any implementation must lead to states satisfying F. 
For a modal specification S let 2~(S) be the set of properties enjoyed by S. Then the 
following characterization result shows that our intension is met. 

T h e o r e m  3.1 For any modal specification S and T, S <3 T if and only if fl4(T) C_ fl4(S). 

P r o o f  Only-if: Assume S <3 T and T ~ F. We show that S ~ F by induction on the 
structure of F.  We only consider the cases involving modalities leaving the more trivial 
cases to the reader. 

F = (a)G: Then T --%~ T' and T'  ~ G. Since S <1 T, S ---%[] S' with S' <3 T'  for some 
S'. By Induction Hypothesis, S' ~ G and hence S ~ (a)G. 

F = [a]G: Now let S %<> S'. Then, since S <3 T, T ---%<> T'  with S' <1 T'  for some T'. 
By definition of the satisfaction relation T'  ~ G, and therefore S' ~ G by tile Induction 
Hypothesis. Since this argument holds whenever S %<> S' we conclude S ~ [a]G. 

If: We show that .M(T) ~ ~4(S) whenever S ~dT. We proceed by induction in the 
smallest n such that  S,i~nT. The basis n = 0 is trivial. For the Induction step assume the 
validity of the statement for 1 , . . . ,  n - 1, and assume S ~nT .  Then one of the following 
two situations must occur: 

i) For some S',  S --%<> S' but whenever T ---%o T',  then S' ¢1'~-1T '. Let {/ '1, . . .  ,Tin} 
be the set of a-derivatives of T under modality (>. Then, by Induction Hypothesis there 
exists properties G1,. . . ,Gm such that Ti ~ Gi, but S' ~: Gi for i = 1 . . . m .  It is then 
obvious that F = [a](G1 V . . .  V Gin) will be a property enjoyed by T but not by S. 

ii) For some T',  T Y'D T'  but whenever S a,n S' then S' ~n- lT ' .  Let {S1, . . . ,Sm} 
be the set of a-derivatives of S under modality []. Then, by Induction Hypothesis there 
exists properties G1,. . . ,  Gm such that T'  ~ Gi but Si ~ Gi for i = 1 . . .  m. It is then 
obvious that F = (a)(G1 h . . .  A Gin) is a property enjoyed by T not by S. [] 
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E x a m p l e  3.2 We can now explain why the attempted refinement U + S of S in example 
2.4 is erroneous by exhibiting a property enjoyed by S but not by U + S. The constructive 
proof of the Characterization Theorem yields the property [a](a)tt. That is, any imple- 
mentation of S will have the ability to perform a after any initial a-transition (in fact 
we know that any a-sender will have this property invariantly), whereas implementations 
of/4 + S will not necessarily have this property. The process p~ of figure 2 is a perfect 
implementation of/A + S, but does clearly not satisfy the property [a](a)tt. [3 

4 Characteristic Properties 

The Characterization result of the previous section shows that any Modal Specifications 
not being related under refinement may be distinguished by some property of ttennessy- 
Milner Logic. In this section we will strengthen this result by showing that any Modal 
Specification S may be fully characterized by a single (recursively specified) property 
Xs, allowing questions of refinements between Modal Specifications to be translated into 
(more standard) questions about implications between logical formulas. The idea of deriv- 
ing logical formulas from operational behaviour was first introduced by Graf and Sifakis 
[GrafSif 86] for finite processes and has later and recently been extended to finite-state 
processes by [IngGodZee, Stef89]. Here, we pursue the same idea for Modal Specifications. 

Let S = (S,A, ,u, * o )  be a given Modal Transition System. Then we may identify 
any property F of Hennessy-Milner Logic with the set of Modal Specifications satisfying 
it. Under this view the connectives of Hennessy-Milner Logic (A, V, (a) and [a]) become 
monotonic operations on sets of Modal Specifications. Thus, using standard fixedpoint 
theory [Tarski], we can define properties recursively (see also [Lar87]). In particular, let 
{XT IT • S} be the maximal properties satisfying the following set of (simultaneous 
recursive) equations: 

A <a>XT, ̂  A[a]( V xT,) (3) 
T __~a u T , a T __I~ o T , 

where V0 = ff and A0 = tt. Then XT characterizes T in the following way: 

T h e o r e m  4.1 For any Modal Specifications S and T, S <3 T if and only if S ~ XT. 

P r o o f  If: We show that the relation: 

R = {(S,T) lS x r }  

is a refinement. So let (S,T) 6 R. Assume S %<> S I, As S ~ XT it follows from equation 
(3) that S' ~ V{XT, ]T a<> T'}, and hence S' ~ XT, for some T' with T --%<> T'. 
Assume T --~u T'. As S ~ XT it follows from equation (3) that S ~ (a)XT, and hence 
S I ~ X T , f o r s o m e S  I w i t h S  .... %uS I. 



240 

Only if: We show that the family of sets AT = {S [ S <3 T} constitutes a post-fixed point 
to the transformation on sets of Modal Specifications associated with equation (3). Now, 
let S C AT, i.e. S <1 T. We must show that: 

1. S E (a)AT, whenever T --%c3 T' ,  and 

2. S e [al(V{AT, IT --2+0 T'}) for all a. 

For 1, assume T ___%a T'. As S<3T, S --%c~ S' with S'<3T' for some S'. Thus, S E (a)AT,. 

For 2, assume S %0 S'. As S<3 T, T %o T'  with S' <3 T' for some T'. Thus, 
S' E AT, C_ V{AT, I T --%0 T'}, and hence S e [a] V{AT, IT --~'o T'}. 

[] 

In particular, viewed as specifications of processes, XT and T identifies exactly the same 
set of implementations. Also, it follows as an easy corollary, that S <3 T if and only if the 
implication Xs =~ XT is logically valid. 

E x a m p l e  4.2 Consider once more the a-sender and a-transmitter  of example 2.4. The 
Modal Transition System defined by the a-sender induces the following system of equations 
(assuming that a and b coinstitutes all actions): 

Xs = (a)Xs A [alXs A NXu 

XH = [alXH A [blXu 

As [a]tt ~_ tt,  clearly Xu -- tt, and the above system of equations can be simplified to the 
following: 

XS = (a)Xs A [a]Xs 

which exactly matches the recursive specification given in [Lar87] of the class of processes 
that will not deadlock on a. The Modal Transition System for the a- transmit ter  induces 
the following system of equations: 

x r  = <a)Xr A [al(Xr V Xu) A NXu 

Xu = [alXu A [blXu 

Simplifying this yields 
XT = (a)XT 

which clearly describes the class of processes with an infinite a-computation. [] 
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5 Logical Combinations of Modal Specifications 

The Characteristic Property Theorem of the previous section shows that  any Modal Spec- 
ification may alternatively be expressed as the maximal solution to a recursively specified 
property of Hennessy-Milner Logic. This suggests to us that  Modal Specifications may be 
useful for describing safety properties, whereas liveness properties seem not to be express- 
ible within Modal Specifications as they are characterized as minimalsolutions to recursive 
equations (see [Lar87]). So - -  from a theoretical view - -  Modal Specifications is less ex- 
pressive than Hennessy-Milner Logic (with recursion added). However, in [HutLar89], it 
is indicated through a number of examples that  - -  from a practical view - -  Modal Speci- 
fications suffices. Even so, we will in this section suggest ways of extending the expressive 
power of Modal Specifications. 

We first note that  any Modal Specification T is consistent, in the sense that  there exists 
some process (implementation) PT refining it: for any Modal Transition System $ -- 
(S, A, .... 'o ,  --*<>) define the derived process system 7~s = (P, A, ~) where P = {PT IT 6 
S} and PT a ~ PT' if and only if T ac~ T' .  Then it is easy to show that  PT <1 T. 

Some would claim that  any sufficiently expressive specification language necessarily must 
contain inconsistent specifications. We can very easily make room for inconsistent specifi- 
cation simply by dropping the condition that  ..... ~oC--~o .  Then inconsistency will arise 
when transitions of implementations are required without being allowed. As a prime ex- 
ample the strongest specification O is one which constantly requires a transition for any 
action, but never allows any action. Operationally, O is completely defined by O --%o O 
for any action a. I t  is easily verified that  O <~ S for any modal specification S. The Char- 
acterization Theorem 3.1 and the Characteristic Property Theorem 4.1 do not depend on 
the condition ;oC .... *o and are therefore also valid for the new larger class of Modal 
Transition Systems. As an example, the Characteristic Property for O is defined by the 
following equation: 

X o  = (a>Xo ^ [alff 

which clearly has X o  = ff as maximal solution. 

Allowing inconsistencies, also makes it possible to combine Modal Specifications "logi- 
cally". If  S and T are two Modal Specifications, then S A T is a specification that will 
require transitions in case either S or T makes the requirement, and will allow a transition 
only in case both S and T allows the transition. Dually, S V T will allow any transition 
allowed by just one of S and T, and will only require a transitions in case it is required 
by both S and T. This intuition is reflected by the inference-rules below: 

S % o S '  T---%<>T' S a, o S  t T----%aoT' 

S V T --%(> S' S V T %<> T'  S V T -'-%o S' V T'  

S .... %o S' T -'-%o T' S --%o S' T --%¢ T' 

S A T "--%'o S' S A T %o T' S A T --%0 S' A T' 

The significance of A and V as constructions on Modal Specifications is clear from the 
following theorem: 
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T h e o r e m  5.1 Let S and T be Modal Specification. Then S V T respectively S A T is the 
least upper bound respectively the greatest lower bound of S and T with respect to 4 .  

Using the Characteristic Property Theorem the following Corollary is immediate: 

C o r o l l a r y  5.2 Let S and T be Modal Specifications. Then ( X s  V XT)  :=~ XSvT and 

xs^T (xs ^ xT). 

For A and V to be truely logical connectives we would have hoped that the implications 
in the above corollary turned out to be equivalences. However, this is not the case in 
general as will be demonstrated by examples below. Currently G~rard Boudol is searching 
for conditions on S and T under which the above implications are guaranteed to be 
equivalences. 

E x a m p l e  5.3 Consider the Modal Specifications A and B operationally specified as fol- 
lows: 

A ~)m/4 A--~b Oht 

B -~b rn U B ---% O LI 

where m ranges over O and 0. Thus, A (B) is intended to specify the class of processes 
that can perform the action a (b). This is confirmed by the Characteristic Properties for 
A (assuming a and b constitutes the set of actions): 

XA = (a)Xu A [alXu A [b]Xu 

x u  = [alXu ^ PlXu 

which simplifies to X A = (a)tt. Now, the "conjunction" of A and B is completely described 
by the following modal transitions: 

A A B %. ~ Lt A A B -~b ~ bl A A B ----5, o LI A Lt A A B b.,¢> N A N 

with Characteristic Property X A A  B = (a)tt A (b)tt. Thus, in this case the conjunction 
A A B is a truely logical one. Similarly, the "disjunction" of A and B is described by the 
following modal transitions: 

A V B ?~<>14 A V B : b~o bt 

with Characteristic Property XAvB = ft. Thus, in this case the implementations of A V B 
is more than the union of the implementations of A and B, being just the processes 
satisfying (a)tt V (b)tt. O 
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6 Implementa t ions  

Refinements between finite-state Modal Specifications may be decided in polynomial time. 
The existing PROLOG-system for arguing about bisimulation between processes in [Hil87] 
is easily modified to argue about refinements between Modal Specifications. 

In contrast to the algorithms of [PaigeTar, KanSmo83] the algorithm used in [Hi187] tries to 
construct a minimal refinement containing a given pair of Modal Specifications. The algo- 
rithm follows the recursive definition of refinement very closely, but by "memorizing" a pair 
of Modal Specifications once it has been determined outside the refinement-ordering <3, 
backtracking is avoided and the overall running time becomes polynomial. Furthermore, 
the algorithm used in the system of [Hit87] has the additional feature that it generates 
small distinguishing properties for Modal Specifications not in the refinement-ordering. A 
description of the general algorithm underlying [Hit87] is the subject of a paper to come 
[Lar?]. 

Here, we demonstrate the use of the system on some examples, First we define the Modal 
Specifications g¢, S and T (the syntax used should be obvious): 

?- u :=: may(a);u + may(b);u. 

?- s :=: must(a);s + may(b);u. 

?- t :=: must(a);t + may(a);u + may(b);u. 

We ask whether L/I S is a refinement of S: 

?- r e f i n e ( u / s , s ) .  

Searching for a refinement... 

Here is a listing of a refinement between the specifications 

u/s and s 

0 

u/s 

1 

u/s 

2 
u/u 

LHS--> b ==> 2 

LHS--> b ==> 1 

LHS--> a ==> 0 

RHS--> a ==> 0 

LHS--> b ==> 2 

LHS--> b ==> 1 

LHS--> a ==> I 
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LHS--> b ==> 2 

LHS--> a ==> 2 

The system correctly returns a set of three pairs of Modal Specifications (containing the 
given pair) together with a (coded) argument for why the set constitutes a refinement. 

Asking whether L/+ S is a refinement of S yields the following respons: 

?-  r e f i n e ( u + s , s ) .  

Searching for a refinement... 

The specification: 

s 

enjoys some properties which the specificatio n 

u+s 

doesn't. One property is: 

[a] <a>tt  
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