
M o d a l S p e c i f i c a t i o n s

Kim Guldstrand Larsen
Aalborg Univers i ty Center , D E N M A R K

Abstrac t

We present a theory of Modal Specifications which has been specif-
ically designed in order to allow loose specifications to be expressed.
ModM Specifications extends Process Algebra in the sense that speci-
fications may be combined using process constructs. Moreover, Modal
Specifications is given an operational interpretation imposing restric-
tions on the transitions of possible implementations by telling which
transitions are necessary and which are admissable. This allows a re-
finement ordering between Modal Specifications to be defined extending
the well-established notion of bisimulation. In the paper we present a
logical characterization of the refinement--orderlng and derive charac-
teristic logical formulas from any given Modal Specifications. Also, we
explore the possibility of combining Modal Specifications themselves
logically, and we briefly comment on the automation of refinement.

1 M o t i v a t i o n

We think of program development as being logically divided into three phases: a specifi-
cation phase, in which a collection of desired properties of the final program is described;
the implementation phase, in which the program or process with the desired properties is
being developed; and finally, the verification phase, which consists of a formal justification
of the correctness of the designed implementation with respect to the initial specification.

Obviously, when developing large systems, we do not expect to be able to derive an
implementation immediately from the initial specification So. Rather, we expect the im-
plementation phase to consist of a series of small and successive refinements of the initial
specification until eventually an implementation I can be extracted directly (so-called
stepwise refinement). In order to guarantee the correctness of the extracted implementa-
tion with respect to the initial specification each individual refinement step must preserve
correctness; i.e. if Si+l is the refinement of Si, then any implementation correct with
respect to Si+l must also be correct with respect to Si. Identifying a specification with
its set of correct implementations, the implementation phase can thus be illustrated as a
decreasing chain of sets:

So _3 sl _3 _3 s~ (1)

233

with the final implementation I being a member of Sn.

Now, consider any intermediate specification as a partial implementation. That is, certain
implementation decisions may have been made, but there still remains to be implemented
a number of subcomponents according to given subspecifications. A refinement-step (see
figure 1) will then simply consist of a refinement of one of the components. Moreover, the
correctness of the global refinement-step ought to be immediately implied by the correct-
ness of the refinement of the component, as this obviously will greatly simplify the task
of verification. In this case, tile combined theory of the specification and implementation
language is said to be compositional.

S,

I
S~+l

Figure 1: A refinement-step

Through the study of examples it has become evident that the analyses involved in the
verification of a refinement-step is often tedious and delicate even for moderate size ex-
amples. Thus, it is rather clear that computer assistance is essential; not just to ensure
the correctness of the verification but even to make the analyses feasible. However, it is
important that the tools provided do more than just check and report the correctness (or
lack of correctness) of a given refinement-step. The tool must also provide explanations of
the answers they give: a correct refinement-step has most likely been preceded by several
incorrect attempts; knowing why these attempts where erroneous would obviously be of
great help in the pursuit of a correct one.

Within the framework of Process Algebra - - CCS being a prominent example - - the lan-
guages for specifcation and implementation coincide. The only difference (if any) between
specifications and implementations will be their computational feasibility (in whatever
model of computation that is used). The notion of correctness of an implementation with
respect to a given specification may be defined as an abstracting equivalence between pro-
cesses. Especially, the equivalence induced by the notion of bisimuIation [Park 80, MilS0]
enjoys many pleasant properties: it admits a very elegant proof technique based on fixed
point induction [Park 80]; it has an alternative modal characterization [HenMil 85]; it is
preserved by all natural process constructions (including those of CCS) [Lar 86, SimS5,
GroVan89] and thus supports compositionality; inequivalent processes can be distinguished
by (probabilistic) testing [Abr87, LarSkou89]; and the equivalence of finite-state processes
can be automatically decided in polynomial time [KanSmo83, PaigeTar]. In fact a fair

234

number of systems has recently emerged that will (among other things) support verifica-
tion of bisimulation equivalence [CW, KanSmo83, Auto, Tau], though only the prototype
system of [Tau] offers some explanation in case processes are inequivalent.

So, what more can we ask for? Well, practical experience [LarMil 87, LT88b] has lead us
to believe that Process Algebra is expressively too poor in order to provide a convenient
specification language. Obviously, any specification you may care to write down in Process
Algebra will limit the possible implementations to a single equivalence class. Thus, the
inclusions in equation (1) simply reduces to equalities:

S0 = $ 1 = Sn (2)

We consider this undesirable, as it forces all decisions as to the behaviour of the imple-
mentation to be made as early as in the initial specification. What seems to be needed
is loose specifications - - i.e. specifications which are possibly satisfied by more than a
single equivalence class of processes - - so that certain behavioural aspects can be left to
be decided later.

Also, in any compositional proof method, it is essential that one can express the be-
havioural constraints which is imposed upon each subsystem by the others, since it may
be difficult to obtain a sufficiently simple subspecification for the subsystem's behaviour
in the absence of the constraint. Again, loose specifications seems to be called for (see
also [LarMil 87, HutLar89]).

In [LT88b] a theory of Modal Specifications was put forward with the specific intention of
allowing loose specifications to be expressed. Modal Specifications extends Process Algebra
in the sense that specifications may be combined using process constructs. Moreover,
Modal Specifications is given an operational interpretation imposing restrictions on the
transitions of possible implementations by telling which transitions are necessary and
which are admissable. This allows a refinement ordering between Modal Specifications to
be defined extending in a natural way the notion of bisimulation.

In section 2 we give a short review of Modal Specifications and refinement. In section
3 we present a logical characterization of the refinement ordering, hereby providing the
theoretical foundiation for explaining incorrect refinement--steps. In section 4 we derive
logical formulas characterizing a given Modal Specification. This allows the reasoning
about refinements between Modal Specifications to be addressed in a more conventional
logical framework. In section 5 we explore the possibility of combining Modal Specifica-
tions logically; and finally in section 6 we comment on automating the reasoning about
refinements between Modal Specifications.

2 Modal Specifications and Refinements

Modal Specifications is given an operational description in the style of [P181], using labelled
transition systems. Modal specifications impose restrictions on the transitions of possible

235

implementations by telling which transitions are necessary and which are admissible. The
transition systems for Modal Specifications therefore have two transition relations: ---*u
describing the required transitions and ----*<> describing the allowed transitions.

Def in i t ion 2.1 A modal transition system is a structure S = (S,A, --- '*o, ~o), where
S is a set of specifications, A is a set of actions and ----~r~, ~<>C_ S x A × S, satisfying
the condition ~csC ~.<>. Also, we shall impose the restriction of image-finiteness on
----~<>, i.e. for all T E S and a E A we assume the set {T ' I T a><> T ' } to be finite.

The condition ~c~C---*~ says that anything required is also allowed, ensuring that any
modal specification is consistent. Thus, our use of modalities is a deontic one. The
behaviour of processes themselves is assumed to be given in terms of a standard labelled
transition system P = (P , A , ~). We will view processes as specifications where all
requirements are necessary ones, as reflected in the derived modal transition system S =
(P, A, ~D,---*o), with ~u= .~<>=----*-

Now, when is a specification S a refinement of another specification T, in the sense that it
allows fewer implementations? Intuitively, we would expect that any behavioural aspect
allowed by S should also be allowed by T; and dually, that the behavioural aspects which
are alreadiy guaranteed by the weaker specification T must also be guaranteed by S. Using
the derivation relations *u and ---~<> this may be formalized by the following notion of
refinement.

Def in i t ion 2.2 A refinement R is a binary relation on S such that whenever S R T and
a E A then the following holds:

1. Whenever S a <> S' , then T a <> T ' for some T t with S' R T ' ,

2. Whenever T a ~ T ' , then S - - - ~ S I for some S' with S ' R T ' .

S is said to be a ref inement of T in case (S, T) is contained in some ref inement R. We
write S <3 T in this case.

A straightforward generalization allows us to compare specifications from different modal
transition systems (essentially by applying the above definition to disjoint sums of modal
transition systems). In particular, if p <1 S, where p is a process (viewed as a specification
through the derived modal transition system) and S is a specification, we will say that p
is an implementat ion of S.

For R a binary relation on S let TE(R) be the binary relation on S induced by the above
definition. That is, T4(R) is the set of pairs (S, T) satisfying for all actions a the clauses
1 and 2. Then, define <1 n inductively by <3 o = S x S and <1 n+l = T4(<ln). Then - - due
to the assumption of image-finiteness - it can be shown that <3 - - - f-),>0 <3".

236

Now, the defined refinement relation <3 enjoys many pleasant properties: ,3 is itself a
refinement; in fact the maximal one. Also, <3 is a preorder (reflexive and transitive),
supporting design through stepwise refinement as illustrated in (1). However, <3 is not in
general an equivalence but allows looseness in specifications. As an example the weakest
specification U is one which constantly allows any action, but never requires that any
action must be performed. Operationally, U is completely defined b y / 4 -aD o L/ for all
actions a. It is easily verified that S <3 U for any modal specification S. If - -*~- - - - -*o
(e.g i. when the modal transition system is derived from a process system) the notion of
refinement specializes to that of bisimulation [Park 80, Mil80].

Pl P2 b P3 a P4

Figure 2: Potential implementations

Figure 3: Specifications of a-sender and a- t ransmit ter

E x a m p l e 2.3 An a-sender is a process that will never refuse to perform the action a
as long as the observer asks for nothing else. Examples of a-senders are the processes
Pl and P2 in figure 2, whereas P3 and P4 are examples of processes not being a-senders
(they may both refuse to do a after one a action). The notion of an a-sender may be
specified operationally as S in figure 3. The transition S -'-%o S guarantees that any

implementation can perform a and become an a-sender. The transitions S b*o U,
b # a, allows further an implementation to perform any action different from a, after
which no restrictions is imposed (indicated by b/). Now, it is perfectly simple to construct
refinements proving Pl <~ S and P2 <3 S. Also, it may easily be argued that -~(Pz,P4 <3 S).
A similar but slightly wider class of processes is that of a- t ransmit ters , consisting of all
processes possessing an infinite a-computat ion. Thus, besides Pl and P2, also P3 is an a -
transmitter, whereas P4 is not. Operationally, we may specify the concept of a- t ransmit ter
as T in figure 3. Clearly T is more liberal than S, since it has the additional a-transit ion
T __~a U, allowing an implementation to perform a without necessarily becoming an
a- t ransmit ter again. It is easily proved that {(S,T),(/4,5/)} is a refinement, and hence
that S <3 T. []

Modal Specifications is an extension of Process Algebra in the sense that specifications
may be combined using the process constructs from Process Algebra. In particular, a

237

single generic static construct on specifications is introduced in [LT88b] and investigated
through examples in [HutLar89]. Here, we shall only assume that specifications are closed
under I (parallel composition without synchronizations) and + (summation), with the
operational semantics satisfying the following constraints: S I T -----%m V if and only if
either V = S l I T with S a; m S I or V = S [T t with T a) m T I where m ranges over [], ~;
S + T %m V if and only if either S ----%m V or T --'-~m V again with m ranging over
0, <>. It is easily proven that parallel composition as well as summation preserves <3.

E x a m p l e 2.4 Recall the modal specification of an a-sender S in figure 3. Now, con-
sider combining an a-sender with some other process. We may then wonder whether the
combined system itself will be an a-sender. Provided the combination is that of paral-
lel composition respectively summation, the question is simply whether /4] S respectively
U + S is a refinement of S. In f a c t / d i s <3 S holds as {(/diS , S), (L/IS, L/), (U tU,L/)} is a
refinement, showing that a parallel composition of an a-sender with any process is again
an a-sender. In the case of summation/.4 + S <3 S does not hold as /4 + S a;O U can
only be matched by S ---%<> S, but L/5~S as L/can not match S a~o S. To ensure that
the combined process is again an a-sender it seems necessary that both processes in the
summation are a-senders. If this is the case we are certain to obtain a new a-sender as
S A- S <3 S is easily seen to hold. If, however, one of the processes is only an a- t ransmit ter
we cannot be certain to obtain an a-sender as T + S 5~S. []

3 Logical Character iza t ion of R e f i n e m e n t

In example 2.4 we may consider 12 + S as an at tempted refinement of the Modal Specifi-
cation S. However, as U + S 5~S, obviously the a t tempt is an erroneous one. In order to
guide towards a correct refinement, we should explain why the a t tempt was erroneous.

Below we shall present a logical characterization of refinement which will provide us with
the theoretical foundation for such explanations. The characterization extends the modal
characterization of bisimulation by Hennessy and Milner [HenMil 85] and was indepen-
dently discovered by G6rard Boudol [Bou89]. The characterization identifies a specification
with it 's properties in such a way, that the more refined (or concrete) a specification is the
more properties it enjoys. Thus, an explanation of U + S ~ S simply consists in exhibiting
a property enjoyed by S but not by U + S.

The formulas of Hennessy-Milner Logic, ~4 is given by the following abstract syntax:

F : : = t t t f f [F A G I F V G [(a)F[[a]F

where a E Act.

Our interpretation of Hennessy-Milner Logic is an intuitionistic one relative to a Modal
Transition System S = (S, A, Do, ,<>). We define the satisfaction relation, ~C_ S x M ,
inductively as follows:

238

1. S ~ t t ¢ ~ t t

2. s ~ f f ¢ , f f

3. S FVGc*(S F) or(S C)

4. S F ^ G ¢* (S F) and (S G)

5. S ~ (a)F ~ 3S'.S a)DS'AS' ~ F

6. S [a]F

Note, that for processes our interpretation of Hennessy-Milner Logic coincides with the
standard interpretation in [HenMil 85]. The intension of the above definition is the fol-
lowing: whenever a modal specification S satisfies a property (a)F, any implementation
of S must have an a-transition leading to a state satisfying F; dually, whenever S satisfies
a property [a]F any a-transition of any implementation must lead to states satisfying F.
For a modal specification S let 2~(S) be the set of properties enjoyed by S. Then the
following characterization result shows that our intension is met.

T h e o r e m 3.1 For any modal specification S and T, S <3 T if and only if fl4(T) C_ fl4(S).

P r o o f Only-if: Assume S <3 T and T ~ F. We show that S ~ F by induction on the
structure of F. We only consider the cases involving modalities leaving the more trivial
cases to the reader.

F = (a)G: Then T --%~ T' and T' ~ G. Since S <1 T, S ---%[] S' with S' <3 T' for some
S'. By Induction Hypothesis, S' ~ G and hence S ~ (a)G.

F = [a]G: Now let S %<> S'. Then, since S <3 T, T ---%<> T' with S' <1 T' for some T'.
By definition of the satisfaction relation T' ~ G, and therefore S' ~ G by tile Induction
Hypothesis. Since this argument holds whenever S %<> S' we conclude S ~ [a]G.

If: We show that .M(T) ~ ~4(S) whenever S ~dT. We proceed by induction in the
smallest n such that S,i~nT. The basis n = 0 is trivial. For the Induction step assume the
validity of the statement for 1 , . . . , n - 1, and assume S ~nT . Then one of the following
two situations must occur:

i) For some S', S --%<> S' but whenever T ---%o T', then S' ¢1'~-1T '. Let {/ '1, . . . ,Tin}
be the set of a-derivatives of T under modality (>. Then, by Induction Hypothesis there
exists properties G1,. . . ,Gm such that Ti ~ Gi, but S' ~: Gi for i = 1 . . . m . It is then
obvious that F = [a](G1 V . . . V Gin) will be a property enjoyed by T but not by S.

ii) For some T', T Y'D T' but whenever S a,n S' then S' ~n- lT ' . Let {S1, . . . ,Sm}
be the set of a-derivatives of S under modality []. Then, by Induction Hypothesis there
exists properties G1,. . . , Gm such that T' ~ Gi but Si ~ Gi for i = 1 . . . m. It is then
obvious that F = (a)(G1 h . . . A Gin) is a property enjoyed by T not by S. []

239

E x a m p l e 3.2 We can now explain why the attempted refinement U + S of S in example
2.4 is erroneous by exhibiting a property enjoyed by S but not by U + S. The constructive
proof of the Characterization Theorem yields the property att. That is, any imple-
mentation of S will have the ability to perform a after any initial a-transition (in fact
we know that any a-sender will have this property invariantly), whereas implementations
of/4 + S will not necessarily have this property. The process p~ of figure 2 is a perfect
implementation of/A + S, but does clearly not satisfy the property att. [3

4 Characteristic Properties

The Characterization result of the previous section shows that any Modal Specifications
not being related under refinement may be distinguished by some property of ttennessy-
Milner Logic. In this section we will strengthen this result by showing that any Modal
Specification S may be fully characterized by a single (recursively specified) property
Xs, allowing questions of refinements between Modal Specifications to be translated into
(more standard) questions about implications between logical formulas. The idea of deriv-
ing logical formulas from operational behaviour was first introduced by Graf and Sifakis
[GrafSif 86] for finite processes and has later and recently been extended to finite-state
processes by [IngGodZee, Stef89]. Here, we pursue the same idea for Modal Specifications.

Let S = (S,A, ,u, * o) be a given Modal Transition System. Then we may identify
any property F of Hennessy-Milner Logic with the set of Modal Specifications satisfying
it. Under this view the connectives of Hennessy-Milner Logic (A, V, (a) and [a]) become
monotonic operations on sets of Modal Specifications. Thus, using standard fixedpoint
theory [Tarski], we can define properties recursively (see also [Lar87]). In particular, let
{XT IT • S} be the maximal properties satisfying the following set of (simultaneous
recursive) equations:

A <a>XT, ̂ A[a](V xT,) (3)
T __~a u T , a T __I~ o T ,

where V0 = ff and A0 = tt. Then XT characterizes T in the following way:

T h e o r e m 4.1 For any Modal Specifications S and T, S <3 T if and only if S ~ XT.

P r o o f If: We show that the relation:

R = {(S,T) lS x r }

is a refinement. So let (S,T) 6 R. Assume S %<> S I, As S ~ XT it follows from equation
(3) that S' ~ V{XT,]T a<> T'}, and hence S' ~ XT, for some T' with T --%<> T'.
Assume T --~u T'. As S ~ XT it follows from equation (3) that S ~ (a)XT, and hence
S I ~ X T , f o r s o m e S I w i t h S %uS I.

240

Only if: We show that the family of sets AT = {S [S <3 T} constitutes a post-fixed point
to the transformation on sets of Modal Specifications associated with equation (3). Now,
let S C AT, i.e. S <1 T. We must show that:

1. S E (a)AT, whenever T --%c3 T' , and

2. S e [al(V{AT, IT --2+0 T'}) for all a.

For 1, assume T ___%a T'. As S<3T, S --%c~ S' with S'<3T' for some S'. Thus, S E (a)AT,.

For 2, assume S %0 S'. As S<3 T, T %o T' with S' <3 T' for some T'. Thus,
S' E AT, C_ V{AT, I T --%0 T'}, and hence S e [a] V{AT, IT --~'o T'}.

[]

In particular, viewed as specifications of processes, XT and T identifies exactly the same
set of implementations. Also, it follows as an easy corollary, that S <3 T if and only if the
implication Xs =~ XT is logically valid.

E x a m p l e 4.2 Consider once more the a-sender and a-transmitter of example 2.4. The
Modal Transition System defined by the a-sender induces the following system of equations
(assuming that a and b coinstitutes all actions):

Xs = (a)Xs A [alXs A NXu

XH = [alXH A [blXu

As [a]tt ~_ tt, clearly Xu -- tt, and the above system of equations can be simplified to the
following:

XS = (a)Xs A [a]Xs

which exactly matches the recursive specification given in [Lar87] of the class of processes
that will not deadlock on a. The Modal Transition System for the a- transmit ter induces
the following system of equations:

x r = <a)Xr A [al(Xr V Xu) A NXu

Xu = [alXu A [blXu

Simplifying this yields
XT = (a)XT

which clearly describes the class of processes with an infinite a-computation. []

241

5 Logical Combinations of Modal Specifications

The Characteristic Property Theorem of the previous section shows that any Modal Spec-
ification may alternatively be expressed as the maximal solution to a recursively specified
property of Hennessy-Milner Logic. This suggests to us that Modal Specifications may be
useful for describing safety properties, whereas liveness properties seem not to be express-
ible within Modal Specifications as they are characterized as minimalsolutions to recursive
equations (see [Lar87]). So - - from a theoretical view - - Modal Specifications is less ex-
pressive than Hennessy-Milner Logic (with recursion added). However, in [HutLar89], it
is indicated through a number of examples that - - from a practical view - - Modal Speci-
fications suffices. Even so, we will in this section suggest ways of extending the expressive
power of Modal Specifications.

We first note that any Modal Specification T is consistent, in the sense that there exists
some process (implementation) PT refining it: for any Modal Transition System $ --
(S, A, 'o , --*<>) define the derived process system 7~s = (P, A, ~) where P = {PT IT 6
S} and PT a ~ PT' if and only if T ac~ T' . Then it is easy to show that PT <1 T.

Some would claim that any sufficiently expressive specification language necessarily must
contain inconsistent specifications. We can very easily make room for inconsistent specifi-
cation simply by dropping the condition that ~oC--~o . Then inconsistency will arise
when transitions of implementations are required without being allowed. As a prime ex-
ample the strongest specification O is one which constantly requires a transition for any
action, but never allows any action. Operationally, O is completely defined by O --%o O
for any action a. I t is easily verified that O <~ S for any modal specification S. The Char-
acterization Theorem 3.1 and the Characteristic Property Theorem 4.1 do not depend on
the condition ;oC *o and are therefore also valid for the new larger class of Modal
Transition Systems. As an example, the Characteristic Property for O is defined by the
following equation:

X o = (a>Xo ^ [alff

which clearly has X o = ff as maximal solution.

Allowing inconsistencies, also makes it possible to combine Modal Specifications "logi-
cally". If S and T are two Modal Specifications, then S A T is a specification that will
require transitions in case either S or T makes the requirement, and will allow a transition
only in case both S and T allows the transition. Dually, S V T will allow any transition
allowed by just one of S and T, and will only require a transitions in case it is required
by both S and T. This intuition is reflected by the inference-rules below:

S % o S ' T---%<>T' S a, o S t T----%aoT'

S V T --%(> S' S V T %<> T' S V T -'-%o S' V T'

S %o S' T -'-%o T' S --%o S' T --%¢ T'

S A T "--%'o S' S A T %o T' S A T --%0 S' A T'

The significance of A and V as constructions on Modal Specifications is clear from the
following theorem:

242

T h e o r e m 5.1 Let S and T be Modal Specification. Then S V T respectively S A T is the
least upper bound respectively the greatest lower bound of S and T with respect to 4 .

Using the Characteristic Property Theorem the following Corollary is immediate:

C o r o l l a r y 5.2 Let S and T be Modal Specifications. Then (X s V XT) :=~ XSvT and

xs^T (xs ^ xT).

For A and V to be truely logical connectives we would have hoped that the implications
in the above corollary turned out to be equivalences. However, this is not the case in
general as will be demonstrated by examples below. Currently G~rard Boudol is searching
for conditions on S and T under which the above implications are guaranteed to be
equivalences.

E x a m p l e 5.3 Consider the Modal Specifications A and B operationally specified as fol-
lows:

A ~)m/4 A--~b Oht

B -~b rn U B ---% O LI

where m ranges over O and 0. Thus, A (B) is intended to specify the class of processes
that can perform the action a (b). This is confirmed by the Characteristic Properties for
A (assuming a and b constitutes the set of actions):

XA = (a)Xu A [alXu A [b]Xu

x u = [alXu ^ PlXu

which simplifies to X A = (a)tt. Now, the "conjunction" of A and B is completely described
by the following modal transitions:

A A B %. ~ Lt A A B -~b ~ bl A A B ----5, o LI A Lt A A B b.,¢> N A N

with Characteristic Property X A A B = (a)tt A (b)tt. Thus, in this case the conjunction
A A B is a truely logical one. Similarly, the "disjunction" of A and B is described by the
following modal transitions:

A V B ?~<>14 A V B : b~o bt

with Characteristic Property XAvB = ft. Thus, in this case the implementations of A V B
is more than the union of the implementations of A and B, being just the processes
satisfying (a)tt V (b)tt. O

243

6 Implementa t ions

Refinements between finite-state Modal Specifications may be decided in polynomial time.
The existing PROLOG-system for arguing about bisimulation between processes in [Hil87]
is easily modified to argue about refinements between Modal Specifications.

In contrast to the algorithms of [PaigeTar, KanSmo83] the algorithm used in [Hi187] tries to
construct a minimal refinement containing a given pair of Modal Specifications. The algo-
rithm follows the recursive definition of refinement very closely, but by "memorizing" a pair
of Modal Specifications once it has been determined outside the refinement-ordering <3,
backtracking is avoided and the overall running time becomes polynomial. Furthermore,
the algorithm used in the system of [Hit87] has the additional feature that it generates
small distinguishing properties for Modal Specifications not in the refinement-ordering. A
description of the general algorithm underlying [Hit87] is the subject of a paper to come
[Lar?].

Here, we demonstrate the use of the system on some examples, First we define the Modal
Specifications g¢, S and T (the syntax used should be obvious):

?- u :=: may(a);u + may(b);u.

?- s :=: must(a);s + may(b);u.

?- t :=: must(a);t + may(a);u + may(b);u.

We ask whether L/I S is a refinement of S:

?- r e f i n e (u / s , s) .

Searching for a refinement...

Here is a listing of a refinement between the specifications

u/s and s

0

u/s

1

u/s

2
u/u

LHS--> b ==> 2

LHS--> b ==> 1

LHS--> a ==> 0

RHS--> a ==> 0

LHS--> b ==> 2

LHS--> b ==> 1

LHS--> a ==> I

244

LHS--> b ==> 2

LHS--> a ==> 2

The system correctly returns a set of three pairs of Modal Specifications (containing the
given pair) together with a (coded) argument for why the set constitutes a refinement.

Asking whether L/+ S is a refinement of S yields the following respons:

?- r e f i n e (u + s , s) .

Searching for a refinement...

The specification:

s

enjoys some properties which the specificatio n

u+s

doesn't. One property is:

[a] <a>tt

Acknowledgement

This work has been carried out as part of the TAU-project [Tau], a project supported by
the FTU-program under the danish research council. I would like to thank Liu Xinxin for
many helpful discussions on the subject of this paper, and also thanks to Gfirard Boudot
for his independent work on Modal Specifications.

References

[Abr87] S. Abramsky: Observation Equivalence as a Testing Equivalence, TCS, 1987.

[Auto] Lecompte, Madelaine, Vergamini: AUTO: A Verification System for Parallel and
Communicating Processes, INRIA, Sophia-Antipolis, 1988.

[Bou89] G. Boudol: Grafical Specifications, unpublished note, 1989.

[CW] Cleaveland, Parrow, Steffen: The Concurrency Workbench, University of Edin-
burgh.

[GrafSif 86] S.Graf and J.Sifakis: A Logic for the Description of Non-deterministic Pro-
grams and Their Properties, Information and Control~ vol 68, no 1-3, 1986.

[GroVan89] Groote, Vaandrager: Structured Operational Semantics and Bisimulation as
a Congruence, 1989.

245

[HenMil 85] M.Hennessy and R.Milner: Algebraic Laws for Nondeterminism and Concur-
rency, Journal of the Association for computing Machinery, pp. 137-161, 1985.

[Hi187] M. Hillerstr"om: Verification of CCS-processes, Master-Thesis, Aalborg Univer-
sity Center, 1987.

[Holmstr 87] S. HolmstrSm: Reasoing about CCS agents using Hennessy-Milner logic ex-
tended with fixed points, unpublished paper, 1987.

[HutLar89] Hiittel, Larsen: The use of Static Constructs in A Modal Process Logic, to be
presented at Logic at Botik'89, USSR.

[IngGodZee] Ingolfsdottir, Godskesen, Zeeberg: Master Thesis, Aalborg University, 1987.

[KanSmo83] Kannellakis, Smolka: CCS Expressions, finite state processes, and three prob-
lems of equivalence, 1983. To appear in Information and Computation.

[LT88b] Larsen, Kim. G and Bent Thomsen: A Modal Process Logic, in Proceedings of
Third Annual symposium on Logic in Computer Science, Edinburgh, 1988.

[Lar 86] K.G.Larsen: A Context Dependent Bisimulation between Processes, Ph.D Thesis,
Edinburgh University, 1986.

[Lar 87a] K.G.Larsen: A Context Dependent Bisimulation between Processes, Theoretical
Computer Science 49, 1987.

[Lar87] Larsen, Kim G.: Proof Systems for Hennessy-Milner Logic with Recursion, in:
CAAP 88, Springer Lecture Notes in Computer Science 299, 1988. (Extended version
to appear in Theoretical Computer Science, North-Holland).

[Lar?] Larsen: Arguing about Membership of Maximal Fixedpoints, future paper.

[LarMil 87] K.G.Larsen and R.Milner: Verifying a Protocol Using ReIativized Bisimula-
tion, in Proceedings of ICALP'87, LNCS 267.

[LarSkou89] Larsen, Skou: Bisimulation Through ProbabiIistic Testing, Proceedings of
ACM POPL'89.

[Mil80] R. Milner: Calculus of Communicating Systems, LNCS 92.

[Mil 83] R. Milner: Calculi for Synchrony and Asynchrony, Theoretical Computer Science
25, 1983.

[PaigeTar] Paige, Tarjan: Three Partition Refinement Algorithms, SIAM J. Comput., vol.
16, no. 6, 1987.

[Park 80] D.Park: Concurrency and automata on infinite sequences, Proc. 5th GI Conf.,
LNCS 104, 1981.

[P181] G.Plotkin: A Structural Approach to Operational Semantics, Tech. Rep., DAIMI
FN-19, Computer Sc., Aarhus University, Denmark, 1981.

246

[Sire85] R. de Simone: Higher-level synchronising devices in MEIJE-CCS, TCS 37, 1985.

[Stef89] B. STeffen: Characteristic Formulae, Edinburgh University, 1989.

[Tarski] A. Taski: A Lattice-Theoretical Fixpoint Theorem and Its applications, Pacific
Journal of Math. 5, 1955.

[Tau] Larsen, Skou: TA U: Theories for Parallel Systems, their Automation and Usage,
Aalborg University Center, 1987.

