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Abstract 

LOTOS is a Formal Description Technique developed within ISO to specify ser- 
vices and protocols. This paper describes a tool for doing LOTOS to LOTOS trans- 
formations. It has applications in state exploration, deadlock detection, testing, val- 
idation and in design by stepwise refinement. The transformations are: expansion 
(transformation of parallelism into summation and prefix); parameterized expansion; 
i action removal. The transformations obtain LOTOS specifications which relate to 
the original one through strong (expansion and parameterized expansion) or weak 
(i-action removal) bisimuIation congruence. 

1. I N T R O D U C T I O N  
LOTOS [4] is a Formal Description Technique developed within ISO with the 
purpose of serving as an unambiguous language for describing service and pro- 
tocol standards.  Its underlying models are: a process algebra derived from 
CCS [6] and the abstract  da ta  type language ACT-ONE [2]. Different types of 
relations among LOTOS specifications are available and provide a framework 
for determining semantical equivalences. Observational equivalence [6], testing 
equivalence [7] and implementation relation [1] seem to be the most interesting 
ones. Equational properties, expansion theorems and other mathematical  trans- 
formations existing for the equivalences and relations mentioned give a sound 
mathematical  basis for performing LOTOS to LOTOS transformations which 
preserve equivalence or relationship between input and output .  

2. D E S C R I P T I O N  OF LOLA 
The LOLA (LOtos LAboratory)  system is a transformational tool developed at 
the Depar tment  of "Ingenieda Telem£tica" of the Technical University of Madrid 
for serving as an experimental environment. An earlier version is described in 
[8]. It has been designed in Pascal. The current version runs on SUN systems. 
At the beginning the tool was conceived for verification on labeled transition 
systems generated from a LOTOS specifications, but  due to the state explosion 
problems appearing, compacting and parametrization was introduced as a way 
to make work with bigger specifications possible. Three transformations have 
been implemented in LOLA by now and others are under study. They are: 
expansion, parameterized expansion, and i-action removal. 
LOTOS is based on the mixture of two different models, algebraic calculi of 
processes with an operational semantics and equational abstract  da ta  types with 
an algebraic initial semantics. Thus the tool gives a different t reatment  to both 
parts. The data  values are treated operationally by interpreting equations as 
rewrite rules from left to right. Thus the tool does not process LOTOS, but  an 
operational version of it where equations interpreted from right to left shall be a 
set of rewrite rules. These rewrite rules should be confluent and terminating for 
achieving proper operation. Some Knuth-Bendix completion algorithm, like for 
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example [3], is necessary for making the da ta  type definition operational. Data 
values or expressions containing variables are represented always through their 
normal forms. 
Semantic equality exist in LOTOS as an user operation and may be used freely in 
specifications. Semantic equality (=) is treated as a predefined boolean function, 
called equal .  Syntactic equality of ground terms after rewriting right and left 
sides is used. Ext ra  rewrite rules can also be given to the it. This t reatment  
is complete only for ground terms. It implies working only in the equational 
theory of the given data  types. 
LOLA deals the expressions symbolicly in many situations where some variables 
remain still undefined. Symbolic processing of such expressions is equivalent to 
theorem demonstration.  LOLA needs to know if the predicates in guards, selec- 
tion predicates or arising from synchronization conditions are equal to false or 
true for any possible value of its variables, or if if depends on the variables. The 
theorems of the equational theory of a data  type will be found by LOLA, but 
not the ones of the inductive theory of a data  type. Rewriting is not enough 
for demonstrat ion.  Induction may be needed in some cases and undecidability 
may exist in others Semiautomatic systems may be used for inductive theo- 
rems demonstrat ion,  like [3] through inductionless-induction or others. In the 
following, except where strictly necessary, all the problems caused by the in- 
completeness of rewriting with respect to the theorems of the inductive theory 
will not mentioned. 
The impact of this on the transformed output  of the tool is the following. Trans- 
formations produced by the tool will de correct, but will be not optimized in the 
following sense. Some guards and some selection predicates which are equivalent 
to t rue or false have not been removed (true case) or substi tuted by a stop (false 
case) because rewriting has not been enough for determining it. 

3. EXPANSIONS: STATE EXPLORATION 
The semantics of LOTOS is defined operationally as a labeled transition system, 
making state exploration straightforward. It is just the calculation of the labeled 
transition system generated by a specification. The plain state space is usually 
enormous even for very simple specifications. This paper describes some ways 
of reducing the state space by using some form of symbolic representation of the 
transitions. Two reduced explorations are presented, which have been called the 
expansion and the parameterized expansion. The first one keeps the variable 
definition ( "even t  ? x : t "  .., and "cho ice  x : t . . " )  of a specification as such 
without expanding to the choice of all the possible values of the sort. The second 
reduces the state exploration to the basic behaviour states, parameterized by 
generic instances of the variables of the specification, keeping also the variables 
in a symbolic way. 
Equational properties and the expansion theorems existing in LOTOS provide 
the basis for performing the state exploration as a LOTOS to LOTOS transfor- 
mation. This is very useful from the engineering point of view because it allows 
an easy reuse of the resulting exploration because its just LOTOS. The tran- 
sitions of a labeled transition system can be represented in LOTOS as events 
which offer only data  values (this means no variables). Action prefix ";" and 
choice "[]" operators are also needed to represent the ordering in time of the 
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transitions. With this components trees can be constructed. Loops can be 
created by process definition and instantiation. 
As the representation of variables is sometimes symbolic in both expansions, the 
restrictions to be hold by this variables must be kept in the transition systems. 
LOTOS guard s tatement  "[ b o o l e a n - e x p r e s s i o n  ] ->" and selection predi- 
cates "event  ? x : t  . .  [ P r e d i c a t e ( x )  ]" allow the representation of such 
restrictions. The example below shows graphicly such type of conditions, where 
predicates are represented as labels of transitions also. This special transitions 
are not real transitions, just  conditions on the following ones. This examples 
shows also how the variables are kept in the compressed transition system. We 
will call this transitions, extended transitions. Such trees must have a unique 
name for every variable across all the tree. 

in ?x:tl ?y:t~ 

[x Less y]-~ ~y LessOrEqual x]-> 

out ,y~ ~ o u t  ,x  

in ?x:tl ?y:t2 
; ( [ x Less y ] -> 

ou t  !y 
; stop 

[] [ y Less0rEqual x ] -> 
o u t  !x 

; stop 
) 

Figure 2: Compressed Transitions 

There exist LOTOS specifications which will have an infinite transition system 
also in the compressed representation, but in many cases of interest a finite 
representation can be found by detecting duplicated behaviours. LOTOS spec- 
ifications which have a finite number of extended transitions going out of any 
state of his transition system expressed in such a compressed way and a finite 
number of states, have a finite representation in terms of such constructs by du- 
plicate behaviour detection. Due to the finiteness of a specification and due to 
its structure,  we will always find after a finite number of transitions, a "s top"  
like state,  an " e x i t "  transition or a behaviour which is exactly equal to one 
existing in the same path except for some variable names, or for some values 
associated with variables of the behaviour. In the three cases we can stop the 
exploration and abstract  all the future behaviour by some LOTOS construct, 
" s top" ,  " e x i t "  or process definition and instantiation. In the third example 
the specification buffer2 has two infinite processes (one element buffer cells) are 
composed in parallel to form a two element buffer. It shows how the duplicate 
behaviour detection is done. In the figure the dashed lines relate the duplicated 
states in the tree (loops). This corresponds to process instantiation and defini- 
tion in LOTOS. The right dashed line corresponds to DupBeh l  and the left one 
to DupBeh2. DupBeh2 has variable renaming but  no parametrization. 

SPECIFICATION buffer2 [in, out, middle] :noexit 
BEHAVIOUR 

(bufferl [in ,middle] I[middle]I bufferl [middle, out]) 
WHERE 

PROCESS bufferl [in, out] :noexit := 
in 7x:data ; out !x ; bufferl [in, out] 

ENDPKOC 

TYPE data IS .... ENDTYPE 
ENDSPEC 
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in ? X l : ~ t t  ~ . . . . . .  ! 
. . . . . . . . . . .  I 

middle !x~ 

out !xll ~ 

[x2 /x l ]  

Input Specification 
PROCESS DupBehl [in, out, middle] :noexit :: 

in ?xl:data 
; DupBeh2 [in, out, middle] (xl) 

ENDPROC 

PROCESS DupBeh2 [in ,out. middle] 
(xl:data):noexit:= 

middle !xl 
; ( out !xl  ; 

; DupBehl [ in ,  out ,  middle]  

[] in ?x2:data 
; out !xl 
; DupBeh2 [in, out, middle] (x2) 

) 
ENDPROC 

Figure 3: Output Specificatmn 

3.1. EXPANSION 
Expanding a specification means removing operators,  such as parallelism "1 [ga te s ]  [ 
enabling ">>" or disabling "[>", substi tuting them for the equivalent transition 
system. This is done by the application of the so called expansion theorems [4]. 
This transformation generates a new specification in a subset of LOTOS which 
includes only the following operators : actions denotations,  action prefix " ;" ,  
alternative " [ ] " ,  choice s tatements  " cho ice  x : t  [ ]" ,  guards "[ P r e d i c a t e  ] 
->", process definition and instantiation. The transformed specification is strong 
bisimulation equivalent with the original. There exist unresolvable guards which 
may depend on values supplied by the environment. This implies that  not all 
the guards can be removed during the expansion. 
The generation of the expansion stops when a "s top"  is found, an " e x i t "  state- 
ment is found or a behaviour is found which is exactly equal (syntacticly) to a 
previous one, for each branch of the expansion. When a duplicated behaviour 
is found the first one is transformed into a process instantiation-definition pair, 
and the duplicated one into a process instantiation one. For the termination of 
the expansion only finite sorts of data  values and bounded parallel, enabling or 
disabling compositions are allowed. As a general rule, any behaviour expression 
that  produces infinite transitions starting from a state or with an infinite num- 
ber of states can not be expanded. As a simple example of such a transformation 
lets see the following specification. 

SPECIFICATION Loops [ one, two] :noexit 
BEHAVIOUR (loop[one] (0) I l J loop[two] (0)) 
WHERE 

PROCESS loop[a](n:nat2):noexit := a!n;loop[a](succ(n)) ENDPROC 

TYPE Nat2 IS 
SORTS 
OPNS 

EQNS 
ENDTYPE 

ENDSPEC 

nat2 
0 : -> nat2 
succ : nat2 -> nat2 
FORALL x:nat2 0FSORT nat2 succ(succ(x )) = x ; 
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The application of the expansion to this specification produces the result pre- 
sented below. Notice that  the natural  number is modulo two such that  the 
expansion finishes quickly. In case of having just natural  number the expansion 
of this specification would not have stopped. 

specification loops [one, two] :noexit 
behaviour ProDupO [one, two] 
where 
process ProDupO [one, two] :noexit := 

(one!O;ProDup2[one,two] [] two!O;ProDup3[one,two]) 
endproc 
process ProDupl [one,two] :noexit := 

(one!succ(O);ProDup3[one,two] [] two!succ(O);ProDup2[one,two]) 
endproc 
process ProDup2 [one,two] :noexit := 

(one!succ(O);ProDupO[one,two] [] two!O;ProDupl[one,two]) 
endproc 
process ProDup3 [one,two] :noexit := 

(one!O;ProDupl[one,two] [] two!succ(O);ProDupO[one,two]) 
endproc 
endspec 

The expansion can have applications in deadlock detection, in testing, in putting 
up a tes tbed for abstract  specifications and used also for simulation of be- 
haviours. Testing consists, in LOTOS,  in specifying a test process or a test 
sequence (also in LOTOS) and obliging it synchronize with the specification un- 
der test. The result of the expansion is the results of the test.  A test is usually a 
sequence or a tree of LOTOS events terminating with a success indicating event, 
which of course must be different from any existing event of the specification 
under test. An example of such a test composition is shown below. 

( 
I [<events>]  I 
) 

SpecificationUnderTest [<events>] 
Test [<events>, SuccessEvent] 

3.2. P A R A M E T E R I Z E D  EXPANSION 
The parameterized expansion is a variation of the previous one, with two dif- 
ferences. The t reatment  of the expansion finalization and the t reatment  of the 
value expressions which is done always symbolicly. Now the expansion stops 
when a " s top" ,  an " e x i t "  or a parameterized behaviour of an existing one is 
found. By parameterized behaviour of an existing one we mean a behaviour 
which is exactly equal to the previous one except for some value expressions. 
The state exploration done is thus limited. Only states parameterized by generic 
instances of the variables are visited. 
The only ways for the da ta  values to affect the expansion is through guards, 
synchronization and selection predicates, thus the parameterized expansion must 
keep all the possible actions of every parameterization. They shall be treated 
according to this and must be rewritten to a generic normal form but  without 
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doing any substitution of variables for values such that  they are still valid for 
every possible instantiation. The values are used only for generating the actual 
parameters  of the process instantiations. 
The divergence condition for the parameterized expansion is different. Infinite 
sorts are allowed now but with respect to dynamic creation of processes the con- 
ditions are more restrictive. As a general rule, any behaviour expression that 
produces infinite transitions (from the syntactical point of view) from a partic- 
ular state or has an unbounded number of parameterized states will diverge. 
When the parameterized expansion is applied to the previous example, we obtain 
only the parameterized state exploration. As soon as a behaviour is detected 
which is equal to a previous one except for parameter  instances, the expansion 
stops. This expansion would have produced the same result in case of having 
infinitely many different values of sort "nat2". 

specification loops [one, two] :noexit 
behaviour ProDupO [one, two] (0, O) 
where 
process ProDupO [one, two] (nv_36:nat2, nv_37:nat2) :noexit := 

( one !nv_36 ; ProDupO [one, two] (succ(nv 36 ),nv_37) 
[] two !nv_37 ; ProDupO [one, two] (nv_36,succ(nv 37)) 
) 

endproc 
endspec 

One important  use of the parameterized expansion is the derivation of efficient 
implementations. Usually protocol implementations in operating systems, ker- 
nels and /o r  imperative languages are state machines which can be quiet large 
but efficient in actual Von Neumann type processors. The result of parame- 
terized expansion is just a state machine equivalent to extended automatons 
used in state descriptions and implementation of protocols. In fact the expan- 
sion process is just a precalculation of all the synchronizations possible for some 
specification, removing the overhead of having to calculate it during runtime. 

3.3. DEADLOCK DETECTION ON EXPANDED SPECIFICATIONS 
Deadlock detection can be done in any of the expanded forms. In fact they have 
been calculated during the expansion. There will be explicit deadlocks (actions 
leading to lonely stops, which means that  there are no outgoing transitions from 
those states) and invisible potential ones (in all the guards and selection predi- 
cates which may make a state equivalent to a lonely stop for some data  values). 
The potentially invisible deadlock detection can suffer from the limitations of 
rewriting, because guards and selection predicates can be explicit deadlocks not 
detected by rewriting the value expressions. Other properties as unproductive 
loops, recoverability, ... can be studied on the expanded form. 

4. i-LOOP REMOVAL 
This transformation has been conceived to be applied to the output of the 
expansions, with the purpose of reducing redundant  i actions generated during 
the expansions and thus reducing its size. The result of the expansions has a 
tree like form. The initial state is the root and some process instantiations can 
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be considered as leaves with recursion (or jumps) to parts of the fundamental 
behaviour which is the tree. 
We call "i-loops" to process definitions which have a path in the tree which 
starts at a definition and ends which a call to the same definition formed only of 
"i" actions, action prefix, alternative and process definitions or instantiations. 
Such loops represent divergent behaviour and may be potentially dangerous or 
recovering depending on the interpretation. Weak bisimulation can not differen- 
tiate both cases. But  they can be removed according to it. The transformation 
consists in the elimination of all the internal actions of the loop. This transfor- 
mation applies also other reductions like: a; i; B =:~ a; B and stop [] B =~z B. The 
internal action loop removal can not be represented by equations. The process 
done is graphically represented in figure 4. 

a --~'] 

Original behaviour 
i 

Transformed behaviour 
Figure 4: "i-loop removal" 

5. CONCLUSIONS AND F U R T H E R  W O R K  
The expansions do state exploration and are thus quite computing intensive. 
One practical limitation is related to the performance that  can be achieved 
in terms of speed and memory. The actual version of the tool is a research 
prototype,  but  in spite of this, fairly large specifications have been run on it. 
Improvements in term of performance seems possible. Actual speed is around 50 
states per second and may degrade with the type of specs. On the other hand, 
the reduction of the state space (to be explored) obtained by parameterizing it, 
allows the expansions of more complex systems. This brings this tool close to 
real systems design. More experience and more efficient version of the toot are 
needed to know how far we can get. 
Another limitation arises from the fact that  only specifications which have a 
transition system with a finite representation in the output  representation form 
can be expanded. As finite systems (except for very pathological cases) can be 
expanded this limitation seems not to be severe. On the other hand the param- 
eterized expansion can deal with infinite data  types extending its applicability 
to some types of infinite systems. 
The following developments are considered of interest: 1) Identification of new 
transformations,  like (pseudo) canonical or minimal forms or ways of interchang- 
ing operators.  2) The introduction of time following [5]. 3) Extension of a modal 
reasoning to work with da ta  values and parametrization. 

A P P E N D I X  A. THE LANGUAGE OF LOLA 
The internal language in which LOLA works is a simplified version of LOTOS 
in which the complications (overloading, nesting,..) of the static semantics 
are removed by using unique naming. At this level a specification will be a 
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BehaviourExpress ion a list of ProcessDef in i t ions  and a plain TypeDefini t ion.  
The language is described in the table below. Angle brackets means optional. 
The the LOTOS statements not existing are translated into equivalent in it. 
The semantics is similar to equivalent LOTOS constructs. 

Name 
inaction 
action prefix 

termination 
choice 
parallel 
hiding 
process definition 
process instantiation 
relabelling 
enabling 
disabling 
guard 
sum-expression 

Syntax of Behaviour Expressions 
stop 
g < d>.d~ > <  [BE] > ; B  
i ;B  
ez i t  < (El ,  ..., E~) > 
BI[]B2 
Bll[gl,...,g~]lB2 
hide gl, ..., g~ in B 

• -., gn] P Igl, < (xl : 81, .., x~ : s~) > : =  B 
P [gl, ..., g~ < (El, ..., E~) > 
B[gl/gt1, ..,gn/gln] 
B1 > >  <accept xl : sl, ..., xn : sn in> B2 
BI[> B2 
[BE]-  > B 
choice vl, .., v~[]B 

APPENDIX B. THE DEFINITION OF THE PARAMETERIZED EXPAN- 
SION. 
The parameterized expansion is a generalization of the expansion theorems, by 
allowing symbolic da ta  values. Only the parallel composition is shown, although 
expansions for enabling and disabling exist with a similar generalization in which 
the variable definition, guards and selection predicates are maintained. 
The expansion is defined for behaviours containing only sumexpresions (choice 
Xl : t l , . . . , x ~  : t~ [] B ), choice expression (B1 [] B2 ), action prefix (a; B ), 
guarded expression ( [ e ] ->  B) and action denotations with value offering (g !vl 
!v2 . . .  !v, ). This formulation is general because other LOTOS constructs can 
be expressed in term of these ones like, value acceptance, selection predicates, 
. . .  (g?x:  tiP]; B is the same as choice x :  t [ ] ( [P]-  > a!z; B)).  LOLA uses a more 
efficient version of it in which specific rules exist for every LOTOS construct, 
which does not introduce any new idea but is much longer. 
Some preprocessing, done by rewriting, is needed to prepare behaviours for the 
parameterized expansion. Standard equations of LOTOS defined in (Annex B) 
of [4] are used: choice 3, hiding ha, 5b, 6, 8, 9, 10, guarding la, lb, instantiation 
1, local definition 1, rclabelling 1, 2, 3, 3, 6, 7, 8, 11. Other  rewrite rules used, 
which are not in the s tandard are: 

choice v [] (choice v' [] B):=~ choice v.v' [] B, 
[e] - >( [e'] - >B) o [e.e 
[e]->(choice v [ ]  B) ==~ choice v [] ( [ e ] ->B) ,  
choice v [] (B1 [] B 2 ) ~  (choice v [] B1) [] (choice v [] B2), 
[e ] ->(B1 [] B2)==~ ( [e ] ->B1)  [] ( [e ] ->B2)  

Where the operation "." stands for joining boolean expressions or choice expres- 
sions ( for example (x = y) . (suc(x) + y = x) - ((x = y)and(suc(x) + y = x)) 
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(remember that = is here a boolean function) and (choicez : tl[]. choicey : t2 ==- 
choice x : tl, y : t2[]) ) and the symbol =~ stands for transform into. 
The generalized expansion theorem is as follows: Let B1 = Ei Ctt/ G/ ai; B~, 

t t 

B2 = E3 CHj Gj a j ;B j ,  and ai = g !vl. . .  lv,, aj = g' !vl . . .  !v~ ; then 

B1 ][A]] B2= 
Ci CHi Gi ai;(Bi ) [A] I B2) 

[] Cj CHj Gj aj; (B1 [ [A]I Bj) 

[] E~,S CH/,j G/,j aj; (Bi I [A]I B'j) 

V i [  gate(ai) ~ A 
V j I gate(aj) ¢ A 

~/i, 3" t gate(ai) --- gate(a/) 
A gate(ai) C A 

r ! 

where CHi,j = CH/.CHj , G/j = G~.Gj.E , E : (vl : v l , . . . ,v~ = v~) and 
t t I 

Bj : Bj[Vl/Vl, . . .  ,v,Jv.] being CH/, CH i choice expressions, G{, Gj guarded 
expressions and B~, Bj behaviours expression. Its demonstration is straightfor- 
ward. Exactly the same transitions are generated by both parts. 

R e f e r e n c e s  

[1] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS Specifications, Their 
Implementation and Their Tests. In Sixth International Workshop on Pro- 
tocol Specification, Testing and Verification, Montreal, June 1986. 

[2] H. Ehrig, W. Fey, and H. Hansen. A C T  ONE: An Algebraic Language with 
two Levels of Semantics. Technical Report, Tech. Universitat Berlin, 1983. 

[3] R. Foorgard. Reve-A Program for Generating and Analyzing Term Rewriting 
System& Technical Report MIT/LCS/TR-343, September 1984. 

[4] ISO. LOTOS a Formal Description Technique based on the Temporal Order- 
ing of Observational Behaviour. IS 8807, TC97/SC21, 1989. 

[5] D. Frutos J. Quemada, A. Azcorra. A Timed Calculus for LOTOS. Technical 
Report, March 1989. 

[6] R. Milner. A Calculus of Communicating System& Springer-Verlag, Berlin, 
1980. 

[7] R. Nicola and Hennessy, M.C.B. Testing Equivalences for Processes. Theo- 
retical Computer Science, 34(1,2):83-133, Nov 1984. 

[8] J. Quemada, A. Fernandez, and J.A. Manas. LOLA: Design and Verifica- 
tion of Protocols using LOTOS. Ibericom, Conf. on Data Communications, 
Lisbon, May 1987. 


