
STATE E X P L O R A T I O N BY T R A N S F O R M A T I O N WITH LOLA
Juan Quemada, Santiago Pav6n, Angel Fern£ndez

Depar tment of Telematic Engineering, Madrid University of Technology
ETSI Telecomunicacion, UPM, E-28040 MADRID SPAIN

Abstract

LOTOS is a Formal Description Technique developed within ISO to specify ser-
vices and protocols. This paper describes a tool for doing LOTOS to LOTOS trans-
formations. It has applications in state exploration, deadlock detection, testing, val-
idation and in design by stepwise refinement. The transformations are: expansion
(transformation of parallelism into summation and prefix); parameterized expansion;
i action removal. The transformations obtain LOTOS specifications which relate to
the original one through strong (expansion and parameterized expansion) or weak
(i-action removal) bisimuIation congruence.

1. I N T R O D U C T I O N
LOTOS [4] is a Formal Description Technique developed within ISO with the
purpose of serving as an unambiguous language for describing service and pro-
tocol standards. Its underlying models are: a process algebra derived from
CCS [6] and the abstract da ta type language ACT-ONE [2]. Different types of
relations among LOTOS specifications are available and provide a framework
for determining semantical equivalences. Observational equivalence [6], testing
equivalence [7] and implementation relation [1] seem to be the most interesting
ones. Equational properties, expansion theorems and other mathematical trans-
formations existing for the equivalences and relations mentioned give a sound
mathematical basis for performing LOTOS to LOTOS transformations which
preserve equivalence or relationship between input and output .

2. D E S C R I P T I O N OF LOLA
The LOLA (LOtos LAboratory) system is a transformational tool developed at
the Depar tment of "Ingenieda Telem£tica" of the Technical University of Madrid
for serving as an experimental environment. An earlier version is described in
[8]. It has been designed in Pascal. The current version runs on SUN systems.
At the beginning the tool was conceived for verification on labeled transition
systems generated from a LOTOS specifications, but due to the state explosion
problems appearing, compacting and parametrization was introduced as a way
to make work with bigger specifications possible. Three transformations have
been implemented in LOLA by now and others are under study. They are:
expansion, parameterized expansion, and i-action removal.
LOTOS is based on the mixture of two different models, algebraic calculi of
processes with an operational semantics and equational abstract da ta types with
an algebraic initial semantics. Thus the tool gives a different t reatment to both
parts. The data values are treated operationally by interpreting equations as
rewrite rules from left to right. Thus the tool does not process LOTOS, but an
operational version of it where equations interpreted from right to left shall be a
set of rewrite rules. These rewrite rules should be confluent and terminating for
achieving proper operation. Some Knuth-Bendix completion algorithm, like for

295

example [3], is necessary for making the da ta type definition operational. Data
values or expressions containing variables are represented always through their
normal forms.
Semantic equality exist in LOTOS as an user operation and may be used freely in
specifications. Semantic equality (=) is treated as a predefined boolean function,
called equal . Syntactic equality of ground terms after rewriting right and left
sides is used. Ext ra rewrite rules can also be given to the it. This t reatment
is complete only for ground terms. It implies working only in the equational
theory of the given data types.
LOLA deals the expressions symbolicly in many situations where some variables
remain still undefined. Symbolic processing of such expressions is equivalent to
theorem demonstration. LOLA needs to know if the predicates in guards, selec-
tion predicates or arising from synchronization conditions are equal to false or
true for any possible value of its variables, or if if depends on the variables. The
theorems of the equational theory of a data type will be found by LOLA, but
not the ones of the inductive theory of a data type. Rewriting is not enough
for demonstrat ion. Induction may be needed in some cases and undecidability
may exist in others Semiautomatic systems may be used for inductive theo-
rems demonstrat ion, like [3] through inductionless-induction or others. In the
following, except where strictly necessary, all the problems caused by the in-
completeness of rewriting with respect to the theorems of the inductive theory
will not mentioned.
The impact of this on the transformed output of the tool is the following. Trans-
formations produced by the tool will de correct, but will be not optimized in the
following sense. Some guards and some selection predicates which are equivalent
to t rue or false have not been removed (true case) or substi tuted by a stop (false
case) because rewriting has not been enough for determining it.

3. EXPANSIONS: STATE EXPLORATION
The semantics of LOTOS is defined operationally as a labeled transition system,
making state exploration straightforward. It is just the calculation of the labeled
transition system generated by a specification. The plain state space is usually
enormous even for very simple specifications. This paper describes some ways
of reducing the state space by using some form of symbolic representation of the
transitions. Two reduced explorations are presented, which have been called the
expansion and the parameterized expansion. The first one keeps the variable
definition ("even t ? x : t " .., and "cho ice x : t . . ") of a specification as such
without expanding to the choice of all the possible values of the sort. The second
reduces the state exploration to the basic behaviour states, parameterized by
generic instances of the variables of the specification, keeping also the variables
in a symbolic way.
Equational properties and the expansion theorems existing in LOTOS provide
the basis for performing the state exploration as a LOTOS to LOTOS transfor-
mation. This is very useful from the engineering point of view because it allows
an easy reuse of the resulting exploration because its just LOTOS. The tran-
sitions of a labeled transition system can be represented in LOTOS as events
which offer only data values (this means no variables). Action prefix ";" and
choice "[]" operators are also needed to represent the ordering in time of the

296

transitions. With this components trees can be constructed. Loops can be
created by process definition and instantiation.
As the representation of variables is sometimes symbolic in both expansions, the
restrictions to be hold by this variables must be kept in the transition systems.
LOTOS guard s tatement "[b o o l e a n - e x p r e s s i o n] ->" and selection predi-
cates "event ? x : t . . [P r e d i c a t e (x)]" allow the representation of such
restrictions. The example below shows graphicly such type of conditions, where
predicates are represented as labels of transitions also. This special transitions
are not real transitions, just conditions on the following ones. This examples
shows also how the variables are kept in the compressed transition system. We
will call this transitions, extended transitions. Such trees must have a unique
name for every variable across all the tree.

in ?x:tl ?y:t~

[x Less y]-~ ~y LessOrEqual x]->

out ,y~ ~ o u t ,x

in ?x:tl ?y:t2
; ([x Less y] ->

ou t !y
; stop

[] [y Less0rEqual x] ->
o u t !x

; stop
)

Figure 2: Compressed Transitions

There exist LOTOS specifications which will have an infinite transition system
also in the compressed representation, but in many cases of interest a finite
representation can be found by detecting duplicated behaviours. LOTOS spec-
ifications which have a finite number of extended transitions going out of any
state of his transition system expressed in such a compressed way and a finite
number of states, have a finite representation in terms of such constructs by du-
plicate behaviour detection. Due to the finiteness of a specification and due to
its structure, we will always find after a finite number of transitions, a "s top"
like state, an " e x i t " transition or a behaviour which is exactly equal to one
existing in the same path except for some variable names, or for some values
associated with variables of the behaviour. In the three cases we can stop the
exploration and abstract all the future behaviour by some LOTOS construct,
" s top" , " e x i t " or process definition and instantiation. In the third example
the specification buffer2 has two infinite processes (one element buffer cells) are
composed in parallel to form a two element buffer. It shows how the duplicate
behaviour detection is done. In the figure the dashed lines relate the duplicated
states in the tree (loops). This corresponds to process instantiation and defini-
tion in LOTOS. The right dashed line corresponds to DupBeh l and the left one
to DupBeh2. DupBeh2 has variable renaming but no parametrization.

SPECIFICATION buffer2 [in, out, middle] :noexit
BEHAVIOUR

(bufferl [in ,middle] I[middle]I bufferl [middle, out])
WHERE

PROCESS bufferl [in, out] :noexit :=
in 7x:data ; out !x ; bufferl [in, out]

ENDPKOC

TYPE data IS ENDTYPE
ENDSPEC

297

in ? X l : ~ t t ~ !
. I

middle !x~

out !xll ~

[x2 /x l]

Input Specification
PROCESS DupBehl [in, out, middle] :noexit ::

in ?xl:data
; DupBeh2 [in, out, middle] (xl)

ENDPROC

PROCESS DupBeh2 [in ,out. middle]
(xl:data):noexit:=

middle !xl
; (out !xl ;

; DupBehl [in , out , middle]

[] in ?x2:data
; out !xl
; DupBeh2 [in, out, middle] (x2)

)
ENDPROC

Figure 3: Output Specificatmn

3.1. EXPANSION
Expanding a specification means removing operators, such as parallelism "1 [ga te s] [
enabling ">>" or disabling "[>", substi tuting them for the equivalent transition
system. This is done by the application of the so called expansion theorems [4].
This transformation generates a new specification in a subset of LOTOS which
includes only the following operators : actions denotations, action prefix " ;" ,
alternative " [] " , choice s tatements " cho ice x : t []" , guards "[P r e d i c a t e]
->", process definition and instantiation. The transformed specification is strong
bisimulation equivalent with the original. There exist unresolvable guards which
may depend on values supplied by the environment. This implies that not all
the guards can be removed during the expansion.
The generation of the expansion stops when a "s top" is found, an " e x i t " state-
ment is found or a behaviour is found which is exactly equal (syntacticly) to a
previous one, for each branch of the expansion. When a duplicated behaviour
is found the first one is transformed into a process instantiation-definition pair,
and the duplicated one into a process instantiation one. For the termination of
the expansion only finite sorts of data values and bounded parallel, enabling or
disabling compositions are allowed. As a general rule, any behaviour expression
that produces infinite transitions starting from a state or with an infinite num-
ber of states can not be expanded. As a simple example of such a transformation
lets see the following specification.

SPECIFICATION Loops [one, two] :noexit
BEHAVIOUR (loop[one] (0) I l J loop[two] (0))
WHERE

PROCESS loop[a](n:nat2):noexit := a!n;loop[a](succ(n)) ENDPROC

TYPE Nat2 IS
SORTS
OPNS

EQNS
ENDTYPE

ENDSPEC

nat2
0 : -> nat2
succ : nat2 -> nat2
FORALL x:nat2 0FSORT nat2 succ(succ(x)) = x ;

298

The application of the expansion to this specification produces the result pre-
sented below. Notice that the natural number is modulo two such that the
expansion finishes quickly. In case of having just natural number the expansion
of this specification would not have stopped.

specification loops [one, two] :noexit
behaviour ProDupO [one, two]
where
process ProDupO [one, two] :noexit :=

(one!O;ProDup2[one,two] [] two!O;ProDup3[one,two])
endproc
process ProDupl [one,two] :noexit :=

(one!succ(O);ProDup3[one,two] [] two!succ(O);ProDup2[one,two])
endproc
process ProDup2 [one,two] :noexit :=

(one!succ(O);ProDupO[one,two] [] two!O;ProDupl[one,two])
endproc
process ProDup3 [one,two] :noexit :=

(one!O;ProDupl[one,two] [] two!succ(O);ProDupO[one,two])
endproc
endspec

The expansion can have applications in deadlock detection, in testing, in putting
up a tes tbed for abstract specifications and used also for simulation of be-
haviours. Testing consists, in LOTOS, in specifying a test process or a test
sequence (also in LOTOS) and obliging it synchronize with the specification un-
der test. The result of the expansion is the results of the test. A test is usually a
sequence or a tree of LOTOS events terminating with a success indicating event,
which of course must be different from any existing event of the specification
under test. An example of such a test composition is shown below.

(
I [<events>] I
)

SpecificationUnderTest [<events>]
Test [<events>, SuccessEvent]

3.2. P A R A M E T E R I Z E D EXPANSION
The parameterized expansion is a variation of the previous one, with two dif-
ferences. The t reatment of the expansion finalization and the t reatment of the
value expressions which is done always symbolicly. Now the expansion stops
when a " s top" , an " e x i t " or a parameterized behaviour of an existing one is
found. By parameterized behaviour of an existing one we mean a behaviour
which is exactly equal to the previous one except for some value expressions.
The state exploration done is thus limited. Only states parameterized by generic
instances of the variables are visited.
The only ways for the da ta values to affect the expansion is through guards,
synchronization and selection predicates, thus the parameterized expansion must
keep all the possible actions of every parameterization. They shall be treated
according to this and must be rewritten to a generic normal form but without

299

doing any substitution of variables for values such that they are still valid for
every possible instantiation. The values are used only for generating the actual
parameters of the process instantiations.
The divergence condition for the parameterized expansion is different. Infinite
sorts are allowed now but with respect to dynamic creation of processes the con-
ditions are more restrictive. As a general rule, any behaviour expression that
produces infinite transitions (from the syntactical point of view) from a partic-
ular state or has an unbounded number of parameterized states will diverge.
When the parameterized expansion is applied to the previous example, we obtain
only the parameterized state exploration. As soon as a behaviour is detected
which is equal to a previous one except for parameter instances, the expansion
stops. This expansion would have produced the same result in case of having
infinitely many different values of sort "nat2".

specification loops [one, two] :noexit
behaviour ProDupO [one, two] (0, O)
where
process ProDupO [one, two] (nv_36:nat2, nv_37:nat2) :noexit :=

(one !nv_36 ; ProDupO [one, two] (succ(nv 36),nv_37)
[] two !nv_37 ; ProDupO [one, two] (nv_36,succ(nv 37))
)

endproc
endspec

One important use of the parameterized expansion is the derivation of efficient
implementations. Usually protocol implementations in operating systems, ker-
nels and /o r imperative languages are state machines which can be quiet large
but efficient in actual Von Neumann type processors. The result of parame-
terized expansion is just a state machine equivalent to extended automatons
used in state descriptions and implementation of protocols. In fact the expan-
sion process is just a precalculation of all the synchronizations possible for some
specification, removing the overhead of having to calculate it during runtime.

3.3. DEADLOCK DETECTION ON EXPANDED SPECIFICATIONS
Deadlock detection can be done in any of the expanded forms. In fact they have
been calculated during the expansion. There will be explicit deadlocks (actions
leading to lonely stops, which means that there are no outgoing transitions from
those states) and invisible potential ones (in all the guards and selection predi-
cates which may make a state equivalent to a lonely stop for some data values).
The potentially invisible deadlock detection can suffer from the limitations of
rewriting, because guards and selection predicates can be explicit deadlocks not
detected by rewriting the value expressions. Other properties as unproductive
loops, recoverability, ... can be studied on the expanded form.

4. i-LOOP REMOVAL
This transformation has been conceived to be applied to the output of the
expansions, with the purpose of reducing redundant i actions generated during
the expansions and thus reducing its size. The result of the expansions has a
tree like form. The initial state is the root and some process instantiations can

300

be considered as leaves with recursion (or jumps) to parts of the fundamental
behaviour which is the tree.
We call "i-loops" to process definitions which have a path in the tree which
starts at a definition and ends which a call to the same definition formed only of
"i" actions, action prefix, alternative and process definitions or instantiations.
Such loops represent divergent behaviour and may be potentially dangerous or
recovering depending on the interpretation. Weak bisimulation can not differen-
tiate both cases. But they can be removed according to it. The transformation
consists in the elimination of all the internal actions of the loop. This transfor-
mation applies also other reductions like: a; i; B =:~ a; B and stop [] B =~z B. The
internal action loop removal can not be represented by equations. The process
done is graphically represented in figure 4.

a --~']

Original behaviour
i

Transformed behaviour
Figure 4: "i-loop removal"

5. CONCLUSIONS AND F U R T H E R W O R K
The expansions do state exploration and are thus quite computing intensive.
One practical limitation is related to the performance that can be achieved
in terms of speed and memory. The actual version of the tool is a research
prototype, but in spite of this, fairly large specifications have been run on it.
Improvements in term of performance seems possible. Actual speed is around 50
states per second and may degrade with the type of specs. On the other hand,
the reduction of the state space (to be explored) obtained by parameterizing it,
allows the expansions of more complex systems. This brings this tool close to
real systems design. More experience and more efficient version of the toot are
needed to know how far we can get.
Another limitation arises from the fact that only specifications which have a
transition system with a finite representation in the output representation form
can be expanded. As finite systems (except for very pathological cases) can be
expanded this limitation seems not to be severe. On the other hand the param-
eterized expansion can deal with infinite data types extending its applicability
to some types of infinite systems.
The following developments are considered of interest: 1) Identification of new
transformations, like (pseudo) canonical or minimal forms or ways of interchang-
ing operators. 2) The introduction of time following [5]. 3) Extension of a modal
reasoning to work with da ta values and parametrization.

A P P E N D I X A. THE LANGUAGE OF LOLA
The internal language in which LOLA works is a simplified version of LOTOS
in which the complications (overloading, nesting,..) of the static semantics
are removed by using unique naming. At this level a specification will be a

301

BehaviourExpress ion a list of ProcessDef in i t ions and a plain TypeDefini t ion.
The language is described in the table below. Angle brackets means optional.
The the LOTOS statements not existing are translated into equivalent in it.
The semantics is similar to equivalent LOTOS constructs.

Name
inaction
action prefix

termination
choice
parallel
hiding
process definition
process instantiation
relabelling
enabling
disabling
guard
sum-expression

Syntax of Behaviour Expressions
stop
g < d>.d~ > < [BE] > ; B
i ;B
ez i t < (El , ..., E~) >
BI[]B2
Bll[gl,...,g~]lB2
hide gl, ..., g~ in B

• -., gn] P Igl, < (xl : 81, .., x~ : s~) > : = B
P [gl, ..., g~ < (El, ..., E~) >
B[gl/gt1, ..,gn/gln]
B1 > > <accept xl : sl, ..., xn : sn in> B2
BI[> B2
[BE]- > B
choice vl, .., v~[]B

APPENDIX B. THE DEFINITION OF THE PARAMETERIZED EXPAN-
SION.
The parameterized expansion is a generalization of the expansion theorems, by
allowing symbolic da ta values. Only the parallel composition is shown, although
expansions for enabling and disabling exist with a similar generalization in which
the variable definition, guards and selection predicates are maintained.
The expansion is defined for behaviours containing only sumexpresions (choice
Xl : t l , . . . , x ~ : t~ [] B), choice expression (B1 [] B2), action prefix (a; B),
guarded expression ([e] -> B) and action denotations with value offering (g !vl
!v2 . . . !v,). This formulation is general because other LOTOS constructs can
be expressed in term of these ones like, value acceptance, selection predicates,
. . . (g?x: tiP]; B is the same as choice x : t [] ([P]- > a!z; B)). LOLA uses a more
efficient version of it in which specific rules exist for every LOTOS construct,
which does not introduce any new idea but is much longer.
Some preprocessing, done by rewriting, is needed to prepare behaviours for the
parameterized expansion. Standard equations of LOTOS defined in (Annex B)
of [4] are used: choice 3, hiding ha, 5b, 6, 8, 9, 10, guarding la, lb, instantiation
1, local definition 1, rclabelling 1, 2, 3, 3, 6, 7, 8, 11. Other rewrite rules used,
which are not in the s tandard are:

choice v [] (choice v' [] B):=~ choice v.v' [] B,
[e] - >([e'] - >B) o [e.e
[e]->(choice v [] B) ==~ choice v [] ([e] ->B) ,
choice v [] (B1 [] B 2) ~ (choice v [] B1) [] (choice v [] B2),
[e] ->(B1 [] B2)==~ ([e] ->B1) [] ([e] ->B2)

Where the operation "." stands for joining boolean expressions or choice expres-
sions (for example (x = y) . (suc(x) + y = x) - ((x = y)and(suc(x) + y = x))

302

(remember that = is here a boolean function) and (choicez : tl[]. choicey : t2 ==-
choice x : tl, y : t2[])) and the symbol =~ stands for transform into.
The generalized expansion theorem is as follows: Let B1 = Ei Ctt/ G/ ai; B~,

t t

B2 = E3 CHj Gj a j ;B j , and ai = g !vl. . . lv,, aj = g' !vl . . . !v~ ; then

B1][A]] B2=
Ci CHi Gi ai;(Bi) [A] I B2)

[] Cj CHj Gj aj; (B1 [[A]I Bj)

[] E~,S CH/,j G/,j aj; (Bi I [A]I B'j)

V i [gate(ai) ~ A
V j I gate(aj) ¢ A

~/i, 3" t gate(ai) --- gate(a/)
A gate(ai) C A

r !

where CHi,j = CH/.CHj , G/j = G~.Gj.E , E : (vl : v l , . . . ,v~ = v~) and
t t I

Bj : Bj[Vl/Vl, . . . ,v,Jv.] being CH/, CH i choice expressions, G{, Gj guarded
expressions and B~, Bj behaviours expression. Its demonstration is straightfor-
ward. Exactly the same transitions are generated by both parts.

R e f e r e n c e s

[1] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS Specifications, Their
Implementation and Their Tests. In Sixth International Workshop on Pro-
tocol Specification, Testing and Verification, Montreal, June 1986.

[2] H. Ehrig, W. Fey, and H. Hansen. A C T ONE: An Algebraic Language with
two Levels of Semantics. Technical Report, Tech. Universitat Berlin, 1983.

[3] R. Foorgard. Reve-A Program for Generating and Analyzing Term Rewriting
System& Technical Report MIT/LCS/TR-343, September 1984.

[4] ISO. LOTOS a Formal Description Technique based on the Temporal Order-
ing of Observational Behaviour. IS 8807, TC97/SC21, 1989.

[5] D. Frutos J. Quemada, A. Azcorra. A Timed Calculus for LOTOS. Technical
Report, March 1989.

[6] R. Milner. A Calculus of Communicating System& Springer-Verlag, Berlin,
1980.

[7] R. Nicola and Hennessy, M.C.B. Testing Equivalences for Processes. Theo-
retical Computer Science, 34(1,2):83-133, Nov 1984.

[8] J. Quemada, A. Fernandez, and J.A. Manas. LOLA: Design and Verifica-
tion of Protocols using LOTOS. Ibericom, Conf. on Data Communications,
Lisbon, May 1987.

