
Parallel Protocol Verification: The Two-Phase Algorithm and Complexity Analysis

Maria C. Yuang and A. Kershenbaum
Bell Communications Research, Inc., Piscataway, N. J.

Department of EECS, Polytechnic University, Brooklyn, N. Y.

Abstract

Protocol verification detects the existence of logic errors in protocol design specifications. Various
verification approaches have been proposed to deal with the state space explosion problem resulting
from the reachability analysis. This paper proposes a parallel protocol verification algorithm, called the
Two-Phase algorithm, in an attempt to provide a maximum of verification with a minimum of state
space. This algorithm allows verification for all FSMs to be executed in parallel through exploring
fewer states. To quantify the reduction in state space, the paper provides the state space complexity
comparison between the reachability analysis and the Two-Phase algorithm. The paper defines four
protocol models giving the lower and upper bound state space complexity according to both state and
channel synchronization characteristics of protocols. For each model, the state space complexity of
these two verification algorithms are analyzed and compared. The Two-Phase algorithm is shown to
require much smaller state space. To support the analytical result, this paper also gives experimental
results on several protocols, including the Call Set-Up and Termination phases of the CCITT X.25 and
X.75 protocols.

1. Introduction

Protocol verification [1,2,4,10,11] detects the existence of logic errors in protocol design specifications.
Various verification approaches have been proposed to deal with the state space explosion problem
resulting from the conventional reachability analysis [17]. Our previous survey [14] classified these
verification approaches into five categories: (a) closed covers [5], (b) modified reachability analysis
[13], (c) divide-and-conquer [7,12,16], (d) partial state exploration [8,9], and (e) localized approach
[3,6]. Among them, the localized approach was deemed the most promising. Formerly, approaches (in
(a)-(d)) considered an execution of all processes as a whole. The localized approach, however, considers
N executions of N processes separately [3]. That is, instead of creating one large global reachability tree,
a local expanded tree for each individual FSM is constructed and augmented with external information.
Based on the local expanded trees, protocol verification is performed.

Based on the localized approach, this paper proposes a parallel protocol verification algorithm, called
the Two-Phase algorithm. The Two-Phase algorithm constructs the expanded tree in the first phase and
performs error detection in the second phase. By separating verification into two phases, this algorithm
allows verification for all processes to be accomplished in parallel. Moreover, because the algorithm
employs a simple method of the construction of the expanded tree and a new piece of external
information, the algorithm requires smaller run-time and fewer explored states. To quantify the
reduction in state space, the paper provides the state space complexity comparison between the
teachability analysis and the Two-Phase algorithm. This, in turn, proves that our Two-Phase algorithm
requires smaller state space.

In this paper, Section 2 overviews the Two-Phase algorithm. Section 3 gives definitions of terms used in
this paper. Section 4 describes the first phase (the expanded tree construction phase), and Section 5
describes the second phase (the error detection phase) of the algorithm. Section 6 defines four protocol
models and then analyzes the state space complexity for each protocol model. Finally, Section 7
provides experimental results on several realistic protocols.

304

2. Algorithm Overview

The Two-Phase algorithm constructs the expanded tree for each process in the first phase, and performs
error detection in the second phase. By separating error detection from expanded tree construction, the
algorithm allows verification for one process to be totally independent from verification for other
processes. Verification of all processes can thus be accomplished in parallel. That is, to perform protocol
verification for N processes, N copies of the Two-Phase algorithm can be run simultaneously in an N-
processor parallel machine (see Figure 1).

N - Processor Machine

Two-Phas~
A~godthro

Processor I Processor 2 Processor N
PI = Host process P2= Host process PN = HoSt process
P2, P3, " PN= External Pt, P3, "" PN = External P~,"" PN-~ = Extemat

Process Process Process

P1 FSM P2 FSM PN FSM

P1 1 FSM P P ~FSM~

Con~tu~on Const~ction
Procedure I Procedure

I P2 Expan0e(I IPN Expan led
, ,1 T M 1 TM

Detection Detection
Procedure Procedure

Figure 1. Parallel protocol verification for N processes: the Two-Phase algorithm.

The process being verified is called the host process, and all other processes are called external
processes. The expanded tree consists of nodes and links. A node is composed of a state and the two-set
external information - the least state pair and the synched set. Links are the same as transitions in FSMs.

The first phase of the algorithm constructs the expanded tree for the host process. Starting from the
initial state of the host process, the tree is expanded, one state at a time, by adding all of the state's exit
transitions onto the tree. For each transition, a new state is generated and the two-set external
information is computed. This computation will be described in Section 4.1. The construction of the
expanded tree terminates from a given state when either the further generation from this state only
results in the repetition of a state already generated, or the further generation is not possible (e.g. errors).

The termination rules are formally described in the T/E (Termination/Error) algorithm to be discussed in
Section 4.2.

The second phase performs error detection upon the completion of the first phase. Protocol errors, such
as deadcode, deadlocks, and channel overflows, can be easily detected by the simple "look-through" of
the expanded tree. Unspecified receptions are detected by a two-rule procedure to be discussed in
Section 5.

3. Definitions

Communication protocols can be modeled as communicating FSMs consisting of processes and
channels between the processes. This model assumes FIFO and error-free channels.

305

[Definition 1]

A protocol system is defined as N FSMs {m 1, m2 ,raN }. Each FSM mi is defined by a quadruple (Si,
oi , Mi , succ), where

1. Si represents a finite set of states of process i .

2. oi e Si represents file initial state of process i .

3. Mi represents the messages from and to process i , i.e. Mi = Mij u Mj i , where Mij represents the
messages sent from process i to process j , and Mji represents the messages sent from process j to
process i .

4. succ is a partial function mapping, where succ : Si x Mi j --~ Si and Si x Mji --~ Si, from the
states and messages of mi to the states of m i . In other words, succ (s, x) specifies the transitional
state from state s after transmitting or receiving message x. If succ (s , x) = t, s is called the
f roms ta t e of transition x , denoted as from_state(x)= s, and t is called the tos ta te of transition
x , denoted as to state(x) = t. If succ (s ,x) = t and succ (t , y) = r , transition x is called an entry
transition of state t, and y an exit transition of the state.

[End of Definition 1]

In this FSM model, each process or FSM is represented by a directed labeled graph with nodes and
edges representing states and transitions, respectively. Figure 2 shows a protocol example with two
processes P 1 and P2- In the figure, circles denote states, arrows denote transitions. A minus sign "-"
shows a transmission transition while a plus sign "+" shows a reception transition. As shown in P t of
Figure 2, since succ (1 ,+4)=3 , states I and 3 are the f romsta te and to_state of transition +4,
respectively. Besides, since succ (3,+3)= 0, transition +4 is an entry transition of state 3, and transition
+3 is the exit transition of state 3.

Process Pl Process P2

4>
Figure 2. Protocol example 1.

Next, we define the expanded tree for protocols with only two processes.

[Definition 2]

The expanded tree of the host process Px is a directed labeled acyclic tree composed of an ordered pair
(V , E) where V={ni [i=1 M } represents M nodes , and E represents M - 1 links specifying the
function succ defined before. Each node i (i =the node number) is defined as a tupte (s.m ,L i , Yi),
where

1. s .m denotes the state, where s represents the state visited in the traversal of the FSM, and m is an
ordinal number that identifies a particular visit to state s during the expanded tree construction.
State s in the FSM is called the corresponding state of state s.m.

2. Li = (li , Col) is the least state pa i r of node i , where

i. Ii denotes the least state in the extemal process for state s .m. The least state in external

306

process Py for state s in host process Px is defined as the last state in external process Py
that must have been reached before state s in host process Px is reached.

ii. Col denotes the output channel for node i when the host process is at state s.m and the
external process is at state li.

3. Yi = [Yik, Cxik]k=l,w (W = a finite number) is the synched set of node i , where

i. Yik denotes the k th synched state in the external process for state s.m. A synched state in
external process Py for state s in host process Px is defined as the first state in a possible
path of the external process Py "s FSM that will eventually be reached and synchronized
with state s. A state t in P2 is said to be synchronized with state s in P 1 iff (1) all messages
transmitted by P1 before state s is reached have been received by P2 before state t is
reached, and (2) all messages received by P z before state s is reached have been sent by P2
before state t is reached.

ii. Clik denotes the input channel for node i when the host process is at state s.m and the
external process is at state Yik.

[End of Definition 2]

In Figure 3(d), for example, state 1.0 and external information L a = (0 -0 ,2) and Y2 = [2.0,O1 + [4.0,2]
compose node 2. In other words, when P2 is at state t.0, P~ must have reached state 0.0 and P~'s output
channel contains message 2. This is because message 2 sent by P 2 may or may not be received by P ~.
Besides, this node has two synched states, 2.0 and 4.0, in the synched set. The P~ 's input channel for
synched state 2.0 is empty, and the input channel for synched state 4.0 contains message 2.

i (o o. ~,)
.,I.~-- " ~ i o-o, ~1

/ / 2~ .~(~o ,~ ~ (o.o 2)

\ I+, \ 7~ 8 ".~,-) C.'r~ (,,
~(0 .1 ,¢) v [? l

IO.I, I~l

(a) P l 's expanded tree.

4.4

(c) P z's acyclic FSM.

Y
(b) P 2's acyclic FSM.

0)
-4

-3

(o.o, I)
, , . ~ . . ~ o o) [o.o. I,I

/ / / . / ~

t ! \ . \ 4
J , I \ - - Y

v Io.L 11

(d) P 2's expanded tree.

Figure 3. Protocol verification for protocol example 1 in Figure 2.

307

[Definition 3]

1. States (least states or synched states) s.m and t.n are equivalent, denoted as s.m - t.n, iff s = t.

2. Two input channels Cii) and Cm (or output channels Corn and Con) are said to be equivalent,
denoted as Cli) = CI~ (or Corn = Con), if the sequences of messages within these two channels are
the same.

3. Assuming that 14 = (li , Coi) and L i = (lj , Coy), then Li and Ly are said to be equivalent, denoted
as Li =- L j , iff li - lj and Coi = Coj .

4. Assuming that Yp =[yp i ,Ctpi]i=I,N and Yq =[YqjClqj]j=I.M, then Yp is said to be an improper
subset of Yq, denoted as Yp c Yq, iff (i) N<_M, (ii) for every i , 1 _<i < N , there exists a j ,

1 < j < M , such that yp i - Yqj and C1pi =Ctqj.

5. Assuming that Yp =[Ypi ,C~pi]i=1~v and Yq =[yqjClqj] j = l • , then Yp and Yq are said to be
equivalent, denoted as Yp - Yq, iff Yp c_ Yq and Yq c Yp.

[End of Definition 3]

For example, in Figure 3 (a), 3.1 - 3.0, L 7 ~- L 1, and Y 6 ~ Y4.

4. The Fi rs t Phase - E x p a n d e d Tree Construction

For the sake of argument, two-process protocols are assumed throughout the rest of the paper. In
addition, the external process' FSM (see Figure 3(b) or 3(c)) is shown in acyclic form. This is only for
the ease of illustration and is not required in the real implementation.

4.1 External Information

When the host process progresses from an old state to a new state due to the "transmission" of message
x, the least state of the new state remains the same. Message x is added into the output channel for the
new state. The synched states are those states to which the external process progresses after message x
has been received. All messages transmitted by the external process before receiving message x are
added into the input channel for the new state.

For example, in Figure 3(d), P2 moves to state 1.0 from state 0.0 due to the transmission of message 2.
Since message 2 may or may not received by P 1, the least state of state 1.0 remains 0.0, and the output
channel contains message 2. In addition, since there are two paths in P l ' s acyclic FSM (Figure 3(c)),

- 2 +2
X 1 = 0 -0~-~2-0 and X2 = 0.0-->1.0-+4.0, P 1 will move to either state 2.0 or state 4.0 after it has received
message 2. Thus, states 2.0 and 4.0 become the synched states. Since there is no transmission message
within path X1, the input channel for synched state 2.0 is empty. Since message 2 is the only
transmission message within path X 2, the input channel for synched state 4.0 contains message 2.

On the other hand, when the host process progresses from an old state to a new state due to the
"reception" of message x, the least state of the new state is the state to which the external process
progresses after message x has been transmitted. All messages received before message x has been
transmitted are deleted from the output channel for the new state. If the computed output channel is
empty, the synched set is the same as the least state pair for the new state. Otherwise, the computation
of the synched set is the same as that for the transmission case described above.

In Figure 3(d), for example, due to the reception of message 4, P2 moves from state 1.0 to state 3.0. The
least state of state 3.0 is state 3.0. This is because P 1 will progress to state 3.0 after message 4 has been
transmitted. The output channel becomes empty since message 2 has been received by P1 before
transmitting message 4. For the synched set of state 3.0, since Co 4 = ('~,Y4 =L4 = [3.0, O].

When the computation of the least state pair produces multiple least state pairs, the new node is split to
multiple nodes and each of them owns one least state pair. The computation of the synched set for each
new nodes can be similarly computed. When the computation of the least state pair fails, a flag
associated with each node i , called Term_flag/, is set to be "DL (Deadlock) + DC D e a d Code)" [15].

308

4.2 Tree Terminat ion - T/E Algori thm

[T/E Algorithm]

1. Terminat ion Rule
A node (s.n, Li, Yi) is called a precursor o f type t I of another node (t.m, Lj, Yj), and the second
node is said to be marked t 1, if t.m - s.n and Lj = L i . When a node is marked t 1, the construction
from this node terminates.

2. Merge Rule

A node (s.n, Li, Yi) is called a precursor o f type m I of another node (t .m, L j, Yj), and the second
node is said to be marked m 1, if t.m - s.n and Yj c_ Yi. When a node is marked m 1, the
construction from the node is said to be merged to the construction from its precursor of type m 1.

3. E r ro r Rule

A node (s . n , L i Y i) is marked e l if the least state cannot be computed and Term_flag/ =
"DL+DC". When a node is marked e 1, the construction from this node terminates.

[End of Algorithm]

In Figures 3(a) and 3(d), a curved dashed arrow links a node to its precursor of type t 1 or m 1. For
example, in Figure 3(a), according to the Termination Rule, node 1 (state 0.0) is a precursor of type t 1
of node 7 (state 0.1). According to the Merge Rule, node 4 (state 3.0) is a precursor of type m 1 of node
6 (state 3.1). Therefore, the construction of the expanded tree from nodes 7 and 6 terminate. Finally,
according to the Error Rule, node 8 (state 3.2) is marked e 1 because Term_flag8="DL" (Deadlock)
(explained in Section 4.4).

4.3 Tree-Construct ion Procedure

Variables Definitions Domain of values

Term_flag/ Termination flag for node i = NULL/DC/DL
Node_queue The FIFO queue of expandable nodes = EMPTY/NOT_EMPTY
Etr_num(s) The number of exit transitions of state s > 0
Node_num The next available node number > 0

Table 1. The variable table for Tree-Construction Procedure.

[Tree-Constructlon Procedure]

Initialize Node num= 1;
Initialize Node_queue to have initial node (0.0, (0.0,~), [0.0,~]);
Initialize the expanded tree to have root node (0.0, (0.0,O), [0.0,~]);
while (Node_queue="NOT_EMPTY") do
{ Dequeue the first node i (s.n J~i ,Yi) from Node_queue;

for Each exit transition xk, k = 1 E t r n u m (s), of the corresponding state s
do {Create a node with state t .m, i f succ (s ,x~) =t and m is the next occurrence of state t;

Add the node onto the expanded tree as a child node of node i ;
Assign Node__num to this child node, say j ;
Node_hum e - Node_num+l;
Compute the least state pair and the synched set for node j ;
i f Any of the rules in the T/E algorithm can be applied to node j

then Mark node j ;
else Add node j into Node_queue; };

if There exists at least one child node c of node i such that Term_flagc="NULL"
then for Those child nodes with Term_flag = "DL+DC" do Term_flag = "DC";
else for Those child nodes with Term_flag = "DL+DC" do Term_flag = "DL";

];

[END].

309

4.4 Example

The protocol example shown in Figure 2 has logic errors. The expanded trees for processes P 1 and P2
are shown in Figures 3(a) and 3(d), respectively. In the following, we give a step-by-step illustration of
the construction of the P l ' s expanded tree (Figure 3(a)). In this example, P 1 is the host process and P2
is the external process. The construction starts from the initial node 0.0.

1. Initialize Node_num=l, Node_queue to have initial node (0.0, (0.0,O), [0.0,O]), and the
expanded tree to have root node (0.0, (0.0,~), [0.0,~]).

2. Dequeue node 1 from Nodequeue .

3. Since node l ' s corresponding state 0 in P l 'S FSM has two exit transitions, succ(O,+2)=2 and
+2

succ (0,-2) = 1, two links and two child nodes are added onto the expanded tree (0.0 ---> 2.0 and
-2

0.0 ---> 1.0). These two nodes are assigned as node 2 and node 3, respectively. Increment
Node num (=4).

4. Compute the external information, and we get L2=(1.0 ,~) , Y2=[1.0,O], L3=(0.0,2), and
Y3 = [2.0,~].

5. Since L1 ¥ L2 ~ L3 and Y1 ~ Y2 ~ Y3, nodes 2 and 3 are not marked. Add nodes 2 and 3 into
Nodequeue .

6. Dequeue node 2 from Nodequeue .

7. Since node 2's corresponding state 2 has one exit transition, succ(2,-4)=3, one link and one
-4

child node are added onto Expanded_lxee (2.0 --+ 3.0). This node is assigned as node 4. Increment
Node_num (=5).

8. Compute the external information, we get L4 = (1.0,4) and Y4 = [3.0,~].

9. Since L4 ~ L1 ~ L2 ~ L3 and Y4 ~ Y1 ~ Y2 ~ Y3, node 4 is not marked. Add node 4 into
Nodequeue .

10. Dequeue node 3 from Node_queue.

11. Since node 3's corresponding state 1 has two exit transitions, succ (1,+2)= 4 and succ (1,+4)= 3,
+2 +4

two links and two child nodes are added onto the expanded tree (1.0 --~ 4.0 and 1.0 --~ 3.1). These
two nodes are assigned as node 5 and node 6, respectively. Increment Node_hum (=7).

12. Compute the external information, and we get L5=(1.0,2), Ys="UNKNOWN" (cannot be
computed), L6 = (3.1,O), and Y6 = [3.1,~].

13. S i n c e L s ~ L l ~ L 2 ~ L 3 ~ L 4 a n d Y s # Y i ~ Y 2 ~ Y 3 k i Y 4 , node5isnotmarked. Addnode5into
Node_queue. However, since Y6 - Y4, node 6 is marked m 1 and the construction from node 6 is
merged to the construction from node 4.

14. Dequeue node 4 from Node_queue.

15. Since node 4 's corresponding state 3 has one exit transition, succ(3,+3)=O, one link and one
+3

child node are added onto the expanded tree (3.0 ~ 0.1). This node is assigned as node 7.
Increment Node_num (=8).

16. Compute the external information, and we get L7 = (0.1,O) and Y7 = [0.1 ,~].

17. Since L 7 = L 1, node 7 is marked t 1. The construction from node 7 terminates.

18. Dequeue node 5 from Node_queue.

19. Since node 5 's corresponding state 4 has only one exit transition, succ (4,+4) = 3, one link and one
+4

child node are added onto the expanded tree (4.0 ~ 3.2). This node is assigned as node 8.
Increment Node_num (=9).

310

20. Compute the external information, and the computation fails. Node 8 is thus marked e 1. Since
node 8 is the only child node of node 5, Term_flag8="DL".

21. Since Node_queue is empty, the construction terminates.

5. The Second Phase - Error Detection

Deadcode are detected by examining the expanded tree generated in the first phase. Deadlocks are
detected by the presence of nodes flagged "DL". For example, in Figure 3(a), a deadlock is detected at
node 8. Channel overflows are detected by the presence of nodes in which the outbound channel within
the least state pair has the number of messages exceeding a predefined number (buffer size).

An unspecified reception is a reception that is executable but not specified in the FSM. It may occur in
two different situations: Unconditional Unspecified Reception (UUR), and Conditional Unspecified
Reception (CUR). A UUR represents a situation in which the reception of the first message in the
channel is not specified at a state and no further transmission from this state can be made. A CUR
represents another situation in which the reception is not specified at a state, but from this state and

through transmission transitions, the process can move to another state at which the reception of the
message is specified. UUR and CUR are detected by two roles: the Induction Rule, and the Propagation
Rule.

[Induction Rule]
Search through the expanded tree for a reception message +n such that s u c c (s . x , + n) = d . y and the
output channel of node d.y is m I + m 2 + " " ' +mp where p->l, then succ (from_state(-mi),+n)="CUR",
for i = 1 p , are created and detected.

[End of Induction Rule]

[Propagation Rule]
Search through the expanded tree for a reception message +n such that s u c c (s . x , + n) = d . y . If there
exists a path X after state s.x and before state t.r, such that succ (s .x , - m ~) = t 1, succ (t 1, - m 2) = t2

s u c C (t q _ 2 , - m q _ l) = t q _ l , and s u c c (t q _ l , - m q) = t . r , where q > l , and t.r has only reception exit
transitions, then (1) i f succ (t l , +n) does not exist, create succ (t i , +n)= "CUR", for i = 1 q - 1 and
q_> 2, and (2) if succ (t . r , +n) does not exist, create succ (t . r , +n) = "UUR".

[End of Propagation Rule]

In Figure 3(d), according to the Propagation Rule, the reception of message +2 should also be specified
at state 1.0, thus succ (1.0,+2)= "UUR" is created and detected.

6. State Space Complexity Analysis

The state-space complexity is determined by two factors: state synchronization and channel
synchronization of protocols. State synchronization defines how states in one process are synchronized
to states in another process. Based on this characteristic, protocols can be classified as either tightly-
synchronous-oriented or loosely-synchronous-oriented. Protocols which allow a state in one process to
be coexisted with a small number of states in another process are categorized as tightly-synchronous-
oriented. On the other hand, protocols which allow a state in one process to be coexisted with a large
number of states in another process are categorized as loosely-synchronous-oriented. The more loosely-
synchronous the protocol is, the larger state-space complexity the protocol requires, and vice versa.

Channel synchronization defines how the channel in one process is synchronized to the channel in
another process. For example, in Figure 7, when P 1 is at state Sr and P2 at state tr , P l'S channel may
contain different numbers of messages and so may Pz ' s channel. This occurs when contention is
detected by both process, each process will progress to its recovery state from which messages in the
channel are cleared and the system is then recovered. On the other hand, for the protocol shown in
Figure 6, when P 1 is at state sr and P 2 at state tr, P 1 may contain different numbers of messages in its
channel; whereas P2 can only have an empty channel. This occurs when errors are detected by one
process, this process then progresses to a recovery state from which messages in the channel are cleared.
The more numbers of processes which allow multiple messages in their channels a protocol has, the
larger state-space complexity the protocol requires, and vice versa.

311

Accordingly, we define four protocol models:

(a) Model 1: tightly-synchronous state synchronization model;
(b) Model 2: loosely-synchronous state synchronization model;
(c) Model 3: single channel synchronization model; and
(d) Model 4: complete channel synchronization model.

Based on the state synchronization characteristic of protocols, Model 1 gives the lower bound state-
space complexity and Model 2 gives the upper bound state-space complexity. Based on the channel
synchronization characteristic of protocols, Model 3 gives the lower bound state-space complexity and
Model 4 gives the upper bound state-space complexity. Note that, for the sake of argument, protocols
are shown with only two processes.

The state-space complexity is represented by the following sums:

S (R) = The total number of global states generated using the reachability analysis;
S (T) = The total number of local states generated using the Two-Phase algorithm.

6.1 Model 1

Model 1 (Figure 4) defines a protocol in which process Px is tightly synchronous with process Py
among k sets of coupled transitions (transmissions and corresponding receptions), where

mi = the number of coupled transitions in the ith set, and mi > 1, i = 1 to k.

Process Px Process Py

°'I:!"

mk

m,

)+] m2
)+

)
i i] ma:

m k

Figure 4. Model 1.

We compute and get:

~=1 (mi2+3mi
= +1 (1) S(R)=i~=l,(mi+2)2 (mi+l) - (k - l) = 2

S(T)=2[(ml+l)+(m2+l)+ "-" +(mk+l)-(k- l)]=2(i~=lm i + 1) . (2)

In comparison with the reachability analysis, by subtracting (1)-(2), we get

~=l(mi2-mi)
S (R) -S (T)= i= - 1 (3)

2

In (3), the state space of the two T-trees is shown to be not always smaller than that of the reachability
tree. This indicates that the Two-Phase algorithm is not favored all the time for tightly-synchronous-
oriented protocols.

312

6.2 Model 2

Model 2 (Figure 5) defines a protocol in which process Px and Py are allowed to simultaneously
transmit n and m messages, respectively, without acknowledgements, where

n = the maximum number of consecutive unacknowledged transmissions allowed for Px;
m = the maximum number of consecutive unacknowledged transmissions allowed for Py ;
and n, m >_ 1.

Process Px Process Py

L+ . - < . +J
f+A' "6+l mL~(~ ~jn

We compute and get:

Figure 5. Model 2.

S (R) = @ + @ + 2 m n + t (4)

S (T) = 2 (n +m + 1) . (5)

In comparison with the reachability analysis, by subtracting (4)-(5), we get

S (R) - S _ n 2 - n m 2 - m (T) - - - - 2 ~ + - - - 2 - ~ + 2 m n - 1 > 0 . (6)

Therefore, for Model 2, the state space of two T-trees is shown to be always smaller than that of the
teachability tree. This indicates that the Two-Phase algorithm is always favored for loosely-synchronous
protocols.

6.3 Model 3

Model 3 (Figure 6) defines a protocol in which process Px initiates an error recovery procedure from
any of the states so, s l and sm+~, by sending message a to Py, and moves to the synchronized state
st ; and process Py executes the error recovery procedure upon receiving message a , and moves to the
synchronized state tr. Consequently, when Px is at state Sr, multiple messages are allowed in its
channel; whereas when Py is at state tr, it can only have an empty channel. In this model,

m = the number of coupled transitions in the first set, before an error recovery takes place;
n = the number of coupled transitions in the second set, before an error recovery takes place; m, n _> 1.

We compute and get:

3 m 2 + n 2 + 7 m + 5 n +6
S (R) = 2

S (T) = 2 [(m + n + l) + l] .

Compared to the reachability analysis, by subtracting (7)-(8), we get

S (R) > S (T) .

(7)

(8)

(9)

313

Process Px

-a i m
+ + ~ * +

Process py

Figure 6. Model 3.

We thus prove that, for Model 3, the state space using the Two-Phase algorithm is always smaller than
that using the teachability analysis. This indicates that the Two-Phase algorithm is favored over the
teachability analysis for protocols which allow multiple messages in only one channel; or which provide
the general-error recovery capability, in practice.

6.4 Model 4

Model 4 (Figure 7) defines a protocol in which process Px starts an error recovery procedure from any
of the states s 1, s2, ..., and sn, when the process receives an unexpected message b and interprets it as a
contention, and then moves to the synchronized state Sr ; and similarly for Py. Consequently, when Px is
at state sr andPy at state tr, multiple messages are allowed in both processes' channel. In this model,

m = the maximum number of consecutive unacknowledged transmissions allowed for Py ;
n = the maximum number of consecutive unacknowledged transmissions allowed for Px;
andm, n > 1.

Process Px

tl

n-1

Process py

+ 8

° r - .

L

Figure 7. Model 4.

314

We compute and get:

S (R) = m2n2+m2n+mn2+9mn + m2+n2+m+n +2 (10)
4 2

S (T) = [m +(n + l)] + [n +(m + l)] = 2 (m +n + 1) . (t l)

Compared to the teachability analysis, by subtracting (10)-(11), we get

s (R) > > S (T) . (t2)

We thus prove that, for Model 4, the state space using the Two-Phase algorithm is much smaller tha
that using the reachabitity analysis. This indicates that the Two-Phase algorithm is favored over th
reachability analysis for protocols which allow multiple messages in both channels; or which provi&
contention-error recovery capability, in practice.

6.5 State Space Complexity Summary

Given N the number of consecutive unacknowledged transmissions, the complexity analysis yields th,
following results (Table 2):

State-Space Complexity Reachability Analysis Two-Phase Algorithm
.... I

Model 1 N 2 N
Model 2 N 2 N
Model 3 N 2 N
Model 4 N 4 N

Table 2. The state space complexity for two-process protocols.

In summary, the state space using the reachability analysis always grows non-linearly with the numbers
of states and messages in the channel. By contrast, for the Two-Phase algorithm, the state space only
grows linearly with the numbers of states and messages. Moreover, the increase of the state space will

be magnified by higher numbers of communicating processes in the protocol.

7. Experimental Results

To quantify verification state space required by the reachability analysis and the Two-Phase algorithm,
we implemented these two algorithms and conducted experiments on several realistic protocols. The
numbers of states and transitions of each protocol are listed in Table 3. The numbers of explored states
using the teachability analysis and the Two-Phase algorithm are shown in Table 4. These experimental
results show that the Two-Phase algorithm requires much fewer explored states than the reachability
anal, 'sis does.

Px states

X.75 Call Set-Up/Clearing

Px transitions

Simple Data Transfer 8 12
X.25 Call Set-Up/Clearing 7 22 7

12 69 12
68 Modified BISYNC 174

Py states Pr transitions

8 12
2I
69

68 174

Table 3. The states and transitions of experimented protocols.

315

State Space Reachabitity Analysis Two-Phase Algorithm
i Simple Data Transfer 42 18
i X.25 Call Set-Up/Clearing 111 17

Modified BISYNC 292 172
X.75 Call Set-Up/Clearing 1534 46

Table 4. The numbers of explored states for experimented protocols in Table 3.

8. Conclusions

This paper proposed a parallel protocol verification algorithm, called the Two-Phase algorithm, in an
attempt to provide a maximum of verification with a minimum of state space. The algorithm constructs
the expanded trees in the first phase and performs error detection in the second phase. By separating
expanded tree construction from error detection, the algorithm allows verification of all processes to be
accomplished in parallel. This parallelism tremendously reduces the run time for verifying protocols
with higher numbers of processes. In addition, the algorithm employs a simple tree construction
procedure and a new piece of external information, "synched states", the algorithm thus requires fewer
explored states.

This paper then provided state space complexity comparison between the reachability analysis and our
algorithm. To analyze the complexity, we defined four protocol models, giving the lower and upper
bound state space complexity according to both state and channel synchronization characteristics of the
protocols. For each model, the state space complexity of each algorithm is computed. In practice,
Model 1 applies to protocols with a high degree of interaction. Model 2 applies to protocols which
allow processes to simultaneously transmit unacknowledged messages. Model 3 applies to protocols
with the error recovery capability for handling general errors. Finally, Model 4 applies to protocols with
the error recovery capability for handling the simultaneous transmissions of messages or contention.

In summary, the state space using the reachability analysis grows polynomially when the numbers of
states and messages in the channel increase. By contrast, for the Two-Phase algorithm, the state space
only grows linearly with the numbers of states and messages. The increase of the state space will be
magnified by higher numbers of communicating processes in the protocol. To support the analytical
result shown above, we also experimented on several protocols. Our experimental results showed that,
for the X.75 protocol, the total numbers of explored states using the reachability analysis and the Two-
Phase algorithm are 1534 and 46, respectively. Results proved the superiority of Two-Phase algorithm
over the reachability analysis.

9. Acknowledgments

The authors would like to especially thank Dr. A. L. P. Chen, Dr. C. H. Chow, Dr. I. Frisch, and Dr. M.
Koblentz for their giving valuable comments and suggestions.

316

References

[1] G.V. Bochmann, "Finite State Description of Communication Protocols," Computer Networks,
Vot. 2, Oct. 1978, pp. 361-372.

[2] G.V. Bochmann and C. A. Sunshine, "Formal Methods in Communication Protocol Design,"
IEEE Trans. on Communications, Vol. COM-28, No. 4, April 1980, pp. 624-631.

[3] D. Brand and P. Zafiropulo, "On Communicating Finite-State Machines," Journal of the ACM,
Vol 30, No. 2, April 1983, pp. 323-342.

[4] A. Danthine, "Protocol Representation with Finite State Models," IEEE Trans. on
Communications, Vol. COM-28, No. 4, April 1980, pp. 632-643.

[5] M.G. Gouda, "Closed Covers: To Verify Progress of Communicating Finite State Machines,"
IEEE Trans. on Software Engineering, Nov. 1984, Vol. SE-10, No. 6, pp. 846-855.

[6] Y. Kakuda, Y. Wakahara, and M. Norigoe, "A New Algorithm For Fast Protocol Validation,"
Proc. IEEE COMPSAC, 1986, pp. 228-236.

[7] S. Lam and A. Shankar, "protocol Verification via Projections," IEEE Trans. on Software
Engineering, Vol. SE-10, No. 4, July 1984, pp. 325-342.

[8] F. Lin, P. Chu, and M. Liu, "Protocol Verification Using Reachability Analysis: The State Space
Explosion Problem and Relief Strategies," Proc. ACM SIGCOMM, Aug. 1987.

[9] N . F . Maxemchuk and K. Sabnani, "Probabilistic Verification of Communication Protocols,"
Protocol Specification, Testing, and Verification, VII, pp. 307-320, North-Holland, 1987.

[10] P .M. Merlin, "Specification and Validation of Protocols," IEEE Trans. on Communications,
VOl. COM-27, No. 11, Nov. 1979, pp. 1671-1680.

[11] "Communication Protocol Modeling," Edited by Carl A. Sunshine, Artech House.

[12] S .T . Vuong and D. D. Cowan, "A Decomposition Method for the Validation of Structured
Protocols," Proc. IEEE INFOCOM, April 1982.

[13] S .T. Vuong, D. D. Hui, and D. D. Cowan, "VALIRA - A Tool for Protocol Validation Via
Reachability Analysis," Protocol Specification, Testing, and Verification, VI. North-Holland,
1986.

[14] M. C. Yuang, "Survey of Protocol Verification Techniques Based on Finite State Machine
Models," Proc. NBS Computer Networking Symposium, 1988, pp. t64-t72.

[15] M. C. Yuang and A. Kershenbaum, "Parallel Protocol Verification Using the Localized
Approach: A Two-Phase Algorithm," Proc. Ninth International Symposium on Protocol
Specification, Testing, and Verification, 1989.

[16] P. Zafiropulo, "protocol Validation by Duologue-Matrix Analysis," IEEE Trans. Commun.
COM-26, 8(August, 1978), pp. 1187-1194.

[17] P. Zafiropulo, et al., "Towards Analyzing and Synthesizing Protocols," IEEE Trans. on
Communications, COM-28, 4(Aprit, 1980), pp. 651-661.

