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Abstract 

Protocol verification detects the existence of logic errors in protocol design specifications. Various 
verification approaches have been proposed to deal with the state space explosion problem resulting 
from the reachability analysis. This paper proposes a parallel protocol verification algorithm, called the 
Two-Phase algorithm, in an attempt to provide a maximum of verification with a minimum of state 
space. This algorithm allows verification for all FSMs to be executed in parallel through exploring 
fewer states. To quantify the reduction in state space, the paper provides the state space complexity 
comparison between the reachability analysis and the Two-Phase algorithm. The paper defines four 
protocol models giving the lower and upper bound state space complexity according to both state and 
channel synchronization characteristics of protocols. For each model, the state space complexity of 
these two verification algorithms are analyzed and compared. The Two-Phase algorithm is shown to 
require much smaller state space. To support the analytical result, this paper also gives experimental 
results on several protocols, including the Call Set-Up and Termination phases of the CCITT X.25 and 
X.75 protocols. 

1. Introduction 

Protocol verification [1,2,4,10,11] detects the existence of logic errors in protocol design specifications. 
Various verification approaches have been proposed to deal with the state space explosion problem 
resulting from the conventional reachability analysis [17]. Our previous survey [14] classified these 
verification approaches into five categories: (a) closed covers [5], (b) modified reachability analysis 
[13], (c) divide-and-conquer [7,12,16], (d) partial state exploration [8,9], and (e) localized approach 
[3,6]. Among them, the localized approach was deemed the most promising. Formerly, approaches (in 
(a)-(d)) considered an execution of all processes as a whole. The localized approach, however, considers 
N executions of N processes separately [3]. That is, instead of creating one large global reachability tree, 
a local expanded tree for each individual FSM is constructed and augmented with external information. 
Based on the local expanded trees, protocol verification is performed. 

Based on the localized approach, this paper proposes a parallel protocol verification algorithm, called 
the Two-Phase algorithm. The Two-Phase algorithm constructs the expanded tree in the first phase and 
performs error detection in the second phase. By separating verification into two phases, this algorithm 
allows verification for all processes to be accomplished in parallel. Moreover, because the algorithm 
employs a simple method of the construction of the expanded tree and a new piece of external 
information, the algorithm requires smaller run-time and fewer explored states. To quantify the 
reduction in state space, the paper provides the state space complexity comparison between the 
teachability analysis and the Two-Phase algorithm. This, in turn, proves that our Two-Phase algorithm 
requires smaller state space. 

In this paper, Section 2 overviews the Two-Phase algorithm. Section 3 gives definitions of terms used in 
this paper. Section 4 describes the first phase (the expanded tree construction phase), and Section 5 
describes the second phase (the error detection phase) of the algorithm. Section 6 defines four protocol 
models and then analyzes the state space complexity for each protocol model. Finally, Section 7 
provides experimental results on several realistic protocols. 
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2. Algorithm Overview 

The Two-Phase algorithm constructs the expanded tree for each process in the first phase, and performs 
error detection in the second phase. By separating error detection from expanded tree construction, the 
algorithm allows verification for one process to be totally independent from verification for other 
processes. Verification of  all processes can thus be accomplished in parallel. That is, to perform protocol 
verification for N processes, N copies of  the Two-Phase algorithm can be run simultaneously in an N-  
processor parallel machine (see Figure 1). 

N - Processor Machine 

Two-Phas~ 
A~godthro 

Processor I Processor 2 . . . . . .  Processor N 
PI = Host process P2= Host process PN = HoSt process 
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Detection Detection 
Procedure Procedure 

Figure 1. Parallel protocol verification for N processes: the Two-Phase algorithm. 

The process being verified is called the host process, and all other processes are called external 
processes. The expanded tree consists of nodes and links. A node is composed of a state and the two-set 
external information - the least state pair and the synched set. Links are the same as transitions in FSMs. 

The first phase of the algorithm constructs the expanded tree for the host process. Starting from the 
initial state of the host process, the tree is expanded, one state at a time, by adding all of the state's exit 
transitions onto the tree. For each transition, a new state is generated and the two-set external 
information is computed. This computation will be described in Section 4.1. The construction of the 
expanded tree terminates from a given state when either the further generation from this state only 
results in the repetition of a state already generated, or the further generation is not possible (e.g. errors). 

The termination rules are formally described in the T/E (Termination/Error) algorithm to be discussed in 
Section 4.2. 

The second phase performs error detection upon the completion of the first phase. Protocol errors, such 
as deadcode, deadlocks, and channel overflows, can be easily detected by the simple "look-through" of 
the expanded tree. Unspecified receptions are detected by a two-rule procedure to be discussed in 
Section 5. 

3. Definitions 

Communication protocols can be modeled as communicating FSMs consisting of processes and 
channels between the processes. This model assumes FIFO and error-free channels. 
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[Definition 1] 

A protocol system is defined as N FSMs {m 1, m2 .... ,raN }. Each FSM mi is defined by a quadruple (Si, 
oi ,  Mi  , succ  ), where 

1. Si represents a finite set of states of process i .  

2. oi e Si represents file initial state of  process i .  

3. Mi  represents the messages from and to process i ,  i.e. Mi = Mij  u Mj i ,  where Mij  represents the 
messages sent from process i to process j ,  and Mji  represents the messages sent from process j to 
process i .  

4. succ  is a partial function mapping, where succ : Si x Mi j  --~ Si and Si x Mji  --~ Si,  from the 
states and messages of mi to the states of m i . In other words, succ (s,  x )  specifies the transitional 
state from state s after transmitting or receiving message x. If succ ( s , x ) =  t, s is called the 
f roms ta t e  of transition x ,  denoted as from_state(x)= s,  and t is called the tos ta te  of transition 
x ,  denoted as to state(x) = t. If succ  (s ,x)  = t  and succ  ( t , y )  = r ,  transition x is called an entry 
transition of  state t, and y an exit transition of the state. 

[End of Definition 1] 

In this FSM model, each process or FSM is represented by a directed labeled graph with nodes and 
edges representing states and transitions, respectively. Figure 2 shows a protocol example with two 
processes P 1 and P2- In the figure, circles denote states, arrows denote transitions. A minus sign "-" 
shows a transmission transition while a plus sign "+" shows a reception transition. As shown in P t of 
Figure 2, since succ (1 ,+4)=3 ,  states I and 3 are the f romsta te  and to_state of transition +4, 
respectively. Besides, since succ  (3,+3)= 0, transition +4 is an entry transition of state 3, and transition 
+3 is the exit transition of  state 3. 

Process Pl Process P2 

4> 
Figure 2. Protocol example 1. 

Next, we define the expanded tree for protocols with only two processes. 

[Definition 2] 

The expanded tree of  the host process Px is a directed labeled acyclic tree composed of an ordered pair 
( V , E )  where V={ni  [ i=1 ..... M } represents M nodes ,  and E represents M -  1 links specifying the 
function succ  defined before. Each node i (i =the node number) is defined as a tupte (s.m ,L  i , Yi ), 
where 

1. s .m denotes the state, where s represents the state visited in the traversal of  the FSM, and m is an 
ordinal number that identifies a particular visit to state s during the expanded tree construction. 
State s in the FSM is called the corresponding state of state s.m. 

2. Li  = ( li , Col ) is the least  state pa i r  of node i ,  where 

i. Ii denotes the least state in the extemal process for state s .m.  The least  state in external 
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process Py for state s in host process Px is defined as the last state in external process Py 
that must have been reached before state s in host process Px is reached. 

ii. Col denotes the output channel for node i when the host process is at state s.m and the 
external process is at state li. 

3. Yi = [ Yik, Cxik ]k=l,w (W = a finite number) is the synched set of node i ,  where 

i. Yik denotes the k th synched state in the external process for state s.m. A synched state in 
external process Py for state s in host process Px is defined as the first state in a possible 
path of  the external process Py "s FSM that will eventually be reached and synchronized 
with state s.  A state t in P2 is said to be synchronized with state s in P 1 iff (1) all messages 
transmitted by P1 before state s is reached have been received by P2 before state t is 
reached, and (2) all messages received by P z before state s is reached have been sent by P2 
before state t is reached. 

ii. Clik denotes the input channel for node i when the host process is at state s.m and the 
external process is at state Yik. 

[End of Definition 2] 

In Figure 3(d), for example, state 1.0 and external information L a = (0 -0 ,2 )  and Y2 = [ 2.0,O1 + [ 4.0,2] 
compose node 2. In other words, when P2 is at state t.0, P~ must have reached state 0.0 and P~'s output 
channel contains message 2. This is because message 2 sent by P 2 may or may not be received by P ~. 
Besides, this node has two synched states, 2.0 and 4.0, in the synched set. The P~ 's  input channel for 
synched state 2.0 is empty, and the input channel for synched state 4.0 contains message 2. 

i (o o. ~,) 
.,I.~-- " ~ i  o-o, ~1 

/ /  2~ .~(~o ,~ ~ (o.o 2) 

\ I+, \ 7~ 8 ".~,-) C.'r~ (,, 
~(0 .1 ,¢ )  v [ ? l  

IO.I, I~l 

(a) P l 's  expanded tree. 

4.4 

(c) P z's acyclic FSM. 

Y 
(b) P 2's acyclic FSM. 

0) 
-4  

-3 

(o.o, I) 
, , . ~ . . ~ o o )  [o.o. I,I 

/ / / . / ~  

t ! \ .  \ 4  
J , I  \ - -  Y 

v Io.L 11 

(d) P 2's expanded tree. 

Figure 3. Protocol verification for protocol example 1 in Figure 2. 
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[Definition 3] 

1. States (least states or synched states) s.m and t.n are equivalent, denoted as s.m - t.n, iff  s = t. 

2. Two input channels Cii) and Cm (or output channels Corn and Con) are said to be equivalent, 
denoted as Cli) = CI~ (or Corn = Con), if  the sequences of messages within these two channels are 
the same. 

3. Assuming that 14 = ( li , Coi )  and L i = ( lj , Coy ), then Li and Ly are said to be equivalent, denoted 
as Li =- L j ,  iff  li - lj and Coi = Coj .  

4. Assuming that Yp =[yp i ,Ctpi ]i=I,N and Yq =[YqjClqj ]j=I.M, then Yp is said to be an improper 
subset of Yq, denoted as Yp c Yq, iff (i) N<_M, (ii) for every i ,  1 _<i < N ,  there exists a j ,  

1 < j  < M ,  such that yp i - Yqj and C1pi =Ctqj. 

5. Assuming that Yp =[Ypi ,C~pi ]i=1~v and Yq =[yqjClqj ] j = l • ,  then Yp and Yq are said to be 
equivalent, denoted as Yp - Yq, iff Yp c_ Yq and Yq c Yp. 

[End of Definition 3] 

For example, in Figure 3 (a), 3.1 - 3.0, L 7 ~- L 1, and Y 6 ~ Y4. 

4. The  Fi rs t  Phase  - E x p a n d e d  Tree  Construction 

For the sake of argument, two-process protocols are assumed throughout the rest of the paper. In 
addition, the external process'  FSM (see Figure 3(b) or 3(c)) is shown in acyclic form. This is only for 
the ease of illustration and is not required in the real implementation. 

4.1 External Information 

When the host process progresses from an old state to a new state due to the "transmission" of message 
x, the least state of  the new state remains the same. Message x is added into the output channel for the 
new state. The synched states are those states to which the external process progresses after message x 
has been received. All messages transmitted by the external process before receiving message x are 
added into the input channel for the new state. 

For example, in Figure 3(d), P2  moves to state 1.0 from state 0.0 due to the transmission of  message 2. 
Since message 2 may or may not received by P 1, the least state of  state 1.0 remains 0.0, and the output 
channel  contains message 2. In addition, since there are two paths in P l ' s  acyclic FSM (Figure 3(c)), 

- 2  +2 
X 1 = 0 -0~-~2-0 and X2 = 0.0-->1.0-+4.0, P 1 will move to either state 2.0 or state 4.0 after it has received 
message 2. Thus, states 2.0 and 4.0 become the synched states. Since there is no transmission message 
within path X1, the input channel for synched state 2.0 is empty. Since message 2 is the only 
transmission message within path X 2, the input channel for synched state 4.0 contains message 2. 

On the other hand, when the host process progresses from an old state to a new state due to the 
"reception" of message x, the least state of the new state is the state to which the external process 
progresses after message x has been transmitted. All messages received before message x has been 
transmitted are deleted from the output channel for the new state. If the computed output channel is 
empty, the synched set is the same as the least state pair for the new state. Otherwise, the computation 
of  the synched set is the same as that for the transmission case described above. 

In Figure 3(d), for example, due to the reception of message 4, P2  moves from state 1.0 to state 3.0. The 
least state of  state 3.0 is state 3.0. This is because P 1 will progress to state 3.0 after message 4 has been 
transmitted. The output channel becomes empty since message 2 has been received by P1 before 
transmitting message 4. For the synched set of state 3.0, since Co 4 = ('~,Y4 =L4 = [ 3.0, O]. 

When  the computation of  the least state pair produces multiple least state pairs, the new node is split to 
multiple nodes and each of  them owns one least state pair. The computation of the synched set for each 
new nodes can be similarly computed. When the computation of the least state pair fails, a flag 
associated with each node i ,  called Term_flag/, is set to be "DL (Deadlock) + DC D e a d  Code)" [15]. 
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4.2 Tree Terminat ion - T/E Algori thm 

[T/E Algorithm] 

1. Terminat ion Rule 
A node (s.n, Li, Yi ) is called a precursor o f  type t I of  another node (t.m, Lj,  Yj ), and the second 
node is said to be marked t 1, if t.m - s.n and Lj = L i . When a node is marked t 1, the construction 
from this node terminates. 

2. Merge Rule 

A node (s.n, Li, Yi ) is called a precursor o f  type m I of another node (t .m, L j, Yj ), and the second 
node is said to be marked m 1, if t.m - s.n and Yj c_ Yi. When a node is marked m 1, the 
construction from the node is said to be merged to the construction from its precursor of type m 1. 

3. E r ro r  Rule 

A node ( s . n , L i Y i )  is marked e l  if  the least state cannot be computed and Term_flag/ = 
"DL+DC". When a node is marked e 1, the construction from this node terminates. 

[End of Algorithm] 

In Figures 3(a) and 3(d), a curved dashed arrow links a node to its precursor of  type t 1 or m 1. For 
example, in Figure 3(a), according to the Termination Rule, node 1 (state 0.0) is a precursor of  type t 1 
of node 7 (state 0.1). According to the Merge Rule, node 4 (state 3.0) is a precursor of  type m 1 of node 
6 (state 3.1). Therefore, the construction of  the expanded tree from nodes 7 and 6 terminate. Finally, 
according to the Error Rule, node 8 (state 3.2) is marked e 1 because Term_flag8="DL" (Deadlock) 
(explained in Section 4.4). 

4.3 Tree-Construct ion Procedure  

Variables Definitions Domain of values 

Term_flag/ Termination flag for node i = NULL/DC/DL 
Node_queue The FIFO queue of  expandable nodes = EMPTY/NOT_EMPTY 
Etr_num(s ) The number of exit transitions of state s > 0 
Node_num The next available node number > 0 

Table 1. The variable table for Tree-Construction Procedure. 

[Tree-Constructlon Procedure] 

Initialize Node num= 1; 
Initialize Node_queue to have initial node (0.0, (0.0,~), [0.0,~]); 
Initialize the expanded tree to have root node (0.0, (0.0,O), [0.0,~]); 
while (Node_queue="NOT_EMPTY") do 
{ Dequeue the first node i (s.n J~i ,Yi) from Node_queue; 

for Each exit transition xk, k = 1 .... E t r n u m  (s),  of the corresponding state s 
do {Create a node with state t .m, i f succ  (s ,x~ ) =t  and m is the next occurrence of  state t; 

Add the node onto the expanded tree as a child node of  node i ;  
Assign Node__num to this child node, say j ;  
Node_hum e -  Node_num+l; 
Compute the least state pair and the synched set for node j ;  
i f  Any of the rules in the T/E algorithm can be applied to node j 

then Mark node j ;  
else Add node j into Node_queue; }; 

if  There exists at least one child node c of node i such that Term_flagc="NULL" 
then for Those child nodes with Term_flag = "DL+DC" do Term_flag = "DC"; 
else for Those child nodes with Term_flag = "DL+DC" do Term_flag = "DL"; 

]; 

[END]. 
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4.4 Example 

The protocol example shown in Figure 2 has logic errors. The expanded trees for processes P 1 and P2 
are shown in Figures 3(a) and 3(d), respectively. In the following, we give a step-by-step illustration of 
the construction of  the P l ' s  expanded tree (Figure 3(a)). In this example, P 1 is the host process and P2 
is the external process. The construction starts from the initial node 0.0. 

1. Initialize Node_num=l,  Node_queue to have initial node (0.0, (0.0,O), [0.0,O]), and the 
expanded tree to have root node (0.0, (0.0,~), [0.0,~]). 

2. Dequeue node 1 from Nodequeue .  

3. Since node l ' s  corresponding state 0 in P l 'S  FSM has two exit transitions, succ(O,+2)=2 and 
+2 

succ (0,-2) = 1, two links and two child nodes are added onto the expanded tree (0.0 ---> 2.0 and 
-2 

0.0 ---> 1.0). These two nodes are assigned as node 2 and node 3, respectively. Increment 
Node num (=4). 

4. Compute the external information, and we get L2=(1.0 ,~) ,  Y2=[1.0,O], L3=(0.0,2), and 
Y3 = [2.0,~]. 

5. Since L1 ¥ L2 ~ L3 and Y1 ~ Y2 ~ Y3, nodes 2 and 3 are not marked. Add nodes 2 and 3 into 
Nodequeue .  

6. Dequeue node 2 from Nodequeue .  

7. Since node 2's corresponding state 2 has one exit transition, succ(2,-4)=3, one link and one 
-4 

child node are added onto Expanded_lxee (2.0 --+ 3.0). This node is assigned as node 4. Increment 
Node_num (=5). 

8. Compute the external information, we get L4 = (1.0,4) and Y4 = [3.0,~]. 

9. Since L4 ~ L1 ~ L2 ~ L3 and Y4 ~ Y1 ~ Y2 ~ Y3, node 4 is not marked. Add node 4 into 
Nodequeue .  

10. Dequeue node 3 from Node_queue. 

11. Since node 3's corresponding state 1 has two exit transitions, succ (1,+2)= 4 and succ (1,+4)= 3, 
+2 +4 

two links and two child nodes are added onto the expanded tree (1.0 --~ 4.0 and 1.0 --~ 3.1). These 
two nodes are assigned as node 5 and node 6, respectively. Increment Node_hum (=7). 

12. Compute the external information, and we get L5=(1.0,2), Ys="UNKNOWN" (cannot be 
computed), L6 = (3.1,O), and Y6 = [3.1,~]. 

13. S i n c e L s ~ L l ~ L 2 ~ L 3 ~ L 4 a n d Y s # Y i ~ Y 2 ~ Y 3 k i Y 4 ,  node5isnotmarked. Addnode5into 
Node_queue. However, since Y6 - Y4, node 6 is marked m 1 and the construction from node 6 is 
merged to the construction from node 4. 

14. Dequeue node 4 from Node_queue. 

15. Since node 4 's  corresponding state 3 has one exit transition, succ(3,+3)=O, one link and one 
+3 

child node are added onto the expanded tree (3.0 ~ 0.1). This node is assigned as node 7. 
Increment Node_num (=8). 

16. Compute the external information, and we get L7 = (0.1,O) and Y7 = [0.1 ,~].  

17. Since L 7 = L 1, node 7 is marked t 1. The construction from node 7 terminates. 

18. Dequeue node 5 from Node_queue. 

19. Since node 5 's  corresponding state 4 has only one exit transition, succ (4,+4) = 3, one link and one 
+4 

child node are added onto the expanded tree (4.0 ~ 3.2). This node is assigned as node 8. 
Increment Node_num (=9). 
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20. Compute the external information, and the computation fails. Node 8 is thus marked e 1. Since 
node 8 is the only child node of node 5, Term_flag8="DL". 

21. Since Node_queue is empty, the construction terminates. 

5. The Second Phase - Error Detection 

Deadcode are detected by examining the expanded tree generated in the first phase. Deadlocks are 
detected by the presence of  nodes flagged "DL". For example, in Figure 3(a), a deadlock is detected at 
node 8. Channel overflows are detected by the presence of nodes in which the outbound channel within 
the least state pair has the number of messages exceeding a predefined number (buffer size). 

An unspecified reception is a reception that is executable but not specified in the FSM. It may occur in 
two different situations: Unconditional Unspecified Reception (UUR), and Conditional Unspecified 
Reception (CUR). A UUR represents a situation in which the reception of the first message in the 
channel is not specified at a state and no further transmission from this state can be made. A CUR 
represents another situation in which the reception is not specified at a state, but from this state and 

through transmission transitions, the process can move to another state at which the reception of the 
message is specified. UUR and CUR are detected by two roles: the Induction Rule, and the Propagation 
Rule. 

[Induction Rule] 
Search through the expanded tree for a reception message +n such that s u c c ( s . x , + n ) = d . y  and the 
output channel of node d.y  is m I + m 2 + " " ' +mp where p->l, then succ  (from_state(-mi),+n)="CUR", 
for i = 1 .... p ,  are created and detected. 

[End of Induction Rule] 

[Propagation Rule] 
Search through the expanded tree for a reception message +n such that s u c c ( s . x , + n ) = d . y .  If there 
exists a path X after state s.x and before state t.r, such that succ  (s .x ,  - m  ~ ) = t 1, succ  ( t 1, - m  2) = t2 . . . . .  

s u c C ( t q _ 2 , - m q _ l ) = t q _ l ,  and s u c c ( t q _ l , - m  q ) = t . r ,  where q > l ,  and t.r has only reception exit 
transitions, then (1) i f  succ  ( t l ,  +n ) does not exist, create succ  ( t i ,  +n )= "CUR", for i = 1 .... q - 1  and 
q_> 2, and (2) if succ  ( t . r ,  +n ) does not exist, create succ ( t . r ,  +n ) = "UUR". 

[End of Propagation Rule] 

In Figure 3(d), according to the Propagation Rule, the reception of message +2 should also be specified 
at state 1.0, thus succ  (1.0,+2)= "UUR" is created and detected. 

6. State Space Complexity Analysis 

The state-space complexity is determined by two factors: state synchronization and channel 
synchronization of protocols. State synchronization defines how states in one process are synchronized 
to states in another process. Based on this characteristic, protocols can be classified as either tightly- 
synchronous-oriented or loosely-synchronous-oriented. Protocols which allow a state in one process to 
be coexisted with a small number of states in another process are categorized as tightly-synchronous- 
oriented. On the other hand, protocols which allow a state in one process to be coexisted with a large 
number of states in another process are categorized as loosely-synchronous-oriented. The more loosely- 
synchronous the protocol is, the larger state-space complexity the protocol requires, and vice versa. 

Channel synchronization defines how the channel in one process is synchronized to the channel in 
another process. For example, in Figure 7, when P 1 is at state Sr and P2 at state tr ,  P l'S channel may 
contain different numbers of  messages and so may Pz ' s  channel. This occurs when contention is 
detected by both process, each process will progress to its recovery state from which messages in the 
channel are cleared and the system is then recovered. On the other hand, for the protocol shown in 
Figure 6, when P 1 is at state sr and P 2 at state tr, P 1 may contain different numbers of messages in its 
channel; whereas P2 can only have an empty channel. This occurs when errors are detected by one 
process, this process then progresses to a recovery state from which messages in the channel are cleared. 
The more numbers of  processes which allow multiple messages in their channels a protocol has, the 
larger state-space complexity the protocol requires, and vice versa. 
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Accordingly, we define four protocol models: 

(a) Model 1: tightly-synchronous state synchronization model; 
(b) Model 2: loosely-synchronous state synchronization model; 
(c) Model 3: single channel synchronization model; and 
(d) Model 4: complete channel synchronization model. 

Based on the state synchronization characteristic of protocols, Model 1 gives the lower bound state- 
space complexity and Model 2 gives the upper bound state-space complexity. Based on the channel 
synchronization characteristic of protocols, Model 3 gives the lower bound state-space complexity and 
Model 4 gives the upper bound state-space complexity. Note that, for the sake of argument, protocols 
are shown with only two processes. 

The state-space complexity is represented by the following sums: 

S (R)  = The total number of global states generated using the reachability analysis; 
S (T)  = The total number of local states generated using the Two-Phase algorithm. 

6.1 Model 1 

Model 1 (Figure 4) defines a protocol in which process Px is tightly synchronous with process Py 
among k sets of coupled transitions (transmissions and corresponding receptions), where 

mi = the number of coupled transitions in the ith set, and mi > 1, i = 1 to k. 

Process Px Process Py 

°'I:!" 

mk 

m, 

)+] m2 
)+ 

) 
i i ]  ma: 

m k 

Figure 4. Model 1. 

We compute and get: 

~=1 (mi2+3mi 
= +1 (1) S(R)=i~=l,(mi+2)2 (mi+l)  - ( k - l ) =  2 

S(T)=2[(ml+l )+(m2+l)+ "-" +(mk+l)-(k- l)]=2(i~=lm i + 1 ) .  (2) 

In comparison with the reachability analysis, by subtracting (1)-(2), we get 

~=l(mi2-mi ) 
S (R ) -S  (T )=  i= - 1  (3) 

2 

In (3), the state space of the two T-trees is shown to be not always smaller than that of the reachability 
tree. This indicates that the Two-Phase algorithm is not favored all the time for tightly-synchronous- 
oriented protocols. 
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6.2 Model 2 

Model 2 (Figure 5) defines a protocol in which process Px and Py are allowed to simultaneously 
transmit n and m messages, respectively, without acknowledgements, where 

n = the maximum number of consecutive unacknowledged transmissions allowed for Px; 
m = the maximum number of  consecutive unacknowledged transmissions allowed for Py ; 
and n, m >_ 1. 

Process Px Process Py 

L+ . - < .  +J 
f+A' "6+l mL~( ~ ~jn 

We compute and get: 

Figure 5. Model 2. 

S ( R ) = @ + @ + 2 m n + t  (4) 

S ( T ) = 2 ( n  +m + 1 )  . (5) 

In comparison with the reachability analysis, by subtracting (4)-(5), we get 

S ( R ) - S  _ n 2 -  n m 2 -  m ( T ) - - - - 2 ~ + - - - 2 - ~ + 2 m  n - 1  > 0  . (6) 

Therefore, for Model 2, the state space of two T-trees is shown to be always smaller than that of the 
teachability tree. This indicates that the Two-Phase algorithm is always favored for loosely-synchronous 
protocols. 

6.3 Model 3 

Model 3 (Figure 6) defines a protocol in which process Px initiates an error recovery procedure from 
any of  the states so, s l  .. . . .  and sm+~, by sending message a to Py, and moves to the synchronized state 
st ; and process Py executes the error recovery procedure upon receiving message a ,  and moves to the 
synchronized state tr. Consequently, when Px is at state Sr, multiple messages are allowed in its 
channel; whereas when Py is at state tr, it can only have an empty channel. In this model, 

m = the number of coupled transitions in the first set, before an error recovery takes place; 
n = the number of coupled transitions in the second set, before an error recovery takes place; m, n _> 1. 

We compute and get: 

3 m 2 + n 2 + 7 m  + 5 n  +6  
S ( R ) =  2 

S ( T ) = 2 [ ( m + n + l ) + l ]  . 

Compared to the reachability analysis, by subtracting (7)-(8), we get 

S ( R ) > S ( T )  . 

(7) 

(8) 

(9) 
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Process Px 

-a i m 
+ + ~ * + 

Process py 

Figure 6. Model 3. 

We thus prove that, for Model 3, the state space using the Two-Phase algorithm is always smaller than 
that using the teachability analysis. This indicates that the Two-Phase algorithm is favored over the 
teachability analysis for protocols which allow multiple messages in only one channel; or which provide 
the general-error recovery capability, in practice. 

6.4 Model 4 

Model 4 (Figure 7) defines a protocol in which process Px starts an error recovery procedure from any 
of the states s 1, s2, ..., and sn, when the process receives an unexpected message b and interprets it as a 
contention, and then moves to the synchronized state Sr ; and similarly for Py. Consequently, when Px is 
at state sr andPy at state tr, multiple messages are allowed in both processes' channel. In this model, 

m = the maximum number of consecutive unacknowledged transmissions allowed for Py ; 
n = the maximum number of  consecutive unacknowledged transmissions allowed for Px; 
andm, n >  1. 

Process Px 

tl 

n-1 

Process py 

+ 8  

° r - .  

L 

Figure 7. Model 4. 
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We compute and get: 

S ( R ) =  m2n2+m2n+mn2+9mn + m2+n2+m+n +2 (10) 
4 2 

S ( T ) = [ m  +(n  + l ) ] + [ n  +(m + l ) ] = 2 ( m  +n + 1 ) .  ( t l )  

Compared to the teachability analysis, by subtracting (10)-(11), we get 

s ( R ) > > S  ( T ) .  (t2) 

We thus prove that, for Model 4, the state space using the Two-Phase algorithm is much smaller tha 
that using the reachabitity analysis. This indicates that the Two-Phase algorithm is favored over th 
reachability analysis for protocols which allow multiple messages in both channels; or which provi& 
contention-error recovery capability, in practice. 

6.5 State Space Complexity Summary 

Given N the number of consecutive unacknowledged transmissions, the complexity analysis yields th, 
following results (Table 2): 

State-Space Complexity Reachability Analysis Two-Phase Algorithm 
.... I 

Model 1 N 2 N 
Model 2 N 2 N 
Model 3 N 2 N 
Model 4 N 4 N 

Table 2. The state space complexity for two-process protocols. 

In summary, the state space using the reachability analysis always grows non-linearly with the numbers 
of states and messages in the channel. By contrast, for the Two-Phase algorithm, the state space only 
grows linearly with the numbers of states and messages. Moreover, the increase of the state space will 

be magnified by higher numbers of communicating processes in the protocol. 

7. Experimental Results 

To quantify verification state space required by the reachability analysis and the Two-Phase algorithm, 
we implemented these two algorithms and conducted experiments on several realistic protocols. The 
numbers of states and transitions of each protocol are listed in Table 3. The numbers of explored states 
using the teachability analysis and the Two-Phase algorithm are shown in Table 4. These experimental 
results show that the Two-Phase algorithm requires much fewer explored states than the reachability 
anal, 'sis does. 

Px states 

X.75 Call Set-Up/Clearing 

Px transitions 

Simple Data Transfer 8 12 
X.25 Call Set-Up/Clearing 7 22 7 

12 69 12 
68 Modified BISYNC 174 

Py states Pr transitions 

8 12 
2I 
69 

68 174 

Table 3. The states and transitions of experimented protocols. 
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State Space Reachabitity Analysis Two-Phase Algorithm 
i Simple Data Transfer 42 18 
i X.25 Call Set-Up/Clearing 111 17 

Modified BISYNC 292 172 
X.75 Call Set-Up/Clearing 1534 46 

Table 4. The numbers of explored states for experimented protocols in Table 3. 

8. Conclusions 

This paper proposed a parallel protocol verification algorithm, called the Two-Phase algorithm, in an 
attempt to provide a maximum of verification with a minimum of state space. The algorithm constructs 
the expanded trees in the first phase and performs error detection in the second phase. By separating 
expanded tree construction from error detection, the algorithm allows verification of all processes to be 
accomplished in parallel. This parallelism tremendously reduces the run time for verifying protocols 
with higher numbers of processes. In addition, the algorithm employs a simple tree construction 
procedure and a new piece of external information, "synched states", the algorithm thus requires fewer 
explored states. 

This paper then provided state space complexity comparison between the reachability analysis and our 
algorithm. To analyze the complexity, we defined four protocol models, giving the lower and upper 
bound state space complexity according to both state and channel synchronization characteristics of the 
protocols. For each model, the state space complexity of each algorithm is computed. In practice, 
Model 1 applies to protocols with a high degree of interaction. Model 2 applies to protocols which 
allow processes to simultaneously transmit unacknowledged messages. Model 3 applies to protocols 
with the error recovery capability for handling general errors. Finally, Model 4 applies to protocols with 
the error recovery capability for handling the simultaneous transmissions of messages or contention. 

In summary, the state space using the reachability analysis grows polynomially when the numbers of 
states and messages in the channel increase. By contrast, for the Two-Phase algorithm, the state space 
only grows linearly with the numbers of states and messages. The increase of the state space will be 
magnified by higher numbers of communicating processes in the protocol. To support the analytical 
result shown above, we also experimented on several protocols. Our experimental results showed that, 
for the X.75 protocol, the total numbers of explored states using the reachability analysis and the Two- 
Phase algorithm are 1534 and 46, respectively. Results proved the superiority of Two-Phase algorithm 
over the reachability analysis. 
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