
VERIFICATION OF SYNCHRONOUS SEQUENTIAL MACHINES 

BASED ON SYMBOLIC EXECUTION 

Olivier COUDERT, Christian BERTHET, Jean Christophe MADRE 

BULL Research Center, P.C. 58B 

68 Route de Versailles, 78430 Louveciennes, FRANCE 

Abstract 

This paper presents an original method to compare two synchronous sequential machines. The method 

consists in a breadth first traversal of the product machine during which symbolic expressions of its 

observable behaviour are computed. ~Iqae method uses formal manipulations on boolean functions to 

avoid the state enumeration and diagram construction. For this purpose, new algorithms on boolean 

functions represented by Typed Decision Graphs has been defined. 

1. Introduction 

The VLSI circuits designers must produce zero-defect circuits because prototyping is a much too 

expensive way of debugging circuits [1]. For several reasons, the main of which being the need for high 

performances, few automated synthesis tools are used. Thus, the emphasis is put on verification 

techniques. On the other hand, the need for zero-defect design requires a complete and exhaustive 

verification which cannot be achieved by simulation means because of the combinational complexity. 

Formal verification of hardware consists in comparing a circuit realization (hardware device) with a 

specification (expected behavior). Within BULL's design methodology, circuits are described using the 

hardware description language LDS [10], which is very similar to procedural VHDL [2]. A behavioral 

description of a circuit using LDS is a procedural program which computes in a clock cycle the output 

functions of the circuit and the excitation functions of its storage elements. Several tools have been 

developed at BULL to extract behavioural descriptions from structural (at layout, transistor or gate levels) 

descriptions [t3]. This extraction process produces an LDS program which translates exactly the 

functional behavior of the realized circuit. Thus from our point of view, the formal verification of a 

circuit consists in comparing two LDS programs, the LDS program obtained through the extraction tools, 

called the realization, and another LDS program, called the specification. 

A powerful formal verifier called PRIAM has been designed at BULL's Research Center and 

developed at BULL's CAD Division [4] [111. PRIAM can handle industrial circuits such as 64 bits ALU's 

and other data-path operators with up to 40000 transistors. The core of PRIAM is a powerful theorem 



366 

prover in propositional logic [12]. Boolean expressions are represented by Typed Decision Graphs 

(TDG) [3], the most compact representation currently known. 

PRIAM has a severe limitation: it is able to compare a specification program with the realization only 

if both programs have the same registers and the same state encoding. Frequently this requirement is not 

satisfied, because the realization and the specification have generally not the same hierarchical structure 

and the state variables do not coincide. The verification process performed by PRIAM had to be extended 

to a more general problem: the comparison of two sequential machines, the specification and the 

realization, each one using its own set of memory elements. 

2. Formal Proof of Synchronous Sequential Machines 

For the sake of clarity, we study here the problem of equivalence between two completely specified 

machines. The more general problem of implication between two incompletely specified machines can be 

treated in the same way by adapting some definitions. 

A deterministic finite state machine Mis  defined by the 6-tupte (Z, O, S, s 0, 6, 9~) where Z is the 

input alphabet, O the output alphabet, S the finite set of states, so the initial state, ~ the transition function 

from S x Z to S, and ~. the output function from S x Z to O [8]. The output sequence z I ... Zn generated 

by Mfrom the state so when reading the input sequence Xl ... Xn is such that for 1 <_ k < n, z k = ~.(Sk.l,Xk ) 

and Sk = ~ ( S k _ l , X k ) .  For two machines M1 and M2 operating on the same input and output alphabets, we 

say that MI is equivalent to M2 iff for each input sequence xl ... Xn of Z*, M1 and M2 generate the same 

output sequence Zl ... Zn of O*. 

The usual method to prove the equivalence between the machines M1 = (Z, O, 81, )~1, S1, s01) and 

M2 = (Z, O, 52, ~,2, $2, s02) consists in building the product machine M= (E, {True, False}, 5, )~, S, s 0) 

where we have S =clef $1 x $2, so =def (s01, s02), the output ).((s 1, s2),x) =clef (LI(Sl, x) - ~-2(s2, x)) and the 

transition function 5((s I, s2), x) =def (~l(Sl, x), ~(s2, x)). Then the machines Mt and M2 are equivalent 

iff for every transition of M that can be reached from the initial product state (s01, s02), the machine M 

produces the output True. This method derives from the one to compare two finite state recognizers [8]. 

2.1. Breadth First Execution of a Sequential Machine 

The explicit construction of the product machine is a very time and memory consuming operation 

[14]. Several methods have been proposed to enumerate the states of this machine without building it. 

As far as we know, only the depth first enumeration has been used [6] [9]. In this section, we propose a 

proof method based on breadth first traversal. We then show how this algorithm supports symbolic 

manipulations. 

The comparison algorithm of two finite state machines using a breadth first execution of the 

product machine is shown in Figure 1. It considers all the states and transitions reachable from the set 

M. i n i t  of initial states. If the two machines are equivalent, the execution process stops when no new 



367 

product state is reached (statement 7), and the variable k then is the length of the longest acyclic path of 

the product machine starting from an initial state. Note that the proof remains correct if the set of states 

From with which the next set of reached states Y is computed contains any already discovered state 

belonging to R e a c h e d .  S o  the s tatement  " F r o m  := New" can  be replaced by " c h o o s e  From i n  s u c h  a 

way that New c From C Reached". 

f u n c t i o n  prove(M : Finite-State-Machine) : boolean; 

var k : int; 

From, Reached, Y, New : Set-Of-States; 

Z : Set-Of-Outputs; 

X : Set-Of-Inputs; 

begin 

k := 0; New := M.init; Reached := New; 

do loop 

From := New; 

X := new-inputs (k) ; 

Z := {l(y, x) / y • From, x • X}; 

If Z # {True} then return(False); 

Y := {~(y, x) / y • From, x • X}; 

New := Y \ Reached; 

if New = O then return(True); 

Reached := Reached • New; 

k := k + 1 

endloop; 

end; 

/* I: the states to be verified. */ 

/* 2: new set of inputs. */ 

/* 3: compute generated ouputs. */ 

/* 4: are the ouputs corrects? */ 

/* 5: compute the reached states. */ 

/* 6: set difference. */ 

/* 7: test to empty set. */ 

/* 8: set union. */ 

Figure 1. Breadth First Execution of the Product Machine for Comparison. 

To compute the set of states Y and the generated ouputs z, the enumeration of each input pattern of 

x and each state of From cannot be used for large machines because of the combinational explosion. In 

the same way, the set operations cannot be performed by set enumeration. In the following sections, we 

show how formal manipulations on boolean functions can solved these problems. Thus no enumeration 

will be performed. Moreover the underlying representation of boolean functions that we used is based on 

the Typed Decision Graphs which is the most efficient representation of boolean functions [3]. 

2.2. Symbolic Breadth First Execution 

Since the two machines described by their LDS descriptions (the realization Pr and the specification 

Ps) are synchronous, the LDS description of the product machine is directly obtained by merging the two 

programs assuming that they have the same interface, and by defining the ouput function by the boolean 

function Z =clef (Zs - Z r) where Zs and Zr are the output functions of Ps and Pr. 

In an LDS program the state encoding as well as the input and the output are boolean vectors', that 

is Z = {True, False} n, O = {Tree, False}m, S = {True, False}P if the program has n inputs, m outputs and 

p state variables (that is LDS registers). In the same way, 8 and k are vectorial boolean functions, and 

they are obtained by symbolic execution of the program [4] [11]. So from the symbolic boolean vectors 

From and x we obtain the symbolic boolean vectors Y and z. This means that we treat all the transitions 

and states reachable from the symbolic state From by using only one formal operation. In particular, no 



368 

explicit state or input enumeration is performed, and the symbolic execution replaces the statements 2, 3 

and 5 of Figure 1. We  describe in the next section how a boolean vector denotes a unique set and the 

formal manipulations on boolean functional vectors used to perform the set operations. 

2.3. Set Manipulations: Conver t ing  a Funct ional  Vector  into a Set Characteristic Function 

From here, we note [fl --- fn] the vector whose k-th component is fk, i denotes an interpretation, and 

t is the set of the interpretations. A boolean expression e(yl ... Yn) is a function from {True, False}n to 

{Tree, False}. It defines a subset z(e) of {True, False} n by considering e as its characteristic function: 

Z(e) =def {i([yl .-. Yn]) / I=i e(yl . . . . .  Yn)}. The manipulations on sets described by their characteristic 

functions are trivial. For example, we have ~(el) L) z(e2) = Z(el v e2), X(el) \ x(e2) = z(e t  ^ ~ e2), 

z ( e ) = O  fff I = ~ e ,  etc. 

A functional boolean vector F = [fl ... fn] is a function from I to {True, False}n. We say that F 

defines a subset Set(F) of { True, False } n by Set(F) =def F( t ) .  Until now, we do not know how to perform 

all the set operations directly on functional vectors, so we must convert them to the boolean expressions 

denoting the same set to treat the statements 4, 6, 7 and 8. Let e(yl .. . . .  Yn) be the characteristic function 

of the set denoted by the functional vector F. We can assume that F uses the variables {Xl . . . . .  Xm} all 

different from {Yl ..... Yn}. The equation Set(F) = z(e) is translated by the boolean equation: 

'ffYl "'" VYn, e(yl ..... Yn) ca, (3x 1 ... 3Xm, (Yl = f l )  ^ "-- ^ (Yn - fn)) 

We use the equation solving facility on the TDG's  [5] [12] to compute the function e: we perform 

an existential abstraction [5] of each variable Xk on the formula F =clef ((Yl = f l)  A ... A (Yn - fn))- 

Assuming that the variables {Yl ..... Yn} are interpreted before those used by F, Figure 2a shows the TDG 

(noted tree) of F. 

1 0 1 

Figure 2b 

Figure 2a 
0 1 

pa r t  using the  var iables  Yl . . . . .  Yn 

par t  using o ther  var iables  

Figure 2. Computing the Characteristic Function of a Boolean Functional Vector. 



369 

The TDG of e given in Figure 2b is directly built from tree according to the type of each path starting 

from the root of  tree: 

- The path (a) reachs a leaf evaluated to True without meeting a variable used by F. This path defines a 

set of interpretations of  {Yl . . . . .  yn} such that for each interpretation of {Xl . . . . .  Xm}, 17 is satisfied. 

Then for this path e(yl ..... Yn) is satisfied, so we associate a leaf evaluated to True to (a). 

- The path (b) reachs a leaf evaluated to False without meeting a variable used by F. This path defines a 

set of interpretations of {Yl . . . . .  Yn} for which there is no interpretation of {Xl . . . . .  Xm} satisfying 

Then for this path e(yl ..... yn) does not hold, so a leaf evaluated to False is associated to (b). 

- The path (c) meets a variable used by F. Because of the canonicity of the TDG's,  there exists at least 

one subpatb (d) in the subtree starting from this variable that reachs a leaf evaluated to True. It results 

that for the set of interpretations of {Yl, ---, Yn} defined by (c), the path (d) provides some 

interpretation of {Xl ..... Xm} satisfying 5 r. Then for the path (c) e(yl .. . . .  Yn) is satisfied, so the subtree 

is replaced by a leaf evaluated to True. 

For example, consider the functional vector F = [(xt v x2) (Xl • x2)]. We have 

Set(F) = {[True False], [True True], [False False]}, and its characteristic function e = (Yl v ~ Y2) is 

obtained directly by using the algorithm described above. 

2.4.  S i m p l i f y i n g  a b o o l e a n  f u n c t i o n  u n d e r  a c o n s t r a i n t  

As previously stated, it is desirable to find the most fitted set of states From defined by "choose 

F r o m  i n  s u c h  a w a y  t h a t  New C F r o m  c R e a c h e d "  in the general algorithm of Figure 1. In this 

algorithm, New and Reached are boolean expressions, that is characteristic functions. On the other hand, 

and 8 are vectorial boolean functions and x, From, Z and Y are functional vectors. Our aim is to find a 

functional vector From respecting the condition X(New) C Set(From) C X(Reached) and having a 

functional complexity as low as possible, that is the most compact possible tree representation. 

We  consider here the general problem of simplifying a function f under a constraint c. This means 

that we want to find a function noted f/c such that f and f/c are equal on the domain defined by the 

constraint c, that is (E) I = c ~ (f/c - f), and the TDG of f/c has a size less than or equal to that off .  We 

assume that c ~e False, because there is no sense to define a function on an empty domain. The process of 

restriction can be seen as a partial  evaluation of f under the constraint c in the following way. If 

c = True, the domain where f/c = f is that of f, so f/c = f. If  f is the constant function True or False, then 

f/c is the same constant function. If f and c are not constant functions, then there exists a variable x which 

occurs in f or c. We note (--1 x ^ f0) v (x ^ f l )  and (-1 x ^ L) v (x A H) the respective Shannon's  

Canonical Form of  f and c. Then the three following cases enable us to recursively compute f/c: 

- if  x occurs in f and not in c (that is f0 ~ fl and L = H), then f/c = (--1 x A f0/c) v (x A fl/C) because 

(E) must be respected whatever the interpretation of x. 

- if  x occurs in c and not in f (that is f0 = fl and L ~ H), then f does not depend on the interpretation of 

x, and (E) permits us to write that f/c = f/(L v H). 



370 

- Else x occurs in f and c (that is fo ~ fl  and L e H). If  L = False then f/c = f l /H because the 

interpretations where x = False do not satisfy c. In the same way, if H = False then f/c = f0/L. 

These two cases reduce the size of  f/c. Otherwise, f/c = (--, x A f0/L) v (x A fl/H). 

It is easy to show inductively that this definition of f/c makes (E) hold and that the size of  the TDG 

of f/c is less than or equal to that of f. More precisely, f can be simplified on the domain where c is not 

satisfied. For example, the function f = (x2 ^ (x 1 ¢=:, (x 3 ~ x4))) v --, (x 2 v ((x 4 ~ Xl) A (X 1 v x3))) 

restricted under the constraint c = ( ~  x 2 ^ x 3 ^ x4) v (x 2 A (X 3 ¢~ x4)) is the function f/c = Xl ^ x 2. We 

can notice that f/c is different from f ,', c, and that its TDG is more compact than that of f ^ c. 

2.5. The Final Proof  Algorithm 

In the general proof algorithm, the sets of states Y and From are functional vectors defined over a 

subset of the input variables previously introduced and so, if not controlled, their functional complexity 

may be important. To avoid such an explosion, we must choose From of  lowest complexity respecting the 

equation )C(New) C Set(F~om) C X(Reached). Such an adequate functional vector can be obtained by 

simplifying Y = [fl ... fn] under a constraint translating that we must have X(tqew) c Set(~) c )~(Reached). 

We have shown that a boolean function can be simplified on the domain where its constraint is not 

satisfied, so we must choose the most restrictive constraint, that is the boolean expression New. In order 

to have a constraint using the variables of Y (if not, no simplification is possible), we convert the 

constraint New by substituting in New(y 1 . . . . .  Yn) each occurence of Yk by its corresponding boolean 

function fk, that is we evaluate New(f 1 ..... fn)- This operation treats the statement 1 of Figure 1. 

/* Functional boolean vectors are underlined, characteristic functions are in */ 

/* italic. The functions AndTDG, NotTDG, OrTDG apply logic connectors on TDG's */ 

function formal-prove(M : Finite-State-Machine) : boolean; 

var k : int; 

Reached, New : TDG; 

X, Y, Z, From : array of TDG; 

begin 

k := 0; From := M.init; Reached := get-charac(From); 

do loop 
:= new-inputs(k); /* generate a new symbolic vector. */ 

:= ~(From, X); /* compute the symbolic output vector. */ 

if Z ~ [True ... True] then return(False); 

:= ~(From, X); /* compute the symbolic state vector. */ 

New := AndTDG(get-charac(~), NotTDG(Reached)); /* set difference. */ 

if New = False then return(True); /* test to empty set. */ 

Reached := OrTDG(Reached, New); /* set union. */ 

From := restrict-vector(Y, evaluate(New, Y)); 

k:=k+l 

endloop; 

end; 

Figure 3. The Final Proof Algorithm Using Symbolic Manipulations. 

The final version of  our proof algorithm using only formal manipulations on boolean functions is 

given in Figure 3. Our choice of From reuses the input variables already introduced in the program to 



371 

optimize the sharing in memory of all the manipulated TDG's. The function g e t - c h a r a c  (F) returns the 

characteristic function associated to a functional vector F as described in Section 2.3. The function 

e v a l u a t e  (e(Yl . . . . .  Yn), [fl ... fn]) returns e(fl . . . . .  fn), and r e s t r i c t - v e c t o r  (Ill "'" fn], c) returns the 

vector [fl/c ... fn/c]. 

3. Example and Result 

As a simple example, we consider a BCD recognizer. The LDS description of an implementation 

[7] is described in Figure 4. It has one input x and one output z. The output z is equal to 1 until the 

reading of a sequence of four inputs is validated. At this moment, z is equal to 1 if  and only if the current 

input and the three previous inputs form a BCD number. 

Component BCDR; 

Interface; ? Input and output ports 

X, IN; Z, OUT; 

end; 

Registers; ? Storage elements of the circuit 

YRI, YR2, YR3, BIN; ? BIN denotes binary values 

end; 

Variables; ? Algorithmic variables 

Y01, Y02, Y03, Y04, Y05, Y06, Y07, Y08, YII, YI2, 

YI3, YI4, YI5, Y21, Y22, Y23, Y31, Y32, Y41, BIN; 

end; 

Init; ? Initial state of the circuit 

YRI := 0; YR2 := 0; YR3 := 0; 

end; 

be~n 
Y01 

Y07 

YI3 

Y21 

YR3 

end; 

? The logical NOT operator is #, AND is .,OR is / 

:= # X; Y02 := # X; Y03 := # YR3; Y04 := # YRI; Y05 := # YR2; Y06 := # YR3; 

:= # YRI; Y08 := # YR3; YII := Y01 . YRI . YR3; YI2 := Y02 . YR2 . Y03; 

:= Y04 . Y05 . Y06; YI4 := X . Y07 . Y08; YI5 := X . YRI . YR3; 

:= YII / YI2; Y22 := YI3 / YI4; Y23 := YR2 / YI5; YRI := Y21; YR2 := Y22; 

:= Y23; Y31 := # YRI; Y32 := # YR2; Y41 := X . Y31 . Y32 . YR3; Z := # Y41; 

Figure 4. LDS Description of the Realization of the BCD Recognizer. 

An explicit specification BCDS of such a circuit can be written as in Figure 5. We can notice that 

this machine has several starting states since I n i t  does not constraint the registers Y, so Y is initially 

symbolic. Clearly it does not exist direct relation between the state of the specification and the register 

encoding used by the realization. The specification is decomposed into different modules whereas the 

realization is a flat description. 

The product machine uses the state variables of the two programs, that is YR1, YR2, YR3, compteur 

and Y. From the symbolic initial product state the product machine is symbolically executed and the 

outputs of  each machine are compared for equivalence at each step until no new product state is reached. 

The equivalence proof is performed in 0.5 s. 



372 

Component BCDS; 

Interface; 

X, IN; Z, OUT; 

end; 

Registers; 

compteur 0:2, BIN; Y 0:3, BIN; 

end; 

Init; ? Initial state. Y is not specified 

compteur 0:2 := '00'; 

end; 

Function INCR (VAR X 0:2, BIN); 

begin 

X := X + i; 

end; 

Function BCD (X 0:4, BIN); 

begin 

return(# X 0 / # X 1 . # X 2); 

end; 

Function SHIFT (X, BIN; VARY 0:3, BIN) 

begin 

Y 2 := Y i; Y 1 := Y 0; Y 0 := X; 

end; 

? The inputs and outputs of the program 

? Storage variables 

? BIN denotes binary values 

? Vat denotes variable parameter 

? Test if X is a BCD number 

begin ? Body of BCDS 

z := (compteur <> 3) / BCD(X ! Y); ? concatenation of fields is ! 

Call SHIFT(X,Y); 

Call INCR (compteur) ; 

end; 

Figure 5. Specification of the BCD Recognizer 

The use of formal treatments in our method enables us to check various properties. For example, 

we can verify that there is only one starting state (modulo the state of Y) of the two machines such that 

they are equivalent. We can verify at each step that the outputs satisfy a condition translated by a boolean 

expression. We can constraint the inputs by computing their partial boolean functions satisfying some 

properties which can describe for example the behaviour of the environment of the circuit. 

This proof algorithm has compared the specification and the realization of a a memory controller 

(10 inputs, I5 registers, 5 outputs) in 30 minutes. It requires 11 symbolic cycles, that means 110 input 

variables have been introduced to reach all the useful states of the product machine for any input 

sequence. The comparison has detected a mistreatment of errors, and a dependancy of certain states to 

one input while the specification did not apply any constraint on it. 

Of course, the Symbolic Breath First Execution is very sensitive to the connexity of the state 

diagram of the machine. If the state diagram is strongly connected, then the symbolic breath first 

execution of the machine is very efficient, because formal manipulations treat many states and transitions 

at each step. In the worst case of our technique, the machine reachs only one state at each step until it 



373 

comes back to its initial state (such as a pulse counter). For example, the traversal of a modulo 256 pulse 

counter requires 30 s. 

Conclusion 

In this paper, we have presented a method for comparing two sequential machines using a symbolic 

execution of the product machine. The symbolic execution is supported by formal manipulations on 

boolean expressions and boolean functional vectors that avoid enumeration methods. The algorithms 

used in these formal manipulations come from equation solving [5], and we are now studying how they 

can be made more efficient. 

References 

]U F. Anceau, "Design Methodology for Large Custom Processors". Proc. of the 1986 ESSIR 
Conference, Delft. 

[2] J.R. Armstrong, Chip-Level Modeling with VHDL, Prentice Hall, 1989. 

[3] J .P.  Billon, "Perfect Normal Forms for Discrete Functions", BULL Research Report N~87019, 
June 1987. 

[4] J. P. Billon, J. C. Madre, "Original Concepts of PRIAM, an Industrial Tool for Efficient Formal 
Verification of Combinational Circuits", in The Fusion of Hardware Design and Verification, G. 
J. Milne Editor, North Holland, 1988. 

[5] O. Coudert, J. C. Madre, "Logics over Finite Domain of Interpretation: Proof and Resolution 
Procedures", BULL Research Report to appear, 1989. 

[6] S. Devadas, H. K. Ma, R. Newton, "On the Verification of Sequential Machines at Differing 
Levels of Abstraction", IEEE Transactions on CAD, Vol. 7, No. 6, 1988. 

[7] D. Dietmeyer, Logic Design of Digital Systems, Allyn & Bacon, 2nd edition, 1978. 

[8] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Langages and Computation, 
Addison-Wesley, Reading, Mass., 1979. 

[9] S.H. Hwang, A. R. Newton, "An efficient Design Correctness Checker of Finite State Machines", 
ICCAD 1987. 

[10] D. Jalllet, P. Mertens, LDS Reference Manual, BULL S.A., May 1987. 

[11] J . C .  Madre, J. P. Billon, "Proving Circuit Correctness using Formal Comparison Between 
Expected and Extracted Behaviour", Proc. of the 25th Design Automation Conference, 1988. 

[12] J .C. Madre, O. Coudert, "Formal Verification of Digital Circuits Using a Propositional Theorem 
Prover", IFIP Working Conference on the CAD Systems Using AI Techniques, June 1989. 

[13] J.Y. Murzin, "FAON A functional Abstractor of Netlist", Actes du S~minaire de Programmation 
Logique, Lannion, France, 1986. 

[14] K.J .  Supowit, S. J. Friedman, "A new Method for Verifying Sequential Circuits", Proc. of the 
23rd Design Automation Conference, 1986. 


