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Abstract 

Consider a process M implemented as a collection of subprocesses SMi. To certify the 
implementation to be correct, the collective behaviors of S?di and the behavior of M are 
compared using a suitable verification criterion. In many approaches the implementa- 
tion is specified structurally using operators such as II, hiding, and renaming while M 
is specified behaviorMly using action prefixing and choice operators. This style is being 
used for hardware specification also [10, 8, 4, 3]. In this paper we address the question 
whether behavioral specifications can be deduced rapidly from structural specifications in 
the setting of a simple language HOP. We also address the question of doing the same for 
geometrically regular (array) structures that  abound in VLSI. We present two algorithms 
PARCOMP, and PARCOMP-DC, report their performance, and explain the heuristics 
used to make them efficient. 

1 I n t r o d u c t i o n  

Composition and abstraction are central to design. Composition goes hand-in-hand with abstraction-- 
the act of retaining only the observable behavior and not the internal structure. Here are some 
real-world examples: the connection of two resistors in parallel and the computation of the equiv- 
alent resistance; the conjunction of two logical formulae followed by the existential quantification 
of a common variable [5]; composition of processes (e.g. [6] [12]); parallel composition of transistor 
networks (e.g. [7], [8]). 

We present a language, called 'HOP' (Hardware viewed as Objects and Processes) for specifying 
synchronous hardware systems as well as their implementations. In HOP, hardware systems are 
modeled as finite state transition systems (i.e. the number of control states are finite; data states 
may be unbounded). The main topic of this paper is an efficient algorithm for process composition 
called PARCOMP, that  infers an abstract (in the above sense) behavioral description M' from a 
collection of HOP processes SM~. This algorithm is used to facilitate formal verification, symbolic 
simulation as well as ordinary simulation; in fact, we are lead to believe-in and pursue an approach 
where verification and simulation are two points in a continuum of validation related activities, [3]. 
We now touch upon some features of PARCOMP. 

PARCOMP has been implemented as a part of the 'HOP system' in Common Lisp, and found 
to run with practically acceptable speeds on all the examples tried so far (the largest to date being 
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the cache memory system shown in figure 1). Heuristics responsible for the speed of PARCOMP 
are consistent with HOP's operational semantics [4]. PARCOMP is being used as a preprocessor 
for simulation (we obtain M' ,  simplify it using algebraic rewrite rules to get M", and then simulate 
M ' )  [9]. PARCOMP has also been adapted to work efficiently for geometrically regular arrays that 
occur commonly in VLSI e.g. figure 2. Such arrays are more general than systolic arrays because 
they needn't  be computationally regular, and can have global busses embedded within them. We call 
such arrays arhythmlc arrays. This version of PARCOMP, called PARCOMP-DC, uses a divide-and- 
conquer technique to effect considerable savings in run-time in inferring the behavior of arhythmic 
arrays. 

Main  Resu l t s  

Suppose we are given a process definition Hide e in P It Q where 'Hide' and II are operators in 
HOP that are similar in purpose to the corresponding operators in CSP[6] or SCCS[13]. Suppose 
PARCOMP is to deduce an equivalent single process R. We show that it is several orders of magnitude 
faster if PARCOMP uses information on hidden actions dm'ing the application of the rules for the It 
operator, rather than after having applied all such rules. 

PARCOMP-DC exploits the facts that: (i) ]1 is commutative and associative; (ii) the cells of 
arhythmic arrays are identical except for the names of ports and events. It splits the array into 
two halves and computes the behavior of only the 'left-half'. It then obtains the behavior of the 
'right-half '  through a renam/ng operation. This process is recursively applied to the left-half of the 
left-half, and so on. In addition, PARCOMP-DC condenses the inferred behavior by using functional 
constructors that employ universal quantification over array indices to succinctly express the inferred 
behavior. An added advantage of employing universal quantification is that it immediately reveals 
general properties enjoyed by the array. 

? ~ d r  ?!da~a 
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Figure 1: A Cache Memory System 
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Figure 2: An LRU Unit 
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1.1 T h e  L a n g u a g e  H O P  

Each HOP specification of a module specifies the interface of the module, which consists of: (a) ports: 
the wires that constitute data I/O ports; (b) events: the wires that bring in control commands and 
take back status results; (c) the protocol of usage. The protocol is specified in a simple process 
specification notation whose semantics can be captured using a (finite control state) labeled transition 
system [14]. 

The instantaneous description (ID) of a HOP process consists of its control and data-part states. 
(Data-part state denotes that component of a module's state that has very little effect on the control 
flow through control states; e.g. the contents of a RAM memory has little effect on the control 
protocol of the memory. Processes move from one ID to another through a set of observable actions. 
We write 

Control_~state[Datapart_state] bb . . . .  abt+_A~t~o=s____) New=Control_State[New_Datapart_State]. 

Control states are uninterpreted atoms. Datapart states are values of data types such as stack, 
tree, array, byte, etc. Datapart state elements need not be bounded in size (except for practical rea- 
sons). The transitions of processes are caused by clock beats. Transitions are labeled (= annotated) 
by (possibly empty) sets of actions, one set per action variety presented below: 

1. Input events, which are shown as annotations on transitions. An input event %' is written 'Ie'. 

2. Data query: "x=?p" means "let x be the value (of some data type) coming through input port 
p at the time the data query is evaluated". 'x' can be assigned only once, as it stands for a 
particular value, and not a memory location. 

3. Boolean guards: Similar to the boolean guards of CSP[6], HOP's boolean guards are first order 
formulae of type boolean. 

4. Output events are similar to input events, and written e.g. 'Oe'. 

5. Data assert/on: "!q=E" means that the expression "E" is evaluated and asserted on output 
port q. (Expressions are defined in a first-order functional sublanguage. The use of user-defined 
abstract data types is also supported.) 

The meaning of these annotations is straightforward: Input events labeling a transition must be 
true for the transition to be taken. Boolean guards help express the dependencies of control flow on 
data values, and, in conjunction with input events, determine whether a transition is taken or not. 
When a transition is taken, the output events labeling it are asserted, data queries are performed, 
data assertions are made, and the internal data part state is updated. Any of these categories of 
annotations may be empty. If no input events are shown, the transition is unconditionally taken. 

Every HOP process can be described at the level of abstract syntax via a collection of process 
equations. One process equation is of the form: 

P[vars] -= Ii ie~, dql, gi : oe~, da~ --~ P~[Exp~] 

and says that process P[vars] has i E I moves. The ith move takes place if all the input events in 
the set iel are offered, the data queries in the set dq~ are performed, and the guard expression g~ 
(which may contain the variables in vars and those in dqi) is true. Then, the set of output events 
oe~ and the set of data assertions da~ are asserted, and the next ID (= active process) is Pi[Expi]. 

1.2 C o m p a r i s o n  w i t h  R e l a t e d  W o r k  

Lustre[2] and Esterel[1] are two languages that resemble HOP in terms of lockstep synchronous 
execution. Milne [11] presents parallel composition as an approach to simulation and verification 
in the setting of CIRCAL. In the HOL system [5] there is an inference rule called the 'existential 
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P[vars] ::= ldel, dqi, gi : oei, dal -~ Pi[Expl] 
1 Pl[Expsl] tl P2[Exps2] 
I Hide ie in P[Exp] I Hide oe in P[Exp] 
[ Hide ?p in P[Exp] I Hide !p in P[Exp] 

Figure 3: Abstract Syntax of HOP 

quantification ehmination' that achieves the same end as PARCOMP, albeit with several mamlal 
steps. 

Our work may be distinguished in the following ways. The ordinary PARCOMP has been apphed 
for several large examples, and we propose two heuristics for speeding up the composition: Lockstep 
Cartesian Product computation, and early pruning based on hidden events. We have not seen 
these two heuristics reported in other works. We have not come across any algorithm similar to 
PARCOMP-DC that exploits the regularity of geometrically regular VLSI arrays. 

2 T h e  S y n t a x  and  S e m a n t i c s  of  H O P  

Descriptions written in the user level syntax of HOP (not presented here, but see [3, 4]) can be 
translated into descriptions in the abstract syntax of HOP, whose grammar is given in figure 3. 

Rule for Determinist ic  Choices 

This rule simply says that every choice defines a possible behavior: 

(li iei, dqi, gi : oei, dai ~ Pi[Ei]) iel,dqi,gl :~ei,dai Pi[Ei] 

Rule for Parallel Composit ion 

This rule computes the possible behaviors of P[vl] 1] Q[v2] from those of P[vl] and Q[v2]. 

P[vl] iel,dql,gl .i..oel,dat P'[E1],  Q[v2] ie2,dq2,g2 :>oe2,da2 Q 1~2] 

IE(ielUie2, oelUoe2), 
DQ(dqlUdq2, dalUda2), 

G(dqlUdq2, dalUda2, glAg2) : 

P[Vl] II Q[v ] (o~o~) ,  (daluda2) P'[E ' I ]  II Q'[E;] 
Here, the U operation takes the set union of its arguments. The helping functions employed above 

are now defined. 
IE(ie,  oe) = removetag(ie) \ removetag(oe) where rernovetag strips the direction tags 'I '  and '0 ' .  

Informally, those ie that are not synchronized by matching oe are left behind. DQ(dq, da) returns 
every (q =?p) E dq for which there is no corresponding (!p = E) E da. We retain data queries that 
are not matched by corresponding data assertions. G(dq, da, g) = instantiate(g , bindings(dq, da) ) 
where bindings(dq, da) = set of (var, exp) such that for ever?" (vat =?p) E dq there is a corresponding 
(!p = exp) E da. In this step, we first determine the variable bindings that result from having simul- 
taneous data assertions and queries on the same port. These variable bindings are then used to instan- 
tiate guard expressions. Thus we are simulating the effect of value communications among processes 
symbolically. E~ = instantiate(E1, bindings(dq, da)); and E'  2 = instantiate(E2, bindings(dq, da)). 
These take into account how the data part state of the processes change as a result of value commu- 
nications between processes. 
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Rules for Hiding 

These simple rules capture what can be ignored as a result of internalizing events and ports. We first 
consider the most practically important of all these rules--the 'Hide ie in P' rule. This rule says that 
hiding an input event causes the choice ann guarded by that input event to be dropped. The key 
idea behind this rule is to "distill away" behaviors that will not materialize at each point in time: 

P[v] i~l,eql,gl :o~,eal P~[EI ] ,  ie ~ /el 

H i d e  ie in  P[v] iel,dql,gl :)oel,dal H i d e  ie in PI[E1] 

Hiding an output event oe merely suppresses this assertion from the outside world; no computa- 
tional paths are pruned: 

P[v] iel,dql,gl :oel,dal P I [ E I ] ,  oe e oel  

H i d e  oe in  P[v] i~l,dql,gl : o~1\o~, dal H i d e  oe in PI[E1]  

If ?p is an input port, and if a data query x =?p is made through ?p, then hiding ?p from a 
process P prevents P from accepting inputs via this port. We simply take away the data query, and 
so x E gl, dal, E~ will remain unbound. This may be okay if the value of x need not be known in 
evaluating gl ,  dal and El: 

P[v] iel,dql,gl :~l,dal PI[E1], (x = ? p )  E dql 

H i d e  ?p in P[v] i~1, dql\(x=?p),)gl : oel,dal Hide  ?p in PI[E1]  

Hiding an output port is similar to hiding an output event. All data assertions made on port !p 
are expunged when port [p is hidden: 

P[v] iel,dql,gl :oel,dal PI[E1] ,  (!p = E)  e dal  

H i d e  !p in  P[v] i~l,aql,gl : o~l, d~l\(!p=E) ....... ~ H ide  !p in  PI[E1]  

The recursive application of the hiding rule--Hide !p in PI[E1] for example--captures how PAR- 
COMP effects the hiding rule as it unravels the timing behavior of the processes. 

The intended semantics of HOP is that of deterministic execution. Sufficient syntactic conditions 
that guarantee determinacy have been reported in [4]. 

3 A S k e t c h  o f  P A R C O M P  

3.1 Lock-s tep  C a r t e s i a n - p r o d u c t  Proces s  

Basically, PARCOMP computes (what we define to be) the Iock-step cartesian product of two tran- 
sition systems. Given two process graphs A and B, a. lock-step cartesian product (LCP) of A and B, 
written Icp(A, B), is obtained by applying the following steps until no new states or edges are added: 

1. If A0 is the initial state of A, and Bo is the initial state of B, then the pair < Ao, B0 > is in 
lcp(A, B). 

2. If state < Ai, Bi > is in  lcp(A, B), and there is a directed edge Eli going from Ai to a state 
Aj in A, (and likewise Fij is a directed edge going from stage B~ to a state B/ in B), then 
< Aj, Bj > is added to Icp(A, B). Further, the edge EF; i is added to Icp(A, B) directed from 
< Ai, Bi > to < Aj, Bj >. EFij is labeled with annotations computed from those on Eli and 
Fii using the rule for 11. 

The following optimization makes PARCOMP a practically efficient algorithm: 
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3. After the above step~ if the transition is labeled by some input event e that  is hidden~ then 
drop this LCP edge, and do not generate that  portion of the LCP reachable via this edge. This 
step uses the rule for hiding input events. 

The  following check often reveals sequencing errors: 

4. Every dead-end state in the LCP is indicative of the presence of sequencing errors in the 
specification of one or more of the subprocesses SMI. (We assume that  none of the SMi 
themselves had dead-end states.) A dead-end state is formed thus: a s tate ends up having all 
exits from it through transitions that  have at least one unsynchronized and hidden input event; 
these transitions are pruned by step 3. 

We compute the lockstep cartesian product and not the traditional cartesian product (which has 
more states) because only configurations in LCP are reachable due to ' the  marching in unison with 
the beats of a clockL This is the first level of optimization. 

Step 3 corresponds to 'distilling away' modes of behavior that  are not implemented. For example, 
if a submodule can perform multiplication, but within a system it is never asked to multiply, then the 
capabili ty to multiply can be discarded. More importantly if a module can perform multiplication 
but is not asked to multiply at t ime t~ then those control states reachable at t ime t will not offer 
a choice corresponding to the mult iply operation. This heuristic brings about  anywhere from 10 to 
100 times speed-up. Step 4 has proven to be quite valuable in debugging complex specifications, 
especially the pipelined Cache memory system of figure 1. Several examples of PARCOMP in action 
have been presented in [3, 4]. 

4 R u n - t i m e s  for P A R C O M P  

Let each transition be labeled with annotations, each of which are K long. Let T transitions be 
traversed in computing the LCP, and let there be N processes altogether. In taking one LCP 
transition, P A R C O M P  clashes N,  K-long annotations. This costs K y because any action of one 
annotat ion can interact with an action of any other annotation. Since there are T transitions, we get 
a total  run-t ime of O(T.KIV). In many classes of designs, however, T determines the run-time with 
N remaining relatively fixed (less than 10 in many cases). In such cases the run-time is linear in T 
(which can be very large). Early pruning based on unsynchronized events can dramatically reduce 
T. Some figures of run4 ime  are shown in figure 4. 

Ctrl States In Ctrl States In Transitions Pruned Transitions In Run time (sees) 
EXAMPLE Cartesian Prod. Final Process During PARCOMP Final Output KCL, 16M Sun 3/50 
Pipelined 

Stack 24 12 220 21 1.97 
Clock 

Shaper 2 2 0 5 0.32 
Huffman 
Encoder 2 2 15 6 0.95 

Feedback Shift 
Reg. Counter 1 1 105 4 0.82 

Pipelined 
Cache mem. 98 15 13,413 28 328 

Figure 4: Performance of PARCOMP on Five Examples 
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5 P A R C O M P - D C :  Bas ics ,  and  P e r f o r m a n c e  

Consider the array A shown in figure 5. It consists of a collection of modules M connected in a 
regular interconnection pattern. For simplicity of explanation, assume a nearest-neighbor connection 
that is regular in both the dimensions. 

Consider the problem of computing PARCOMP(A); i.e. the composition of all the Ms consti- 
tuting A. PARCOMP is both commutative and associative. Hence, we can split A into two halves, 
say AT standing for "the top of A" and As, standing for "the bottom of A", and obtain: 

PARCOMP(A) = PARCOMP( PARCOMP(AT), PARCOMP(As) ). 

Since AT and As differ only in the names of their external ports, we need compute only PARCOMP(AT[ 
PARCOMP(AB) can be obtained from this by subjecting PARCOMP(AT) to renaming operations. 
Thus PARCOMP-DC does log N ordinary PARCOMPs of two modules at a time. 

In many real-world arrays, the transition system of the whole array has the same number of control 
states as the transition system of its basic cell. E.g.: In figure 2, each cell does something during 
clock-high and something else during clock-low--all on single-bit quantities. The whole array does 
similar actions, but on vectors, instead of single bits. In such cases, the run-time of the PARCOMPs 
done during PARCOMP-DC is determined solely by the step of clashing the actions labeling the 
transitions. In other words, PARCOMP-DC clashes two processes at a time; log N such clashings 
are done altogether between pairs of processes. Each time around, the Ks are bigger than before. 

The very first time, both processes have K-long annotations. After clashing once, each annotation 
grows to at most 2K. This is because: (a) in the worst case all events are distinct, and so we 
simply pool them; (b) for events that synchronize, the input event is discarded; (c) for all data 
assertion/query pairs that communicate, the assertion-expression is substituted in place of the query- 
variable, and the query is discarded; (d) data assertion/query pairs that do not communicate simply 
are pooled together. 

Thus, we sum the costs for each of the log N steps. Since the cost of clashing annotations (O(K2)) 
dominates the cost of copying and renaming process descriptions (O(K)), only the former cost is 
summed: 

T.(K 2 + ( 2 K )  2 + ( 4 K )  2 + . . .  l og  N terms 
= TK2.((2o)2 + (21)2 + (22)2 + ... + (2(log N)-1)2 

= o((2(,o~N)-,) ~) 
= O(ND 

If we assume a fixed K, then PARCOMP gives exponential growth of time with N, but PARCOMP- 
DC gives only polynomial growth. If N is fixed, then both are polynomial, but PARCOMP has a 
higher degree for N > 2. 

We have run PARCOMP-DC on the LRU matrix for various values of N, from 4 to 256 (i.e. 
using arrays with sizes 2x2 upto 16x16) (figure 6). For this array, the run-time is better (quicker) 
than O(N2). 

6 C o n c l u d i n g  R e m a r k s  

Several verification techniques can be supported by PARCOMP and PARCOMP-DC. One specific 
approach that we have pursued [3] consists of the following steps: (a) obtain the inferred behavior; 
(b) embody the verification criterion in a tester process--a HOP process capable of exercising the 
module under test in all legal ways; (c) compose the tester and the testee, and verify this composition. 
Acknowledgements  We are grateful to professor C.A.R. Hoare for suggesting improvements to the 
formulation of HOP's semantics during his visit to Utah. Thanks to the verification group at Calgary 
for providing feedback. 
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, 

tin = row@ 

[fn tin tin dps. 

[rips] 

Ickf~l 
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Figure  5: Divide and Conquer  P A R C O M P ,  and LRU Matr ix  Details 

LI~U Matrix Size 
2×2  
2 x 4  
2 x 8  
4 x 4  
2x16 
4 x 8  
4x16 
8 x 8  
8x16 
16 x 16 

Run time (secs) 
KCL, 16M Sun 3/50 

0.7 
1.7 
3.6 
3.8 

20.9 
20.8 
47.9 
48.4 
156.8 
588.8 

Figure  6: P A R C O M P - D C  Timings on Different Sizes of LRU Matr ix  
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