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Abstract 

An interactive system for proving properties of CCS specifications is described. This 

system allows users to take advantage of all three views of CCS semantics (the transitions, 

the operationally defined equivalences and the axioms) and to define their own verification 

strategies for moving from one view to another. The system relies on term rewriting 

techniques and manipulates only the symbolic representation of specifications without 

resorting to any other kind of internal representation. 

1. Introduction 

It is by now evident that the analysis of concurrent systems, even elementary ones, is very delicate and 

error-prone. In this field computer assistance is essential, both to make the analysis possible and to ensure 

correctness. Indeed, very often, the verification of system properties consists of many repetitive, error- 

prone steps intermixed with a few conceptual ones which need human intervention. 

Process algebras are generally recognized to be a convenient tool for describing concurrent, or more 

generally reactive, systems at different levels of abstraction [Mil80, BK84, DH84, BB87]. In general, 

these formalisms are equipped with one or more notions of equivalence or preorder. These notions are used 

to study the relationships between the different descriptions of the same system and to perform, in this 

way, part of the analysis. In these cases, the need for automatic tools to prove that two different accounts of 

the same system are equivalent or that one is a good approximation of the other is evident even when 

dealing with toy-examples. 

There are already a few verification environments in which properties of concurrent systems can be 

proved: Concurrency Workbench [CPS88], TAV [GLZ89], Auto [Ver86], Squiggles [BC89]. All of these 

environments work in the framework of Milner's Calculus of Communicating Systems (CCS) [Mil80] and 

provide tools for analysing properties of CCS specifications; all of these can be used to verify equivalence 

of specifications and some also to decide whether a specification satisfies a logical (modal) property. It 

should be noted that most of these systems resort to a finite state machine representation of terms and use a 

generalized partitioning algorithm [BS87, KS83]. The only exception is the TAV system, directly based on 

1 This research has been partially supported by the CEC under ESPRIT project 2304 - LOTOSPHERE. 
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the definition of bisimulation. The main problem is that most of the time these systems deliver a yes/no 

answer and very frequently the answer is no; in this situation the user is not provided with any suggestion 

about what went wrong and in which part of the specification the error was located. The only notable 

exception is again TAV which, whenever two specifications are not equivalent, provides a Hennessy- 

Milner logic formula which differentiates them. 

Another well-known problem of the approaches based on a finite state machine internal representation 

of specifications is state explosion. For these reasons, it is important that together with clues about the 

errors in the specifications, the user should be also provided with tools which allow him to control the flow 

of the proof so that he is also able to prune the state space. 

Indeed, we think that the user should have a high control over the verification process; he might 

occasionally use some automatic tools, but in general he should perform the proof or at least should be able 

to control the interactions of the needed tools. If the verification environment is to control and program 

tools flexibly, it cannot rely on different internal representations of the symbolic terms, but has to 

manipulate the specifications in a "homogeneous" way. 

In this paper we describe ongoing work on a system for manipulating and executing CCS 

specifications. The semantics of this calculus are defined in terms of labelled transition systems, by 

following the Structural Operational Semantics (SOS) approach [Plo81], and by using various notions of 

behavioural equivalence used to identify those agents which exhibit the same behaviour according to given 

classes of external observations. Some of the proposed equivalences possess a complete axiomatic 

presentation, which gives rise to another characterization of the semantics of the calculus. 

One of the main goals of our system is to take advantage of all three views of CCS specifications, 

namely the transitions, the operationally defined equivalences and, whenever possible, the axioms which 

completely characterize the equivalences. This would allow users to define their own verification strategies 

and move from one view to another, thus using each time the most convenient one. For example, we want 

to offer the possibility of executing the operational semantics and reducing terms by means of behavioural 

equivalences within a flexible and open-ended system, that makes tools and not policies available to 

perform verification. To do this, we keep a homogeneous view of the specifications within the system; we 

stick to the symbolic representation of specification and never resort to any other kind of internal 

representation (finite state machines or similar). 

We follow an equational approach to take advantage of the complete axiomatizations and rely on 

techniques borrowed from logic-functional programming: both the operational semantics and the axioms for 

behavioural equivalences are seen as Horn theories. This makes it possible to manage at metalevel (via 

metaprogramming) the intertwining between operational semantics and behavioural equivalences according 

to different user defined proof strategies. In this way we obtain the functionality that will be the basis for 

developing a language to define strategies. 

When relying on axiomatic presentations, executing behavioural equivalences consists in transforming 

processes to equivalent normal forms and deciding congruence of two CCS processes by checking whether 

their normal forms are "similar". The axiomatic presentation of behavioural equivalences can be exploited in 

two different ways. It can be seen as an equational theory and executed by means of its associated canonical 

term rewriting system [HO80] and it can also be used to perform elementary transformations by applying 

single axioms on demand. 
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Summing up, our system offers three main functionalities. It can be used to run the operational 

semantics of a CCS process. It permits to obtain a reduced form of a specification by relying on the 

axiomatic characterization of the behavioural equivalences. Finally, it offers the user the possibility of 

manipulating the actual specification on demand, e.g. he can specify which axiom to apply or which 

transition to perform. 

The actual system is presented in Section 2. Section 3 describes ongoing work to extend the present 

version. An example of use of the system is presented in Section 4. Future developments and conclusions 

are given in Section 5. The syntax and the operational semantics of CCS and the axiomatic presentations of 

several behaviouraI equivalences are reported in the Appendix. 

2. Overview of the system 

The system results from the integration of a semi-automatic tool [Sca88] and an automatic one 

[GIN88, Nes88] for executing and manipulating CCS processes. 

The architecture of the system is shown in Figure 1; all the boxes stand for Prolog modules. By means 

of the user interface, it is possible to perform a certain set of operations on processes. Processes can be 

input according to the usual syntax checked via the Analyzer CCS module and the available operations are 

displayed by means of the menu. All other modules implement system functionalities. The Operational 

Semantics module implements the operational semantics. The Observational Semantics module implements 

an (incomplete) term rewriting system associated with the observational congruence [Mil80, HM85]. The 

Expansion Theorem module implements the expansion theorem in its full generality. The Axioms module 

implements the axiomatic presentation of the observational congruence and allows the user to apply single 

axioms to transform a process. 

I ] i ] 
~ ~  t EXPANSION 

THEOREM / 

Figure 1 
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Finally, the Verification module implements a specific verification strategy, which proves the 

observational equivalence of two specifications S1, $2 trying to transform S1 into $2 [Mil80]. In this 

strategy S 1 is rewritten by executing it according to the Operational Semantics module and by reducing the 

intermediate specifications according to the Observational Semantics module. A check based on replacing 

subexpressions with identifiers permits recursion to be dealt with and prevents infinite rewfitings. 

It should be noted that, although the actual system implements only observational congruence, the 

approach followed and the strategies developed can be extended to other behavioural equivalences: it is 

simply a matter of adding new boxes. At present, our system does not offer any built-in facility for defining 

verification strategies or tactics; an "ad hoc" metalanguage has not yet been defined. The user has to 

implement his own strategy as a separate module which could be accessed from within the system, exactly 

as we have done for the Verification module. The current interface of the system makes it possible to easily 

switch from one theory (module) to another, i.e. applying the operational semantics and then reducing to 

normal form by means of the observational module, etc. In Section 4, we give an example to show both the 

usage of the built-in verification tactic and of a user directed strategy. 

The current version of the system has certain limits: these mainly concern the automatic tools and in 

particular the module for observational semantics. More specifically, the present implementation does not 

adequately deal with the associative and commutative (AC) axioms. In this respect, it is useful to remind the 

reader that we have taken a term rewriting approach to the exploitation of the axiomatic presentation of 

behavioural equivalences. The actual implementation, due to the AC axioms, divides the observational 

congruence theory (see Appendix) into two subtheories: EqRewrite consisting of the basic axioms A5-A 11 

and Eqsum+x consisting of the basic axioms A1-A4 and the x-laws T1-T3. First, the equivalences in 

EqRewrite, considered as rewrite rules directed from left to right, are applied to terms to rewrite a CCS 

specification spec into an equivalent one spec', with no occurrences of relabelling, restriction and parallel 

composition operators. Afterward, the equivalences in Eqsum+x are applied to the action-tree of spec" to 

avoid explicitly dealing with the AC axioms. In this way, we obtain an incomplete decision procedure. In 

the next section, we discuss how this problem can be dealt with. 

Another limit is the class of processes which can be treated. The term rewriting approach, in its basic 

definitions, works on canonical systems, thus the termination property, in addition to the confluence 

property, of our term rewriting system has to be guaranteed. In general, as soon as the rules for the 

recursion operator are introduced, we obtain a non terminating rewriting. Although this might appear to be 

a more restrictive requirement than confining attention to finite state machines, which permit instead the 

manipulation of a particular class of infinite processes, it should be noted that, even in the present version 

of the system, we have many different ways of treating recursive processes at the metalevel. The 

Verification module is an example of the possibilities available to a user for building his own strategy and 

for adding functionalities not supported by the kernel system. In fact, Verification provides the necessary 

facilities to cope with recursive processes, while no rule for recursion either in the Operational Semantics or 

in the Observational Semantics module has been provided. 
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3 .  Completing the axiomatizations of behavioural equivalences 

Correct and complete axiomatic presentations for several behavioural equivalences (see Appendix) 

have been provided for finite CCS without value passing. These presentations are equational theories and 

we aim at verifying equivalences by applying the axioms. An equational theory can be executed by 

completing it into an equivalent canonical term rewriting system (if any), which can be obtained by means 

of a completion algorithm [HO80]. All the axiomatic presentations for the behavioural equivalences of CCS 

contain the AC axioms for the '+' operator and they can be properly treated by using a completion 

algorithm modulo AC/Hue80, PS81, JK86, BD87]. We have tried to complete, via the REVE system 

[Les83] by using the AC-completion, the axiomatic presentation of several behavioural equivalences. It 

comes out that some of these equivalences admit a finite canonical term rewriting system. Indeed, this is the 

case for the axiomatic presentation of trace congruence given in [DH84], of observational congruence for a 

subcalculus of CCS which does not contain the parallel composition operator [HM85] and of branching 

bisimulation congruence [GW89]. 

On the contrary, the axiomatic presentation of observational congruence [Mit85, HM85] and of testing 

congruence [DH84] do not admit a finite canonical term rewriting system. Indeed, the AC-completion of 

the theory, consisting in the x-laws of observational congruence and the axioms for the %' operator, results 

in an infinite term rewriting system since infinite critical pairs are generated. The same problem arises when 

trying to complete testing congruence; by checking the conditions given in [Her89a] we have already traced 

out one source of divergence. 

Thus, for those behavioural equivalences which have an equivalent finite term rewriting system we 

provide a decision procedure: given two specifications, it is always possible to answer yes/no about their 

equivalence according to such theories. From those behavioural equivalences whose completion diverges, 

we have picked out the most popular one, namely the observational congruence. From [Mi185] and 

[HM85], we know that there exist normal forms for the observational congruence (from now on, we refer 

to them as obs-normal forms, see Appendix); indeed, their existence has been used to prove the 

completeness of its axiomatization. The actual completeness proof and in particular the proof of the so- 

called absorption lemma shows how the obs-nonnal form of a finite term can be obtained. We have 

simulated the absorption lemma in the framework of term rewriting and we have derived a strategy based 

on a specific rewriting relation. The main feature of this strategy is that the completion of the theory is never 

attempted. Instead, complete reductions are obtained by alternatively applying all axioms of the theory as 

reduction rules and some x-laws as expansion rules. We have proved that the strategy applies all (and only) 

those reductions which could be obtained by means of the temma. The strategy will be implemented by 

using parts of the REVE system and is outlined in the next subsection. 

A rewriting strategy for observational congruence 

Let OBS be the equational theory given by the basic axioms A1-A4 and the "c-laws for the 

observational congruence T1-T3 (see Appendix). Let ROB S be the term rewriting system obtained by 

simply directing the axioms of OBS according to a fixed term ordering > [HO80]. 

As mentioned above, the proposed strategy for the verification of the observational congruence of 

finite CCS terms relies on the absorption lemma [HM85] reported below; see Appendix for missing 

definitions: 
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Absorption Lemma 
If P' is a It-derivative of P and P' =OBS Q, then P + It.Q =OBS P. 

This means that, in order to reduce a term, we can delete those summands It.Q which are "semantically 

contained" in others by means of the notion of It-derivative. 

The proof of the lemma makes use of structural induction; the inductive hypothesis and the two x-laws 

T2-T3 are applied as expansion rules to transform P + It.Q into an equivalent term, which is congruent to a 

term without It.Q. Once It.Q has been deleted, the resulting term is rewritten by applying the inductive 

hypothesis and the axioms of OBS as reduction rules to eventually obtain the reduced term P. 

Our strategy does "simulate" the proof of the lemma without using any induction. We remind the 

reader that we aim at applying the strategy to the symbolic representation of the term and implementing it in 

the framework of term rewriting. Thus, the strategy rewrites P + It.Q using only the two x-laws T2-T3 as 

expansion rules, until it is possible to apply a rule of ROB s to delete It.Q. Once It.Q has been deleted, since 

the previous transformations on P + I.t.Q may also have changed P, P is rebuilt by applying those 

reductions, which are exactly opposite to the previous expansions, on the current term. 

In order to define the above strategy we have to: 

• cope with the problem of stopping the expansion process; 

• fred reliable criteria to perform reductions when rebuilding P. 

Given a rewriting relation "-~R, let "--~R* be its reflexive-transitive closure. A term P is in normal form 

according to R if P cannot be further reduced according to the rules of R. Let an AC-rewriting relation be a 

rewriting relation modulo the AC axioms. Let ---~RoBs be the AC-rewriting relation according to ROBS, the 

term P" be in normal form according to ROBS, ~ x  be the AC-rewriting relation expanding terms according 

to the axioms T2-T3. Finally, let ---~R'oB s and ---)R"oB s be AC-rewriting relations according to ROBS folio- 

wing specific redex selection criteria. Our strategy is a rewriting relation P -"~strat P' defined as follows: 

Absorption Strategy 
P "~strat P' = P -")RoBs* P'' ('~X* ° -")R'oBS *) * P''' ° "-'~R"oBS* p'" 

Given a term P, the rewriting relation --~RoBs computes a normal form P" of P according to ROBS" P" is 

checked for obs-normal form by looking for summands to be deleted according to the absorption lemma. 

Thus, the rewriting relation -"~x* ° "~R'oBS* performs expansions by the axioms T2-T3 on P" and, as soon 

as possible, deletes the unnecessary summands of P". The relation ~R'oB s performs reductions according 

to ROB S by a redex selection criterion that prevents those reductions which are exactly opposite to the 

previous expansions by -'-~x • 

Rewriting steps according to "-~x* ° -'~R'oBS* are repeatedly applied until there are summands to delete; 

they return the term P"'. Next, ---~R"oB S rewrites P'" into P' by applying those reductions which are exactly 

opposite to the previous expansions; it makes use of a specific redex selection criterion selecting the 

smallest redex according to the fixed term ordering. 

Let us now consider the correspondence between our strategy and the absorption lemma. First, we 

note that the strategy is sound: every rewriting step consists in the application of an axiom of OBS, thus it 

preserves the observational congruence among terms. Moreover, it can be proved [IN89] that, if the 

strategy with input P returns P', then P' is an obs-normal form of P (correctness) and, if P has an obs- 

normal form P', then the strategy with input P returns P' or a sumcongruent term (completeness). 
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4. Using the system: an example 

Now, let us show a possible use of the system by proving observational equivalence of two CCS 

specifications. We will take advantage of two different verification techniques, namely the built-in 

verification tactic and a user directed strategy. 

We consider the scheduling problem explained in [Mil80]. The problem is the following. Let pl  and 

p2 be two processes performing a certain task repeatedly. We want to design a scheduler to ensure that pl  

and p2 perform the task in rotation, starting from pl.  The two processes communicate with the scheduler 

sch by requesting initiation with the actions al  and a2 and signaling completion with the actions bl  and b2. 

The specification of sch which guarantees that pl  and p2 begin their task in rotation starting from pl  is the 

following: 

(~al.~a2)* 

Now, the scheduler sch can be implemented by linking an agent s, starting the scheduler, and two 

components c l ,  c2, called cyclers, having the same behaviour and communicating with the processes for 

initiation and completion of their task. These components synchronize by means of the internal channels gl 

and g2. 

A possible implementation of sch is the following: 

sch = (s I c l  I c2)kglkg2 

where the components are defined as follows: 

s = ~gl.nil 

c l  = gl .~al.(~bl.~g2.cl  + ~g2.~bl.cl) 

c2 = g2.-a2.(-b2.~gl.c2 + -gl.~b2.c2) 

To prove that the implementation of the scheduler satisfies its specification, we have to prove that, given 

sch and forgetting all synchronizations along the channels bl ,  b2, the following observational equivalence, 

denoted by --, holds: 

(sch I (bl* I b2*))kblkb2 -- (~al.-a2)*. 

Namely, if we let 

schl = (sch 1 (bl* I b2"))~1~2 

we are left to prove 

schl = -a l . -a2 .schl .  (+) 

In [Mil80] the verification of (+) is structured in the following steps. 

The fu'st one rewrites sch 1 into an equivalent agent by means of some properties of CCS operators 

schl = (s I (cl I bl*)'~bl I(c21 b2*)kb2)'xglkg2. (1) 

The next step consists of introducing two new agents: 

c lp  = (cl I bl*)",bl c2p = (c21 b2*)Xb2 

and of determining that 

schl --- (s I c lp  I c2p)kglkg2. 

Two additional steps permit verifying (+). 

The fast one consists of proving that c tp  and c2p are observational equivalent to their unfoldings; for clp, 

this means proving 

c lp  = gl .~al .~g2.c lp .  (2) 

The last step proves (+) taking into account the equivalences established by the previous steps. 
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In our system we will implement Milner 's  tactic by proving (1) above by means of a semi-automatic 

strategy and (2) and (+) by means of the fully automatic strategy of the Verification module. 

Semi-automatic Verification 

The semi-automatic strategy is totally and explicitly driven by the user which tells Analyzer-CCS the 

command to execute at each step. In the proof of (1) we make use of some axioms which can be easily 

derived from the basic ones of observational equivalence. 

Let X, Y be CCS agents, ct, [3 ~ Aand  IX ~ A u ~A t j  {x}; the axioms we add are the following: 

Ax l .  (X I Y)\o~ = X '~  I Y ~  

Ax2. X ~  = X 

Ax3. (X'~) 1Y = (X I Y)X~t 

Ax4. X~'q3 = X~\c t  

Ax5. (XIY)  I Z = X I  (Y IZ) 

Ax6. (X I Y) I (Z I W) = (X I Z) I (Y I W). 

if  for each action ct of X, ~tx is not an action of Y and conversely 

if  for each action IX of X IX ~ {(~, -o~} 

(derived from Axl .  and Ax2.) 

The interaction between the user (bold typed) and the system (plain text), sometimes interrupted by few 

comments (written in italic), is reported below. The command "cmd -> t" has the effect of writing the result 

of cmd in the variable t which can then be used in future steps. 

Enter Analyzer-CCS Option or 'h' for help (terminated with '.') : 

]* The environment with the definitions of schl, sch, bl*, b2*, s, cl and c2 is typed in */ 

I d e f ( s e h l ) .  

Enter a process : (seh [ b l*  I b2*) \b l \b2  

Enter Analyzer-CCS Option or 'h' for help (terminated with '.') : 

I def(seh) .  

Enter a process : (s I e l  I e2)\gl \g2 

Enter Anatyzer-CCS Option or 'h' for help (terminated with '.') : 

/* The hidden actions gl, g2 are pushed outside the parallel operator by Ax3; the result is in t2 */ 

l app ly (Ax3 ,  s e h l )  -> t l .  

Trying to apply axiom ... 

((s I (cl Ic2)) I (bl* I b2*))kglkg2\bl'xb2 

Enter Analyzer-CCS Option or %' for help (terminated with '.') : 

/* Associativity and commutativity axioms of the parallel operator are repeatedly used */ 

l a p p l y _ s u b ( A x 5 ,  t2) -> t3. 

To which subterm? (s ] (el  [ e2)) [ (b l*  [ b2*) 

Trying to apply axiom ... 

(s l ((cl I c2) I (bl* I b2*)))kgl\g2x, brxb2 

Enter Analyzer-CCS Option or 'h' for help (terminated with '.') : 

l a p p l y _ s u b ( A x 6 ,  t3) -> t4. 
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To which subterm? (cl  I c2) I (bl* I b2*) 

Trying to apply axiom ... 

(s I ((cl t bl*) I (c2 1 b2*)))~gl~g2~blXb2 

Enter Analyzer-CCS Option or 'h' for help (terminated with '.') : 

/* The actions bl  , b2 and g l , g2 are swapped by applying Ax4 four times; the result is in t8 */ 

l apply sub(Ax4, t4) -> t5. 

To which subterm? (s I ((el I bl*)  I (c2 I b2*)))\gl\g2\bl 

Trying to apply axiom ... 

(s t ((cl I bl*) I (c21 b2*)))kbr~b2Nglkg2 

Enter Analyzer-CCS Option or 'h' for help (terminated with '.') : 

/* The actions bl, b2 are pushed inside the parallel operator by applying (four times) Axl.  

All useless restrictions of  bl, b2 are deleted via Ax2 */ 

t app ly_sub(Axl ,  t8) -> t9. 

To which subterm? (s [ ((cl I bl*)  I (c2 I b2*)))\bl 

Trying to apply axiom ... 

(s"bl t (((cl I bl*) I (c2 t b2*))~l))kb2~Ikg2 

Enter Analyzer-CCS Option or 'h' for help (terminated with '.') : 

l apply_sub(Ax2,  t9) -> t l0 .  

To which subterm? s \bl  

Trying to apply axiom ... 

(s 1 (((cl I bl*) I (c2 1 b2*))kbl))~2',,gl',g2 

Enter Analyzer-CCS Option or 'h' for help (terminated with '.') : 

l apply sub(Axl ,  t l0 )  -> t l l .  

To which subterm? ((el I hi*)  I (c2 I b2*))\bl 

Trying to apply axiom ... 

(s I (((ct I bl*)~lkb2) I ((c2 1 b2*)kb2)))',glkg2 

Enter Analyzer-CCS Option or %' for help (terminated with '.') : 

l apply_sub(Ax2,  t lS)  -> t16. 

To which subterm? (el  I b l*) \bl \b2 

Trying to apply axiom ... 

(s I (((el I bl*)Xbl) I ((c2 1 b2*)',b2)))',gl'xg2 

This permits concluding that (1) holds. To prove the general claim, we will prove (2) and (+) by means of 

the Verification module. 

Automatic Verification 

The Verification module proves observational equivalence of processes El,  E2 by transforming E1 

into E2. It applies reductions modulo observational equivalence and replaces subexpressions with 

identifiers, to deal with recursion while preventing infinite rewritings. 
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To use the Verification module, when prompted by the system, we type the command "verification", 

type in the environment and the two processes to be proved observationally equivalent. We will type "[]" to 

tell the system that the whole environment has been input. In the following we report an excerpt of the 

interaction between the user and the system. 

]* Proving (2)*/ 

Enter Analyzer-CCS Option or 'h' for help (terminated with'.') : 

I ve r i f i ca t ion .  

/* The environment with the definitions of clp, cl and bl* is typed in */ 

Enter a process identifier : c l p  

Enter a process : (el  I b l * ) \ b l  

Enter a process identifier : [] 

/* The processes to be proved observationalIy equivalent are now input */ 

Enter the ftrst process : c l p  

Enter the second process : g l . ~ a l . ~ g 2 . c l p  

Trying to verify observational equivalence ... 

/* The following are the intermediate processes into which clp is rewritten */ 
c lp  = ((cl I bl*))'~bl 

c lp  = g l . ( ( - a l . ( -b l . - g2 . c l  + ~g2. -b l .c l )  I bl*))kbl 

c lp  = g l .~a l . ( ( ( -b l , -g2 .c l  + - g 2 . - b l . c l )  I bl*))kbl 

c lp  = gl .~al .&g2.( (~bl .c l  I b l*)) '~l  + tau.((~g2.cl I bl*))kbl) 

c l p  = gl.~al.(~g2.tau.clp + tau.~g2.clp) 

The two processes you entered are observational equivalent. 

/* Proving (+) */ 

Enter Analyzer-CCS Option or 'h' for help (terminated with'.') : 

l ve r i f i ca t ion .  

/* The environment with the definitions of schl, s, clp, c2p is typed in */ 

Enter a process identifier : schl  

Enter a process : (s I c l p  ] c2p)\gl\g2 

Enter a process identifier : [] 

/* The processes to be proved observationally equivalent are now input */ 

Enter the first process : sch l  

Enter the second process : ~al .~a2.schl  

Trying to verify observational equivalence ... 

schl = (((s l (clp l c2p)))X,gl)",g2 

schl = tau.(((nil 1 (-al .~g2.clp I c2p)))Xgl)',,g2 

schl = tau.-al .(((nil l  (-g2.clp Ic2p)))X,gl)Xg2 

schl = tau.~al.tau.(((nil I (clp I~a2.~gl.c2p)))'xgl)",g2 

schl = tau.~al.tau.~a2.(((nill(clpl~gl.c2p)))'xgl)",g2 

schl = tau.~al.tau.~a2.schl 

The two processes you entered are observational equivalent. 
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5. Conclusions and future work 

We have presented a term rewriting approach to verify behavioural equivalences between CCS 

specifications. This approach may be the basis for developing an environment of theories, which the user 

can use at the metalevel by developing his own proof strategies. This environment makes it possible to 

move from a theory to another and manipulating specifications by their symbolic representation. 

We have also seen that this approach has certain weakness and deficiencies, see for example the 

divergence of completion and non terminating rewritings. Nevertheless, we have shown that, within the 

framework of the term rewriting approach itself, it is possible to recover such deficiencies. Both the 

Verification module and the strategy '->strat that we have defined for the verification of the observational 

congruence are examples of a definition of proof strategies in an environment of theories. Hence, we have 

been able to deal with the deficiencies mentioned in an "ad hoc" way. 

However, within the framework of term rewriting, there are other techniques (both consolidated and 

"ad hoc"), which can be investigated in order to cope with the problem of the divergence of completion. 

One of these is based on meta-rules and meta-rewriting [Kir87]; another technique deals with a different 

form of completion guided by the structure of the two terms whose equivalence is "queried". In particular, 

as far as the observational congruence is concerned, a verification technique based on a lazy completion 

[Her89b] appears very promising. This technique relies on the observation that the left hand sides of the 

infinite rules generated during the completion process do increase monotonically according to a fixed 

ordering. Thus, when dealing with a set of processes P, a lazy completion driven by P can be performed by 

completing the theory only until a rewrite rule, which is greater than (and thus can never be applied to) any 

term in P, has been generated. 

Our system can be extended by adding new modules to implement the canonical term rewriting 

systems associated to the trace equivalence, the observational equivalence for a subcaiculus of CCS, which 

does not contain the parallel composition operator, and the branching bisimutation. At present, we are 

working on the implementation of the module for -->strat and on some extensions. We will introduce axioms 

for the recursion operator and study a proof strategy for verifying testing congruence via its axiomatic 

characterization. In fact, the strategies developed for the observational congruence do not straightforwardly 

apply to testing congruence. One of the main difficulties is represented by the normal forms of this 

congruence: completeness of its axiomatization has been proved by means of structured and balanced, but 

not minimal, normal forms, whereas the normal form according to a rewriting relation is always a minimal 

form. 

A further step in our work will be the definition of a meta-environment and a meta-language which 

will allow the user to define and use his own proof strategies by applying different theories in a modular 

and flexible way. 
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Appendix: A C a l c u l u s  o f  C o m m u n i c a t i n g  Sys t ems  - C C S  

We briefly introduce the relevant definitions of Milner's Calculus of Communicating Systems [Mil80, 

Mi185]. The concrete syntax of"pure" CCS, i.e. without value passing, is as follows: 

E ::= NIL I It.E 1 E ~  I E[~] I E+E IEtE I x t rec x. E 

where x is a variable; A ={o~,1],7,...}; ~A = {-ix t c~  A}; x~A; A u ~A t)  {x} is the set of basic actions, 

ranged over by It; A = A u ~A is ranged over by ~.; ~ is a permutation of A u x which preserves "c and the 

operation ~ of complementation. CCS agents are terms generated by the above BNF, the variables of 

which are bound within a recursive definition (closed). 

NIL represents an agent which cannot perform any action. It.E denotes an agent which can only 

perform action It and then behaves like E. The actions of E[~] are renamings via ~ of those of E. Agent 

E\c¢ behaves like E but cannot perform actions a and ~oz. Agent E l +  E 2 can act either as E 1 or as E 2. 

Agent El lE  2 can perform in parallel the actions ofE 1 and E2; moreover they can synchronize, through a x, 

whenever they are able to perform complementary actions. Agent ree x.E denotes a recursive agent. 

The interleaving operational semantics is given in terms of labelled interleaving transitions over CCS 

agents, defined by the following inference rules: 

act) 

res) 

rei) 

sum) 

corn) 

rec) 

It.E -it--->E 

E 1 -it---> E 2 and It ~ {a, ~cz} imply E1ka -It--> E2kot 

E 1 -It--> E 2 implies E l i , ]  ---¢(}.t)---~ E2[#] 

E 1 -It--> E 2 implies EI+E -It---> E2 and E+EI-[t--~ E 2 

E 1 -It----> E 2 implies EllE -l.t--> E21E and EIE 1 --g--o EIE 2 

E 1 -X--->E 2 and E' 1 --~.--oE' 2 imply EIIE' 1 -x---~ E2IE' 2 

El[rec x.E 1/x] -It--->E 2 implies rec x.E 1 - i t -~E 2. 

The axiomatic presentations for finite CCS of the behavioural equivalences we have considered are 

characterized by a number of common axioms, which we refer to as Basic Axioms, plus a set of x-laws 

distinguishing one equivalence from another. It is worth noting that by means of the Basic Axioms any 

finite CCS term may be proved equal to one containing only NIL, action prefix and summation operators. 

Basic Axioms 

A1. X + ( Y + Z ) = ( X + Y ) + Z  

A3. X + X = X  

A5. NIL[~] = NIL 

A7. (it.X)[fp] = ~(it).X[~] 

A9. (X + Y)~a = X ~  + Y~a 

AIO. ( i t .X)~  = ~ I t . (X~) It ~ {ct , -a}  

NIL otherwise 

A l l .  If X = • i t i . X  i and Y=Y,  vj.Yj then 

X I Y = Y-,i txi-(Xi Iv )  + ]~j vj.(X I Yj) + ]~ {x.(Xi I Yj) I Iti = ~vj } 

A2. X + Y = Y + X  

A4. X + N I L = X  

A6. (X + Y)[¢] = X[¢] + Y[@] 

A8. NILXc¢ = NIL 
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Trace Congruence [DH84] 

S1. x . X = X  

$2. It.(X + Y) = It.X + It.Y 

Observational Congruence [HM85] 
(without the parallel composition operator) 
H1. X + x.X = Z.X 

H2. It.(X + x.Y) = It.(X + Y) + It.Y 

Testing Congruence [DH84] 

D1. "~.(X + Y)+ x.Y =x.Y + X 

D2. It.(x.X + x.Y) = It.X + It.Y 

D3. x.(it.X + It.Y + Z) = It.X + x.(~t.Y + Z) 

Branching Bisimulation Congruence [GW89] 

B1. I.t.x.X = It.X 

B2. It.(x.(X + Y) + X) = [.t.(X + Y) 

Observational Congruence [HM85] 

T1. ~t.x.X = It.X 

T2. X + x.X = x.X 

T3. ~t.(X + x.Y) + It.Y = It.(X + "c.Y) 

Obs-Normal Form [HM85] 

The notion of normal form according to the observational congruence is reported below: 

• P' is a It-derivative of P (and we write P =It=> P') if P -'c*--+ -It---> ---x*---> P'. 

• Two terms P and Q are sumcongruent if P = Q can be proved by using only the AC axioms. 

° A term ~ p.i.Pi is aproper normal form if 
i) it does not take the form z.P'; 

ii) each Pi is a proper normal form; 

iii) for k c j  no Itk-derivative of IXj.Pj is sumcongruent to Pk- 

• An obs-normalform is either P or x.P, where P is a proper normal form. 
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