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ABSTRACT 

A method for automatic verification of trace and test equivalence between regular CCS 

specifications is presented. The method consists of two steps: (i) CCS specifications are 

transformed to detem~nistic, and finitely represented attributed trees, which we call test trees 

(TT's), and (ii) TT's are compared for verification of trace or test equivalence between the 

corresponding CCS specifications. 

1 INTRODUCTION 

An important problem in verification of concurrent systems is to distinguish specifications based on 

their observable behaviour. Several relations have been proposed for that purpose. Some of the most 

well-known are trace equivalence, and observation equivalence [Mi 80]. In this paper we will present a 

relation, test equivalence, defined by De Nicola and Hennessy [NiHe 84], and give a method for 

verification of trace and test equivalence between CCS [Mi 80] specifications. 

Our approach to verification of trace and test equivalence between CCS specifications, is to transform 

the specifications to a representation, in which test equivalent specifications have the 'same' 

representation. We have treated regular CCS specifications, which means that we can handle all 

specifications that can be modelled with nondeterministic finite state machines. 

Currently, there is work in progress on automatic verification of relations between finite state systems. 

For example, a survey of the work done on verification of observation equivalence is given by 

Bolognesi and Smolka in [BoSm 87]. We have however not found an algorithm for verification of test 

equivalence in the literature. A 'dual problem' to verification of test equivalence, verification of failure 

equivalence [BHR 84], has been treated by Kanellakis and Smolka [KaSm 83]. 

The organization of the remaining part of this paper is: section 2 introduces the notation used, and gives 

the definitions for trace and test equivalence. The verification method is described in section 3. We 

summarize the results, and present plans for future work, in section 4. 

2 NOTATION AND DEFINITIONS 

We begin by defining a finite labeled transition system, which is the underlying semantic model for 

regular CCS specifications. Trace and test equivalence are defined in terms of the "may" and "must" 

tests of De Nicola and Hennessy [NiHe 84]. 
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Definition 2.1: A finite labeled transition system (FLTS) is a quadruple, `5 = (S, E,  s 0, T), where: 

S is a finite set of  states (ranged over by s, s', S, S1, etc.), E=Lu{x}  is a finite set of  events (ranged 

over by e, e', etc., L denotes the set of  observable events, ranged over by a, a', etc., and z denotes the 

unobservable event), SoE S is the initial state, and T ~ S × E x S is the set o f  labeled transitions (a 

labeled transition in T is denoted s-e-->s ', where s, s '~S,  and e~E) .  

Notation: We will use s-e--> to denote that event e can be performed at state s, and s-t-e---> to denote 

its negation. In addition we will use: s=a--> as shorthand notation for s-X--->sl-X---> ... sk--a---> (where k 

is finite), and s--an--*s" to denote s-X--~sl-X--~ ... sn.l-z--->s '. For strings, we will use L* to denote the 

set o f  strings over L (ranged over by 0, 01, etc.), and e to denote the empty string. 

Definition 2.2: For a FLTS `5, we define the ¢-closure o f  a state as: q(s)={s'  I s-xn--~s" and n_>0}, 

i.e. the set of  all states that can be reached from s (including s) by performing x's. Note that if s-/-'~---~, 

Es)={s}. 

Definition 2.3: For a FLTS ,5, we define the af ter  function on states and strings, inductively as: 

i) {s} after e = q(s) 

ii) {s] a f te r  a = Ui'/(si), where sic {s i t s=a---->si } 

iii) {s} after  ao = ({s} after a) after o 

iv) { s } u S  1 af ter  a = ({s} after a) u (S 1 af ter  a), where S1,~3, and Slc-S 

Intuitively, {s 1 . . . . .  sn} a f t e r  6, defines the set of states that s 1 . . . . .  s n can transform to after 

performing the sequence o. 

2.1 REGULAR CCS SPECIFICATIONS 

Given a FLTS ,5, we will interpret S as a set of regular CCS specifications (expressions). We will now 

define the syntax for regular CCS specifications. 

S : :=nil  le.S I S + S  1 ktXS, 

where X is a variable from a set of variables (denoted X), and the foUowing rules apply for the 

operators: 

i) The nil operator (nil), has no rules. 

ii) The prefix operator (.), e.S _e_.> S 

iii) Thesummationoperator(+), S1 _e._> SI '  implies S1 + s2-e- ->  SI '  

$2 _e_._~ $2' implies $1 + s2-e---~ $2' 

iv) The recursion operator (~t), S[ktXS/X] _e_~ S' implies ~tXS _e.__~ S', 

where S I[S2/X] denotes the expression which results from substituting 

every free occurrence of X in S 1, with $2. 

Notation: A recursive equation, e.g. IxS(a.S + b.nil), will be displayed as: S=a.S + b.nil. 
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2.2  T R A C E  AND TEST EQUIVALENCE 

In this paragraph we will give the definitions for trace and test equivalence from [NiHe 84]. 

Definit ion 2.4: For a FLTS ,5, we define a test as, t = {a 1 .. . . .  an}, i.e. a set of  observable events, 

such that t c - L. 

Definition 2.5: For a FLTS `5, we define may  and must  predicates on states and tests, inductively 

as: 

i) { s } m a y t  ¢:* 3s'Eq(s),3aet:s'=a--~ 

{s: . . . . .  s n } m a y t  em ( { s l } m a y t )  v . . . v ( { S n } m a y t )  

ii) {s} m u s t t  ¢:* Vs'Eq(s) ,3a~t:s '=a~ 

{s: . . . . .  sn} mus t  t ¢~ ({s:} mus t  t) ^ ... A ({Sn} mus t  t) 

(i) means that there is a state in '/Is), in which at least one of the events in t can be performed. (ii) 

means that at every state in "/(s), at least one of the events in t can be performed. It should be noted that 

for any CCS specification S, the set of  must tests for S, is a subset of the set of may tests for S. 

Notation: We will use {s} may  not  t, to denote the negation of  {s} may  t, similarly, we wilt use 

{s} must  not  t, to denote the negation of {s} must  t. 

As an example of  may and must tests, consider the specification, S = x.a.nii + b.nil, and the tests 

tl={a}, and t2={b }. Both t 1 and t 2 are may tests for S, since they satisfy (i). In addition, t 1 is a must 

test for S, since it satisfies (ii). Note that t 2 is not a must test for S, since: ({S} af ter  c) must not {b}, 

i.e. t 2 does not satisfy (ii). 

Defini t ion 2.6: For a FLTS ,5, and two arbitrary CCS specifications, S1 and $2, constructed in ,5, 

we define trace (=~) and test equivalence (=t) as: 

1) SI=t~S2 iff: Vc, Vt (({S1} af ter  o) may  t ¢:~ ({$2} af ter  o) may  t) 

2) Sl=tS2if f :  Vcr, Vt(({S1} a f t e r c r ) m u s t t  ¢~,({$2} af ter  c0 must  t) 

where oeL* and t c L. 

(1) means that S1 can perform the same sequences of  observable events as $2. (2) means that in 

addition to (1), after performing the same sequence of  observable events S 1 and $2 have the 'same 

deadlock properties'. It should be noted from the above definitions that test equivalence implies trace 

equivalence. 

3 THE VERIFICATION METHOD 

In this section we will present the verification method. We will use synchronization trees (ST's) [Mi 

80], to model regular CCS specifications. 

Our approach to verification of  test equivalence is to transform CCS specifications to a representation, 

in which test equivalent specifications have 'identical' representations (which means that the only 
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possible differences in the representations of two test equivalent specifications are: ordering of events, 

e.g.a.nil + b.nil and b.nil + a.nil, and modelling of recursion, e.g. TI=a.T1 and T2=a.a.T2). 

The definition of test equivalence (see paragraph 2.2) indicates that the representation we are looking 

for is a deterministic tree, in which must tests are associated as attributes with each node. With that in 

mind we defined our representation, test trees (TT's). 

The method for verification of trace or test equivalence between CCS specifications consists of two 

steps: (1) CCS specifications are transformed to the corresponding TT's and (2) the TT's are compared 

for verification of trace or test equivalence between the corresponding specifications. As an example, 

consider figure 1. 

Specification 1 Specification 2 

( ST1 ) -~2  = t  - - (  ST2 ) 

\ / 

Figure 1: Overview of the verification method. 

To establish test equivalence between two specifications represented with ST's, the ST's are 

transformed to the corresponding TT's (ST1 to TTI, and ST2 to TT2). The problem of verifying test 

equivalence between the specifications, is consequently transformed to the problem of establishing 

equality between the corresponding Tr ' s .  

3.1 TEST TREES 

We define the previously outlined deterministic attributed tree model: 

• A TT is a deterministic ST, in which must tests are associated as attributes with each node. We 

will refer to a node in a TT as a pair, (T, A), where T is the node name, and A = { t  I . . . . .  tn} is 

the set of must tests associated with that node. 

The TI" node, corresponding to a nil node, or a node with a x...x.nil branch, in a ST, has A={ { } }, 

while the T f  node corresponding to a ST node with a x-loop, has A={ {0 } }. As an example of a ST (S) 

and the corresponding TT (T), consider figure 2. 

S 

d 

T 

aT {a}} 
~ b , c , d }  } 

Figure 2: A ST, and the corresponding TT. 

The nondeterminism in S is represented in the corresponding Tl" (T) by the must test associated with 

the second node, {b,c,d},  which means that: ({S} after a) must {b,c,d}.  
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3.2 THE T R A N S F O R M A T I O N  

The problem of transfomaing a ST to the corresponding "IT is divided in the following three problems: 

(i) generation of must tests, (ii) elimination of nondeterrninism, and (iii) detection of recursion. The 

solutions for the above three problems are sketched below. 

GENERATION OF MUST TESTS 

For generation of must tests, we can think of a ST as consisting of two types of nodes: stable nodes 

(which have no x-labeled branches), and unstable nodes (which have x-labeled branches). As an 

example, consider the ST $2 shown in figure 3, for which $2 and $3 are unstable nodes, while $4 and 

$5 are stable nodes. 

S1 $2 $6 $9 

$ 3 ~  $7 ' ~ ~ b  a 

$ 4 ~ /  ~ S  5 S9 

Figure 3: Stable and unstable nodes. 

Using the above classification of nodes in a ST, and the definition of a must test (see paragraph 2.2), 

we observe that only events at stable nodes need be part of  must tests. For example, for S2 the event b 

need not be part of the must tests, since $2 is an unstable node. Must tests for stable and unstable 

nodes, are generated in the following manner: 

i) Stable nodes:  Each unique event at a stable node is a must test for that node. As an example 

consider the ST Sl  shown in figure 3. S1 has two must tests: {a}, and {b}. Note that a nil node 

is a special case of a stable node. It has the must test { }. 

ii) Unstable  nodes: For unstable nodes it is necessary to examine if stable nodes are reachable via 

the x-branches. There are two cases: 

1) A x-loop is detected. In that case there are no must tests, since an infinite x-sequence is 

possible (e.g. see $9 in figure 3). 

2) Only stable nodes are reached (note that if only one stable node is reached, the generation 

of must tests is given under (i)). There are two cases: 

• A nil node is reached. In that case there are no must tests, e.g. see $6 in figure 3. 

• No n i l  nodes are reached. In that case the events at the stable nodes must be 

'combined' to compute the must tests. For example, consider the ST $2 shown in 

figure 3. $2 has two stable nodes, $4 and $5, with the observable events: a or d, and 

d. 'Combining' these events results in: t l={a}u{d}={a,d } and t2={d}u{d}={d}, 

which are the must tests for $2. As we shall see in paragraph 3.3, t 1 is redundant 

since it contains t 2 as subset. 

ELIMINATION OF NONDETERMINISM 

We will illustrate how nondeterminism is eliminated in the transformation of a ST to the corresponding 

TT, by describing the transformation of a node in a ST, to the corresponding node in a TT. 
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If mapping of  recursion is neglected, the transformation of a node in a ST, to the corresponding node 

in a TT, can be divided in three steps: 

i) Eliminate the z's down to all reachable stable nodes. The unique observable events at each 

stable node are saved for generation of  must tests. 

ii) Eliminate nondeterminism between observable events, according to axiom (N1) from 

[NiHe 84]: 

(N1) e.S1 +e.S2=te.('c.S1 +.c.$2), 

where e is an observable event, or x, while S 1 and $2 are arbitrary CCS expressions. 

iii) Compute the must tests for the node. 

As an example of the above outlined transformation, consider the ST S shown in figure 4. 

S S~{a},{b,d} } 

Figure 4: The transformation of one node. 

Starting at the root of  S, we eliminate the x's down to all reachable stable nodes, and save the unique 

events at these nodes, {a} and {b,cl}, for computation of  must tests. S '  shows the effect of  step (i) on 

S. In the next two steps nondeterminism between the a ' s  is eliminated, and the must tests, {a,b}, and 

{a,d}, computed. S "  shows the effect of  steps (ii) and (iii) on S'. Note that after the elimination of 

nondeterminism between the a 's ,  ~'s are introduced. The next step in the transformation would be to 

transform the nodes T 2, T 3, and T 5 (which can be done simultaneously). 

DETECTION OF RECURSION 

Our representation for a ST (T) is a sum of event prefixed subtrees: 

T = x.T 1 + ... + x.Tk_ t + a r T  k +.. .  + an.T n 

where {a k . . . . .  an} are observable events, and all subtrees (T t . . . . .  Tn) are in turn ST's. Recursion 

w.r.t. T is modelled by for example letting Tk=T. T k is then called a recursive node. 

An unique identification attribute is assigned to each nonrecursive node in a ST, for detection of  

recursion during the transformation. We use laST) to denote the identification attribute for a ST T. For 

example, for TI=a.T 2 + a.T3: laST 1) = {1}, Id(T 2) = {2}, and/a~T3) = {3}. 

As indicated by axiom (N1), when nondeterminism between observable events is eliminated 'new' 

nodes are introduced. For example, i f  the nondeterminism between the a ' s  at the root of T 1 is 

eliminated according to (N1), T 1 = a.T 4, where "I"4= (x .T /+  x.T3), is a 'new' node, and Iaf(T4) = 

Ia(T2) ~3 I~T3) = {2,3}. 
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To detect recursion during the transformation of a ST to a TT, before a node is transformed the 

identification attribute for the node is matched against the list of identification attributes for the already 

transformed nodes. 

3.3 COMPARING TWO TEST TREES 

If recursion is neglected, the comparison of two Tr ' s ,  for verification of trace (or test) equivalence 

between the corresponding specifications, can be divided in two steps: 

1) Compare the roots of both TT's w.r.t, trace (or test) equivalence (see criteria (i) and (ii), shown 

below). If the roots meet the criterion for trace (or test) equivalence, they are considered bisimilar 

nodes (w.r.t. trace or test equivalence). 

2) If the roots of the "IT's are bisimilar nodes, the comparison is continued for their sons (i.e. 

starting at the roots of both TF's, for each pair of branches labeled by the same events, the roots 

of the subtrees are compared). 

In order to establish trace (or test) equivalence between two TT's, the "IT's are traversed and compared 

according to (1) and (2). 

The criteria for comparing a pair of TF nodes are: 

i) Trace equivalence: Both nodes must have the same number of branches, labeled 

by the same events. 

ii) Test equivalence: In addition to (i), the nodes should have the same must tests. 

Note that trace equivalence is checked by both criteria. Since trace equivalence is checked in the 

criterion for test equivalence, if t 1 and t 2 axe must tests for a node, and tlCt 2, then t 2 is redundant and 

can be eliminated. 

3.4 A VERIFICATION EXAMPLE 

Consider the specifications represented by the ST's S and S', shown in figure 5. 

S ~ 

' g ~  -----t 
c d d 

II 1; 
T' T {{c,b)} ~{ {c,b~} 

{ { } } ~ { { d } }  = {{}}tt/'b ~ -'..,,~a~{}} ~ {d{d}/ 

Figure 5: Two ST's, and the corresponding TF's. 

If we want to determine whether S=tS', or S=trS', we begin by generating the corresponding TT's, T 

(from S) and T' (from S'). By inspecting the Tl"s  (see figure 5), we can easily determine that they are 

identical, i.e. S and S' axe trace and test equivalent. That conclusion is less obvious if S and S' are 

inspected. 
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4 S U M M A R Y  OF R E S U L T S  AND PLANS F O R  F U T U R E  W O R K  

We have presented a method for automatic verification of  trace and test equivalence between regular 

CCS specifications, Algorithms for: (i) transformation of  a ST to the corresponding "IT, and (ii) 

verification of  trace and test equivalence between two Tl?'s, are outlined in section 3. The algorithms 

have been implemented in a tool [AfLi 88]. 

In [Ch 88a] we have related TT ' s  to the acceptance trees (AT's)  of  Hennessy [He 85]. TT's  are 

isomorphic to AT's ,  and can be viewed as a representation of  AT's ,  suitable for verification of  test 

equivalence between specifications. We have also found ' IT 's  useful for generation of tests [Ch 88b], 

when trace and test equivalence are used as conformance criteria between an implementation and its 

specification. Algorithms for test generation from a T]? have been implemented [AfLi 88]. 

Currently, we are working with a probabilistic transition system. We distinguish processes modelled in 

that system by their interaction with tests [Ch 89]. Rather than stating what tests may or must be 

accepted by a process, in a probabilistic model it is possible to map the outcome of 'executing' a test on 

a process, on a number in the interval [0,1]. Based on a notion of  tests and test outcomes, we are 

working on defining equivalences, and the corresponding decision procedures. 
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