
Proving Properties of Elementary Net Systems
with a Special-Purpose Theorem Prover

Heikki Tuominen
Nokia Telecommunications

P.O.Box 33, SF-02601 ESPOO, Finland
e-mail:htuomine@tele.nokia.fi

A b s t r a c t

Elementary net systems, basic net-theoretic models of distributed systems, as well
as their properties are represented by formulas of deterministic propositional dynamic
logic. A semantic tableaux based theorem prover is used to verify the properties, i.e. to
find out whether they are entailed by the representations of the systems. The theorem
prover implements a simplified tableaux decision procedure, the simplifications are due
to the special nature of the set of formulas representing an elementary net system.

1 I n t r o d u c t i o n

Elementary net systems - - EN systems in the sequel - - are basic net-theoretic
models of distr ibuted systems [5]. In addition to an intuitive graphical represen-
tation EN systems offer various mathematical analysis methods. These make it
possible for the designer to verify his/her design already prior to the implemen-
tation. However, the analysis of EN systems is quite a diverse field: there are
separate algorithms for verifying properties of EN systems but some uniformity
is missing. One way to unify the analysis is to use a formal language to represent
the properties and a general enough algorithm to verify those properties.

EN systems as well as their properties can be represented by formulas of deter-
ministic propositional dynamic logic (DPDL) in a natural way. The most obvious
way of representing an EN system is to axiomatize the set of dynamic logic for-
mulas true in the initial state of its state graph [6]. The representation as a set
of formulas implies that a single algorithm, a decision procedure for the logic,
can be used to prove different properties of the EN system. Speaking in terms of
logic the verification problem is thus to find out whether a formula representing
a property is entailed by a set of formulas representing an EN system.

Having a set of D P D L formulas F representing an EN system in the described
sense and a formula ¢ representing a property of the system the tableaux-based
decision procedure for DPDL [1] can be used to find out whether F ~ ¢ or not.
The procedure is applied as a systematic a t tempt to construct a model M with
a state s such that M, s ~ F t.) {-,¢} and if the construction fails the entailment
holds. However, knowing that the set of premises F represents an EN system
allows significant simplifications in the decision procedure.

There axe two main sources for the simplification of the decision procedure.
Firstly, most of the formulas representing an EN system have a global nature,
i.e. they express restrictions which should be true in any state of the system.

98

Thus a decision procedure for the global entailment relation is more suitable than
the standard local one. Instead of trying to construct a model with a state in
which the premises are true and the conclusion false a procedure for the global
entailment relation tries to construct a model such that the premises are true in
all of its states and the conclusion false in same of its states. The original decision
procedure can quite easily be modified in this respect by an additional parameter
for the global premises. Secondly, the models of a set of formulas representing
an EN system possess a "strong" collapsed model property, i.e. any two states
verifying exactly the same atomic formulas in such a model can be identified
without affecting the truth values of relevant formulas. This is due to the fact
that the models correspond to the state graph of the EN system in which the
successors of a state are completely determined by the atomic formulas true in
that state.

Even with the simplified decision procedure it is in most non-trivial cases im-
possible in practice to prove F ~ ¢ when the system represented by F really has
the property represented by ¢. However, it is often possible to prove that the sys-
tem does not have the opposite property represented by --¢, i,e. F ~= -~¢ [7]. These
are equivalent because of the completeness of the logical theory induced by F. The
indirect method has one drawback: in order to prove that an EN system does not
have a property the whole case graph has to be constructed. This construction
can be avoided only by using some other representation of the EN system, a rep-
resentation which axiomatizes only a subset of the properties. One such approach
presented in this paper is to axiomatize the set of safety properties. The simpli-
fications of the decision procedure apply also for this representation although for
partly different reasons.

Another method to verify properties of EN systems would be the model check-
ing paradigm: generate the state graph of the system, interpret it as a data base
and use a temporal (or dynamic) logic as a query language [2]. The present the-
orem proving method goes one step further in utilizing logic and represents also
the system as a set of formulas. This makes the method more general and flexible,
the same algorithm cazl be used in connection with different representations of EN
systems. Unfortunately this generality also means a certain loss in the efficiency.

The rest of the paper is organized as follows. Section 2 is an informal review of
EN systems. Two different ways to represent them as formulas of dynamic logic
are discussed. The simplified decision procedure for DPDL is described in Section
3 and its experimental implementation is used to verify properties of EN systems
in Section 4. Conclusions are drawn in Section 5.

2 Elementary net systems and their representation in dy-
namic logic

Elementary net systems belong to the family of Petri nets [5]. Graphically EN sys-
tems are represented as directed graphs with two kinds of nodes, circles and boxes,
e.g. Figure 1. The circles, called conditions, represent the local state elements and
the boxes, called events, represent the local actions. In the graphical representa-
tion the state of the system is indicated by tokens in some of the conditions, bl
and b2 in the example. The conditions having a token in a state, called a case,
are interpreted to be true in that state, the others false. {bl, b2} forms the initial

99

el' i
bl@

b3()

e41

(
....... I

b2@

@
b4()

1
l
\

, I

f

(

~ e l

=> {bl, b2}

Figure 1: An EN system and its sequential case graph.

case of the EN system in Figure 1. The state of an EN system is changed by oc-
currences of the events. An event can occur if all of its pre-conditions (conditions
from which there is an arc to the event) are true and all of its post-conditions
false. The event occurrence causes the pre-conditions to become false and the
post-conditions to become true.

The sequential case graph of an EN system represents the forward state graph
of the system, it is an initialized labelled graph [4]. The nodes are labelled with
sets of conditions, the intuition being that those conditions are true in the case
which that node represents. The initial node is labelled with the set of conditions
true in the initial case of the system. The edges of the sequential case graph
are labelled with events of the system. Intuitively an edge represents the event
whose occurrence takes the system from a case to another. In this paper we
restrict ourselves to finite EN systems which always have also finite sequential
case graphs.

It is obvious that sequential case graphs are exactly like models of propositional
dynamic logic, a branch of modal logic originally developed for reasoning about
computer programs [3]. The events and conditions correspond directly to atomic
programs and formulas, respectively. While sequential case graphs are deter-
ministic structures they are even models of DPDL, a deterministic propositional
dynamic logic [1].

In DPDL programs are regular expressions over the set of atomic programs
and test programs, i.e. they are built using concatenation (;), choice (U) and
finite repetition (*) from the atomic programs and expressions of the form ¢?
where ¢ is a formula. Formulas are built from atomic formulas using negation
(--) and prefixing with (a), where a is any program. The intended reading of
the formula (a)¢ is "it is possible to execute a and reach a state in which ¢ is
true." The dual of (a} and the additional truth-functional operators are defined
as abbreviations in the usual way: [a]¢ stands for ~(a)-~¢, ¢ A ¢ stands for (¢?)¢,
¢ V ¢ stands for ~(-~¢ A-~¢), ¢ ~ ¢ stands for 7¢ V ¢, and ¢ ~ ¢ stands for

100

(¢ -~ ¢) ^ (¢ -~ ¢).
EN systems can be represented as sets of DPDL formulas in several ways.

Perhaps the most obvious way is to axiomatize the theory formed by formulas
true in the initial case of the sequential case graph. The set of non-logical axioms
doing this for an EN system A/" is in the sequel denoted by F~r. For the EN system
in Figure 1 the set is the following.

(bl A b2 A ~b3 A "~b4 A -~bs)

[(e 1 U e2 U e 3 U e4)*]((mbl/~ rob2 A 53 A 54)
[(~, U e~. U ~ U e,)*] ((b l A -,b~)
[(e, U e~ U e~ U e,)*]((b~ A ~b,)
[(e~ U e: U e~ U e,,)*]((b~ A t,, A -~b~)

--e- (el)(b 1 A b 2 A mb 3/~ -~b4))

[(e I U e 2 U e3 U e4)*](m(mbl A "rob 2 A b3 A 54) --~ [el]J-)
[(el U e~ U e~ U e~),](-~(b, A-~b~) -~ [e~] l)
[(e, U ~ U e~ U e~)*](-4b~ ,X -~b~) -~ [e~]±)
[(el ae2ue3ue4)*](-l(b3Ab4Ambs) ~ [e4]_L)

[(el U e2
[(el U e2
[(e I U e 2
[(~1 u e~
[(el u e~

Ue3 U e4)*]((b 1 --," [e3 U e4]bl) A (-'151 ---t. [e3 U e4]-~bl))
U ~ U ~)*] ((b~ --, [~ U ~,]b~) A (-~b~ ~ [~ U e~]-¢~))
U e~ U e~),]((b~ --~ [e~]b~) ,X (-¢~ --~ [e~]-~b~))
U e~ U e~)*]((b~ --~ [~]b~) ,X (-'¢~ -~ [~]~b~))
U e~ U ~)*] ((b~ --~ [~1U ~ U ~]t,~) ^ (-~b~ ~ [~1U ~ U ~]--b~))

The axioms are grouped into four sets. The first group is formed by a formula
which defines the initial case. The second group includes for each event of the
system a formula which describes the occurrence of that event. The third group
includes for each event a formula which defines in which cases that event cannot
occur. The last group includes the so called frame axioms, one for each condition.
The described set of axioms represents the EN system in the sense that a formula
(in the relevant language) is entailed by the set in DPDL if and only if the formula
is true in the initial case of the sequential case graph of the system [6].

Another way to represent an EN system as a set of DPDL formulas is to
axiomatize only the safety properties, i.e. formulas which state that nothing bad
will happen. That set of non-logical axioms F~r differs from F~r only in the second
group. Instead of stating that an enabled event must occur, the new axioms state
that whenever the event occurs the resulting case has the pre-conditions false and
the post-conditions true. The second group of axioms in F~¢ for the EN system
in Figure 1 is the following.

[(e I U e 2 U e 3 U e4)*][el](bl A b 2 A "-753 A "-154)
[(e, U ~ U ~ U ~ ,) ,] [~] (- -b , A b~)
[(~, U e~ U e~ U ~,)*][~](-~b~ ^ b,)
[(e, U ~ U ~ U ~,)*][~,](-~b~ ^ -,b, ^ b~)

This representation is closer to the original idea of EN systems (and Petri nets
in general): they only define causal dependencies between occurrences of events
without claiming that some event will occur.

101

The latter representation is entailed by the former one, i.e. F~/ ~ F~. Thus
if a formula ¢ is entailed by the latter representation it also is entailed by the
former one. For formulas representing safety properties also the converse holds as
the following proposition states.

P r o p o s i t i o n 2.1 If the Fischer-Ladner closure 1 o]¢ includes no formula of the
form (o~)¢ (where c~ is an atomic program) which appears in ¢ in the scope of an
even number of negation symbols and F~[~ ¢ then Fb~ ~ ¢.

The proposition together with the earlier mentioned entailment implies that
regarding safety properties of the EN system the two representations are equiva-
lent. This relation makes it possible to prove that a system does not have a certain
safety property without generating the whole case graph. Examples of using both
representations in reasoning about EN systems are given in Section 4.

3 The simplified tableaux procedure

The decision procedure which we use to prove properties of EN systems is based
on the semantic tableaux algorithm for DPDL [1]. The original algorithm works
ill two phases: given a satisfiable formula (or a set of formulas) it first generates a
structure called a partial D model and then unwinds the structure into a model.
The partial D model consists of a relevant part of a filtration of the canonical model
through the Fischer-Ladner closure of the original formula and it is otherwise like
a model but the accessibility relations corresponding to atomic programs are not
necessarily functional.

There are at least two simplifications possible in the decision procedure when
it is applied to a representation of an EN system, F~ or 1~. The first one is based
on the syntactic form of the representations, the second one on properties of their
models.

The syntactically motivated simplification is to change the algorithm to operate
on the global entailment relation. The change simplifies the proof of properties
because most of the formulas representing an EN system are global by nature, i.e.
they have the "henceforth" prefix, [(U ei)*]. Instead of using the local entailment
relation FAr ~ ¢, where rAr (being F~/ or F~) represents the system and ¢ the
property, it is thus more reasonable to use the global relation F~ ~G (¢ -~ ¢),
where ¢ is the formula in FAr which defines the initial case and F~/ consists of
the rest of formulas in FAr leaving out the "henceforth" prefixes. The reading of
F~ ~ c (¢ --* ¢) is: if F~r is true in all states of a model then (¢ -~ ¢) is also
true in any state of such a model. Clearly FAr ~ ¢ iff F~ ~G (¢ -~ ¢). In the
algorithm this change appears as an additional parameter for the set F~ of global
premises. The algorithm is run on the set F~ U {¢,-~¢} and every time a new
node of the partial D model is generated by the v-rule the members of F~ are
added to the label of that new node.

The semantically motivated simplification is due to the following properties of
the models of F~ and F~.

1The Fischer-Ladnez closttre of a formula ¢ is the least set of formulas Z which includes ¢ and satisfies
the following conditions: if-~¢ E ~ then ¢ E E, if (a l e E ~] then ¢ e ~, if (a; fl)¢ C E then (a)(fl)¢ C E, if
(ctU~)¢ e I] then {(a)¢, (fl)¢} C ~, if (a*)¢ E ~ then (a)(ct.)¢ E 1~, and if (¢?)X E ~ then {¢, X} C_ Z [1].

102

size of t h e sysieln s ize-~ the case graph
9

13
17
21
25
29
33
37

execution time (s)
5

10
17
26
37
50
65
82

1
4

10
21
69

126
227
376

Table 1: Runtime statistics for case graph generation.

• In any model M generated by a state s such that M, s ~ F~f the successors
of any state are completely determined by the atomic formulas true in that
state.

• The representation F~V has the following "finite tree model property": if ¢
represents a safety property and r ~ U {-~¢} is satisfiable then there exists a
finite tree model M generated by a state s such that M, s ~ r~v U {-~¢}.

These imply that the tableaux algorithm can be modified to construct directly
a model. This is done by using a generate and test methodology in the sense that
every time the algorithm meets a disjunctive (fl) formula the construction based
on the first alternative (ill) is tried first. If that choice does not lead to a model in
which all the eventuality formulas get fulfilled the second alternative (f12) is tried.

4 E x p e r i m e n t a l r e s u l t s

An experimental theorem prover based on the described simplified decision pro-
cedure has been implemented in Prolog. This section contains runtime statistics
for different uses of the prover run on a VAX 8650 mainframe computer.

4.1 Logic-based case graph generation

The representation F~ of an EN system Af which axiomatizes the set of formulas
true in the initial case of the sequential case graph can be used for logic-based case
graph generation. The model generated by the tableaux procedure corresponds
to the sequential case graph of the represented EN system. Using the notation
defined in Section 3 a model can be generated by testing whether r ~ ' ~ c (¢ -+ ±).
Table 1 contains runtime statistics for this test considering a set of EN systems.
The smallest system is the one in Figure 1, in the second a condition-event pair
is added between e2 and b3 as well as e3 and b4, in the third system again two
additional pairs are added etc. and the enumeration of the elements is changed
accordingly. The number of conditions and events is used as a measure of the size
of the system.

103

formula

[e2; e3]±
[e2; e3; e4]±
[e~; e3; e4; eb]-L
[e2; e3; e4; eb; e6] /
[e2; e3; e4; es; e6; eT]_l_
[e2; e3; e4; eb; e6; eT; e8] 1
[e2; e3; e4; eb; e6; eT; e8; e9]±
[e2; ea; e4; es; e6; e7; e8; eg; elo]±

size of the falsifying model execution time ~ -
2
3
4
5
6
7
8
9

10

9
9

11
12
13
15
16
17
19

Table 2: Runtime statistics for event occurrence sequences.

formula
[(U ei)*]mbl

/--1...18
[(U

i=1...18
[(U

i=1.,.18
[(U ei)*]-~bl3

i=1,..18
[(U

i=l.A8

size of the falsifying model
1

4

8

12

16
I

execution time (s)
8

16

20

57

72

Table 3: Runtime statistics for reachable cases.

4.2 Proving properties

Even using the simplified tableaux procedure it is impossible to prove - - within
reasonable time - - that F~r' ~G (¢ -~ ¢) for most non-trivial properties ¢ if the
system really has the property ¢. However, it is often possible to prove that the
system does not have the opposite property represented by 9¢ [7]. These are
equivalent because of the completeness of the theory induced by the representa-
tion, i.e. for each formula ¢ (in the relevant language) either F~' ~ c (¢ --~ ¢)
or F~r' ~G (¢ --~ -~¢). Thus F~r' ~G (¢ --~ ¢) iff F~r' ~=G (¢ -~ -@). The main
drawback of this indirect method is that in order to prove that an EN system Af
does not have a property using the representation F~ / the whole case graph has to
be constructed. This means that the execution time needed to verify a property
is always greater than the time needed to construct the case graph.

However, as explained in Section 2 for safety properties the situation is better
because the representation F~r can be used. Table 2 contains runtime statistics
for proofs of possible event occurrence sequences in the largest system in Table 1,
the one with 37 elements. The representation F~f' of that EN system is used.
Similarly Table 3 contains statistics for proofs of the accessibility of cases with a
given condition true.

104

5 Conclus ions

It was shown to be possible - - at least in principle - - to prove properties of
elementary net systems with an automated theorem prover for dynamic logic.
Compared with the model checking approach the performance is nevertheless quite
poor.

A c k n o w l e d g e m e n t s

The financial support for this work was provided by the Academy of Finland.

References

[1] Ben-Ari, M., Halpern, J., and Pnueli, A. Deterministic Propositional Dynamic
Logic: Finite Models, Complexity, and Completeness. Journal of computer and
system sciences 25, (1982), 402-417.

[2] Clarke, E., Browne, M., Emerson, E., and Sistla, A. Using Temporal Logic
for Automatic Verification of Finite State Systems. In Logics and Models of
Concurrent Systems, K. Apt, Ed., Springer-Verlag, Berlin, 1985, pp. 3-26.

[3] Hard, D. Dynamic logic. In Handbook of Philosophical Logic, Volume II: Ex-
tensions of Classical Logic, D. Gabbay and F. Guenthner, Eds., D. Reidel
Publishing Company, Dordrecht, 1984, pp. 497-604.

[4] Rozenberg, G. Behaviour of Elementary Net Systems. In Petri Nets: Central
Models and Their Properties (Advances in Petri Nets 1986, Part I, Proceedings
of an Advanced Course, Bad Honnef, 8.-19. September 1986), W. Brauer, W.
Reisig, and G. Rozenberg, Eds., Springer-Verlag, Berlin, 1987, pp. 60-94.

[5] Thiagarajan, P. Elementary Net Systems. In Petri Nets: Central Models and
Their Properties (Advances in Pctri Nets 1986, Part I, Proceedings of an Ad-
vanced Course, Bad Honnef, 8.-19. September 1986), W. Brauer, W. Reisig,
and G. Rozenberg, Eds., Springer-Verlag, Berlin, 1987, pp. 26-59.

[6] Tuominen, H. Elementary Net Systems and Dynamic Logic. In IX European
Workshop on Application and Theory of Petri Nets (Venice, Italy, June 22-24).
1988, pp. 24-37.

[7] Tuominen, H. Proving Properties of Elementary Net Systems with an Auto-
mated Theorem Prover. In COLOG-88, Papers presented at the International
Conference in Computer Logic, Part I (Tallinn, Dec. 12-16), P. Lorentz, G.
Mints, and E. Tyugu, Eds., Institute of Cybernetics of the Academy of Sciences
of the Estonian SSR, 1988, pp. 206-220.

