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A b s t r a c t  

Elementary net systems, basic net-theoretic models of distributed systems, as well 
as their properties are represented by formulas of deterministic propositional dynamic 
logic. A semantic tableaux based theorem prover is used to verify the properties, i.e. to 
find out whether they are entailed by the representations of the systems. The theorem 
prover implements a simplified tableaux decision procedure, the simplifications are due 
to the special nature of the set of formulas representing an elementary net system. 

1 I n t r o d u c t i o n  

Elementary net systems - -  EN systems in the sequel - -  are basic net-theoretic 
models of distr ibuted systems [5]. In addition to an intuitive graphical represen- 
tation EN systems offer various mathematical  analysis methods.  These make it 
possible for the designer to verify his/her  design already prior to the implemen- 
tation. However, the analysis of EN systems is quite a diverse field: there are 
separate algorithms for verifying properties of EN systems but  some uniformity 
is missing. One way to unify the analysis is to use a formal language to represent 
the properties and a general enough algorithm to verify those properties. 

EN systems as well as their properties can be represented by formulas of deter- 
ministic propositional dynamic logic (DPDL) in a natural way. The most obvious 
way of representing an EN system is to axiomatize the set of dynamic logic for- 
mulas true in the initial state of its state graph [6]. The representation as a set 
of formulas implies that  a single algorithm, a decision procedure for the logic, 
can be  used to prove different properties of the EN system. Speaking in terms of 
logic the verification problem is thus to find out whether a formula representing 
a property is entailed by a set of formulas representing an EN system. 

Having a set of D P D L  formulas F representing an EN system in the described 
sense and a formula ¢ representing a property of the system the tableaux-based 
decision procedure for DPDL [1] can be used to find out whether F ~ ¢ or not. 
The procedure is applied as a systematic a t tempt  to construct a model M with 
a state s such that  M,  s ~ F t.) {-,¢} and if the construction fails the entailment 
holds. However, knowing that the set of premises F represents an EN system 
allows significant simplifications in the decision procedure. 

There axe two main sources for the simplification of the decision procedure. 
Firstly, most  of the formulas representing an EN system have a global nature, 
i.e. they express restrictions which should be true in any state of the system. 
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Thus a decision procedure for the global entailment relation is more suitable than 
the standard local one. Instead of trying to construct a model with a state in 
which the premises are true and the conclusion false a procedure for the global 
entailment relation tries to construct a model such that the premises are true in 
all of its states and the conclusion false in same of its states. The original decision 
procedure can quite easily be modified in this respect by an additional parameter 
for the global premises. Secondly, the models of a set of formulas representing 
an EN system possess a "strong" collapsed model property, i.e. any two states 
verifying exactly the same atomic formulas in such a model can be identified 
without affecting the truth values of relevant formulas. This is due to the fact 
that the models correspond to the state graph of the EN system in which the 
successors of a state are completely determined by the atomic formulas true in 
that state. 

Even with the simplified decision procedure it is in most non-trivial cases im- 
possible in practice to prove F ~ ¢ when the system represented by F really has 
the property represented by ¢. However, it is often possible to prove that the sys- 
tem does not have the opposite property represented by --¢, i,e. F ~= -~¢ [7]. These 
are equivalent because of the completeness of the logical theory induced by F. The 
indirect method has one drawback: in order to prove that an EN system does not 
have a property the whole case graph has to be constructed. This construction 
can be avoided only by using some other representation of the EN system, a rep- 
resentation which axiomatizes only a subset of the properties. One such approach 
presented in this paper is to axiomatize the set of safety properties. The simpli- 
fications of the decision procedure apply also for this representation although for 
partly different reasons. 

Another method to verify properties of EN systems would be the model check- 
ing paradigm: generate the state graph of the system, interpret it as a data base 
and use a temporal (or dynamic) logic as a query language [2]. The present the- 
orem proving method goes one step further in utilizing logic and represents also 
the system as a set of formulas. This makes the method more general and flexible, 
the same algorithm cazl be used in connection with different representations of EN 
systems. Unfortunately this generality also means a certain loss in the efficiency. 

The rest of the paper is organized as follows. Section 2 is an informal review of 
EN systems. Two different ways to represent them as formulas of dynamic logic 
are discussed. The simplified decision procedure for DPDL is described in Section 
3 and its experimental implementation is used to verify properties of EN systems 
in Section 4. Conclusions are drawn in Section 5. 

2 Elementary net systems and their representation in dy- 
namic logic 

Elementary net systems belong to the family of Petri nets [5]. Graphically EN sys- 
tems are represented as directed graphs with two kinds of nodes, circles and boxes, 
e.g. Figure 1. The circles, called conditions, represent the local state elements and 
the boxes, called events, represent the local actions. In the graphical representa- 
tion the state of the system is indicated by tokens in some of the conditions, bl 
and b2 in the example. The conditions having a token in a state, called a case, 
are interpreted to be true in that state, the others false. {bl, b2} forms the initial 
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Figure 1: An EN system and its sequential case graph. 

case of the EN system in Figure 1. The state of an EN system is changed by oc- 
currences of the events. An event can occur if all of its pre-conditions (conditions 
from which there is an arc to the event) are true and all of its post-conditions 
false. The event occurrence causes the pre-conditions to become false and the 
post-conditions to become true. 

The sequential case graph of an EN system represents the forward state graph 
of the system, it is an initialized labelled graph [4]. The nodes are labelled with 
sets of conditions, the intuition being that  those conditions are true in the case 
which that  node represents. The initial node is labelled with the set of conditions 
true in the initial case of the system. The edges of the sequential case graph 
are labelled with events of the system. Intuitively an edge represents the event 
whose occurrence takes the system from a case to another. In this paper we 
restrict ourselves to finite EN systems which always have also finite sequential 
case graphs. 

It is obvious that  sequential case graphs are exactly like models of propositional 
dynamic logic, a branch of modal logic originally developed for reasoning about 
computer  programs [3]. The events and conditions correspond directly to atomic 
programs and formulas, respectively. While sequential case graphs are deter- 
ministic structures they are even models of DPDL, a deterministic propositional 
dynamic logic [1]. 

In DPDL programs are regular expressions over the set of atomic programs 
and test programs, i.e. they are built using concatenation (;), choice (U) and 
finite repetition (*) from the atomic programs and expressions of the form ¢? 
where ¢ is a formula. Formulas are built from atomic formulas using negation 
(--) and prefixing with (a), where a is any program. The intended reading of 
the formula (a )¢  is "it is possible to execute a and reach a state in which ¢ is 
true." The dual of (a} and the additional truth-functional operators are defined 
as abbreviations in the usual way: [a]¢ stands for ~(a)-~¢, ¢ A ¢  stands for (¢?)¢,  
¢ V ¢ stands for ~(-~¢ A-~¢), ¢ ~ ¢ stands for 7¢  V ¢,  and ¢ ~ ¢ stands for 
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(¢  -~ ¢ )  ^ (¢  -~ ¢).  
EN systems can be represented as sets of DPDL formulas in several ways. 

Perhaps the most obvious way is to axiomatize the theory formed by formulas 
true in the initial case of the sequential case graph. The set of non-logical axioms 
doing this for an EN system A/" is in the sequel denoted by F~r. For the EN system 
in Figure 1 the set is the following. 

(bl A b2 A ~b3 A "~b4 A -~bs) 

[(e 1 U e2 U e 3 U e4)*]( (mbl/~ rob2 A 53 A 54) 
[(~, U e~. U ~ U e,)* ] ( (b l  A -,b~) 
[(e, U e~ U e~ U e,)*]((b~ A ~b,)  
[(e~ U e: U e~ U e,,)*]((b~ A t,, A -~b~) 

--e- (el)(b 1 A b 2 A mb 3/~ -~b4) ) 

[(e I U e 2 U e3 U e4)*](m(mbl A "rob 2 A b3 A 54) --~ [el]J-) 
[(el U e~ U e~ U e~),](-~(b, A-~b~) -~ [e~] l )  
[(e, U ~ U e~ U e~)*](-4b~ ,X -~b~) -~ [e~]±) 
[(el ae2ue3ue4)*](-l(b3Ab4Ambs) ~ [e4]_L ) 

[(el U e2 
[(el U e2 
[(e  I U e 2 
[(~1 u e~ 
[(el u e~ 

Ue3 U e4)*]((b 1 --," [e3 U e4]bl) A (-'151 ---t. [e3 U e4]-~bl) ) 
U ~ U ~)* ] ( (b~ --, [~  U ~,]b~) A (-~b~ ~ [~  U e~]-¢~)) 
U e~ U e~),]((b~ --~ [e~]b~) ,X (-¢~ --~ [e~]-~b~)) 
U e~ U e~)*]((b~ --~ [~]b~) ,X (-'¢~ -~ [~]~b~)) 
U e~ U ~)* ] ( (b~ --~ [~1U ~ U ~]t,~) ^ (-~b~ ~ [~1U ~ U ~]--b~)) 

The axioms are grouped into four sets. The first group is formed by a formula 
which defines the initial case. The second group includes for each event of the 
system a formula which describes the occurrence of that  event. The third group 
includes for each event a formula which defines in which cases that  event cannot 
occur. The last group includes the so called frame axioms, one for each condition. 
The described set of axioms represents the EN system in the sense that  a formula 
(in the relevant language) is entailed by the set in DPDL if and only if the formula 
is true in the initial case of the sequential case graph of the system [6]. 

Another way to represent an EN system as a set of DPDL formulas is to 
axiomatize only the safety properties, i.e. formulas which state that  nothing bad 
will happen. That  set of non-logical axioms F~r differs from F~r only in the second 
group. Instead of stating that  an enabled event must occur, the new axioms state 
that  whenever the event occurs the resulting case has the pre-conditions false and 
the post-conditions true. The second group of axioms in F~¢ for the EN system 
in Figure 1 is the following. 

[(e I U e 2 U e 3 U e4)*][el ](bl  A b 2 A "-753 A "-154) 
[(e, U ~ U ~ U ~ , ) , ] [~ ] ( - -b ,  A b~) 
[(~, U e~ U e~ U ~,)*][~](-~b~ ^ b,) 
[(e, U ~ U ~ U ~,)*][~,](-~b~ ^ -,b, ^ b~) 

This representation is closer to the original idea of EN systems (and Petri nets 
in general): they only define causal dependencies between occurrences of events 
without claiming that  some event will occur. 



101 

The latter representation is entailed by the former one, i.e. F~/ ~ F~. Thus 
if a formula ¢ is entailed by the latter representation it also is entailed by the 
former one. For formulas representing safety properties also the converse holds as 
the following proposition states. 

P r o p o s i t i o n  2.1 If  the Fischer-Ladner closure 1 o]¢ includes no formula of the 
form (o~)¢ (where c~ is an atomic program) which appears in ¢ in the scope of an 
even number of negation symbols and F~[ ~ ¢ then Fb~ ~ ¢. 

The proposition together with the earlier mentioned entailment implies that 
regarding safety properties of the EN system the two representations are equiva- 
lent. This relation makes it possible to prove that  a system does not have a certain 
safety property without generating the whole case graph. Examples of using both 
representations in reasoning about EN systems are given in Section 4. 

3 The simplified tableaux procedure 

The decision procedure which we use to prove properties of EN systems is based 
on the semantic tableaux algorithm for DPDL [1]. The original algorithm works 
ill two phases: given a satisfiable formula (or a set of formulas) it first generates a 
structure called a partial D model and then unwinds the structure into a model. 
The partial D model consists of a relevant part of a filtration of the canonical model 
through the Fischer-Ladner closure of the original formula and it is otherwise like 
a model but the accessibility relations corresponding to atomic programs are not 
necessarily functional. 

There are at least two simplifications possible in the decision procedure when 
it is applied to a representation of an EN system, F~ or 1~.  The first one is based 
on the syntactic form of the representations, the second one on properties of their 
models. 

The syntactically motivated simplification is to change the algorithm to operate 
on the global entailment relation. The change simplifies the proof of properties 
because most of the formulas representing an EN system are global by nature, i.e. 
they have the "henceforth" prefix, [(U ei)*]. Instead of using the local entailment 
relation FAr ~ ¢, where rAr (being F~/ or F~) represents the system and ¢ the 
property, it is thus more reasonable to use the global relation F~ ~G (¢ -~ ¢), 
where ¢ is the formula in FAr which defines the initial case and F~/ consists of 
the rest of formulas in FAr leaving out the "henceforth" prefixes. The reading of 
F~ ~ c  (¢ --* ¢) is: if F~r is true in all states of a model then (¢ -~ ¢) is also 
true in any state of such a model. Clearly FAr ~ ¢ iff F~ ~G (¢ -~ ¢). In the 
algorithm this change appears as an additional parameter for the set F~ of global 
premises. The algorithm is run on the set F~ U {¢,-~¢} and every time a new 
node of the partial D model is generated by the v-rule the members of F~ are 
added to the label of that  new node. 

The semantically motivated simplification is due to the following properties of 
the models of F~ and F~. 

1The Fischer-Ladnez closttre of a formula ¢ is the least set of formulas Z which includes ¢ and satisfies 
the following conditions: if-~¢ E ~ then ¢ E E, if ( a l e  E ~] then ¢ e ~, if (a; fl)¢ C E then (a)(fl)¢ C E, if 
(ctU~)¢ e I] then {(a)¢, (fl)¢} C ~, if (a*)¢ E ~ then (a)(ct.)¢ E 1~, and if (¢?)X E ~ then {¢, X} C_ Z [1]. 
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size of t h e  sysieln s ize-~ the case graph 
9 

13 
17 
21 
25 
29 
33 
37 

execution time (s) 
5 

10 
17 
26 
37 
50 
65 
82 

1 
4 

10 
21 
69 

126 
227 
376 

Table 1: Runtime statistics for case graph generation. 

• In any model  M generated by a state s such that  M, s ~ F~f the successors 
of any state are completely determined by the atomic formulas true in that  
state. 

• The representation F~V has the following "finite tree model property": if ¢ 
represents a safety property and r ~  U {-~¢} is satisfiable then there exists a 
finite tree model M generated by a state s such that  M, s ~ r~v U {-~¢}. 

These imply that  the tableaux algorithm can be modified to construct directly 
a model. This is done by using a generate and test methodology in the sense that  
every time the algorithm meets a disjunctive (fl) formula the construction based 
on the first alternative (ill) is tried first. If that  choice does not lead to a model in 
which all the eventuality formulas get fulfilled the second alternative (f12) is tried. 

4 E x p e r i m e n t a l  r e s u l t s  

An experimental theorem prover based on the described simplified decision pro- 
cedure has been implemented in Prolog. This section contains runtime statistics 
for different uses of the prover run on a VAX 8650 mainframe computer. 

4.1 Logic-based case graph generation 

The representation F~ of an EN system Af which axiomatizes the set of formulas 
true in the initial case of the sequential case graph can be used for logic-based case 
graph generation. The model generated by the tableaux procedure corresponds 
to the sequential case graph of the represented EN system. Using the notation 
defined in Section 3 a model can be generated by testing whether  r ~ '  ~ c  (¢  -+ ±). 
Table 1 contains runtime statistics for this test considering a set of EN systems. 
The smallest system is the one in Figure 1, in the second a condition-event pair 
is added between e2 and b3 as well as e3 and b4, in the third system again two 
additional pairs are added etc. and the enumeration of the elements is changed 
accordingly. The number of conditions and events is used as a measure of the size 
of the system. 



103 

formula 

[e2; e3]± 
[e2; e3; e4]± 
[e~; e3; e4; eb]-L 
[e2; e3; e4; eb; e6] /  
[e2; e3; e4; es; e6; eT]_l_ 
[e2; e3; e4; eb; e6; eT; e8] 1 
[e2; e3; e4; eb; e6; eT; e8; e9]± 
[e2; ea; e4; es; e6; e7; e8; eg; elo]± 

size of the falsifying model execution time ~ -  
2 
3 
4 
5 
6 
7 
8 
9 

10 

9 
9 

11 
12 
13 
15 
16 
17 
19 

Table 2: Runtime statistics for event occurrence sequences. 

formula 
[( U ei)*]mbl 

/--1...18 
[( U 

i=1...18 
[( U 

i=1.,.18 
[( U ei)*]-~bl3 

i=1,..18 
[( U 

i=l.A8 

size of the falsifying model 
1 

4 

8 

12 

16 
I 

execution time (s) 
8 

16 

20 

57 

72 

Table 3: Runtime statistics for reachable cases. 

4.2 Proving properties 

Even using the simplified tableaux procedure it is impossible to prove - -  within 
reasonable time - -  that  F~r' ~G (¢ -~ ¢) for most non-trivial properties ¢ if the 
system really has the property ¢. However, it is often possible to prove that the 
system does not have the opposite property represented by 9¢  [7]. These are 
equivalent because of the completeness of the theory induced by the representa- 
tion, i.e. for each formula ¢ (in the relevant language) either F~'  ~ c  (¢ --~ ¢) 
or F~r' ~G (¢ --~ -~¢). Thus F~r' ~G (¢ --~ ¢) iff F~r' ~=G (¢ -~ -@). The main 
drawback of this indirect method is that  in order to prove that  an EN system Af 
does not have a property using the representation F~ / the  whole case graph has to 
be constructed. This means that the execution time needed to verify a property 
is always greater than the time needed to construct the case graph. 

However, as explained in Section 2 for safety properties the situation is better 
because the representation F~r can be used. Table 2 contains runtime statistics 
for proofs of possible event occurrence sequences in the largest system in Table 1, 
the one with 37 elements. The representation F~f' of that  EN system is used. 
Similarly Table 3 contains statistics for proofs of the accessibility of cases with a 
given condition true. 
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5 Conclus ions  

It was shown to be possible - -  at least in principle - -  to prove properties of 
elementary net systems with an automated theorem prover for dynamic logic. 
Compared with the model checking approach the performance is nevertheless quite 
poor. 
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