
Theoretical Computer Science 106 (1992) 61-86

Elsevier

61

On the regular structure of prefix
rewriting

Didier Caucal
IRISA, Campus de Beaulieu. F35042 Rwmes Cedex. France

Absrraci

Caucal, D., On the regular structure of prefix rewriting, Theoretical Computer Science 106 (1992)

61-86.

We consider a pushdown automaton as a word-rewriting system with labelled rules applied only in

a prefix way. The notion of pushdown transition graph is then extended to the notion of prefix

transition graph generated by a word-rewriting system and accessible from a given axiom. Such

accessible prefix transition graphs are context-free graphs in the sense of Muller and Schupp (1985),

and we show that they are also the rooted pattern graphs of finite degree, where a pattern graph is

a graph produced from a finite graph by iterating the addition of a finite family of finite graphs (the

patterns). Furthermore, this characterization is effective in the following sense: any finite family of

patterns generating a rooted graph G of finite degree, is mapped effectively into a word-rewriting

system R such that the accessible prefix transition graph of R is isomorphic to G, and the reverse

transformation is effective.

0. Introduction

A labelled rewriting system on an alphabet X and a set L of labels, is a finite subset

of X* x L x X*. Every element (u,i II) of X * x L x X * corresponds to a labelled

transition 24
s

- u. One step of prefix rewriting generated by a rewriting system R is

a labelled transition uw
f f

- VW, where u - v is a rule of R. Prefix rewriting steps

may be viewed as the arcs of a graph, called a prefix transition graph; an accessible

prefix transition graph is the graph generated in this way from a given axiom. If for

a rule u
s

- c’, u is a letter, we say that R is alphabetic and that the corresponding

accessible prefix transition graphs are alphabetic.

As an example of prefix transitions, let us briefly introduce the transitions between

the configurations (without input string) of a pushdown automaton (PDA). Such

a configuration may be represented as a word qA,. . .A,, where q is a state of the

automaton and AI is the top of the stack A1...A,. Then the transition relation of the

0304-3975/92/$05.00 (i: 1992-Elsevier Science Publishers B.V. All rights reserved

62 D. Caucal

PDA can be seen as a rewriting system; a transition between configurations is mapped

in this way into a step of prefix rewriting. The corresponding accessible prefix

transition graph is called a pushdown transition graph. In Section 1, we show that

accessible prefix transition graphs coincide with pushdown transition graphs, but

there exist accessible prefix transition graphs that are not alphabetic.

In a seminal paper, Muller and Schupp [14] have proved that every pushdown

transition graph has a regular structure: it is a rooted graph of finite degree with

a finite number of nonisomorphic connected components obtained after removing all

vertices within arbitrary distances of a given vertex. Such a regular structure can be

generated by a deterministic graph grammar. In Section 2, we give a procedure which

produces a graph grammar generating the transition graph of a given PDA. Con-

versely, we will also show that any rooted graph of finite degree, generated by

a deterministic graph grammar, is isomorphic to the transition graph of some PDA,

and we, moreover, give a procedure which produces the corresponding PDA from the

grammar. Then, and in an effective way, we show that the connected components of

prefix transition graphs coincide with connected and finite-degree graphs generated

by deterministic graph grammars. Furthermore, we establish that every prefix

transition graph can effectively be generated by a deterministic graph grammar.

Finally, we show how an arbitrary deterministic graph grammar (generating a con-

nected graph of finite degree) can be put into a particular normal form, corresponding

to the decomposition of Muller and Schupp, and we effectively obtain in this way their

correspondence. As a corollary, we can decide whether two accessible prefix transition

graphs (or two connected components of prefix transition graphs) are isomorphic with

respect to some given vertices.

1. Prefix rewriting and pushdown automaton

In this section, we recall basic facts about rewriting systems, and introduce prefix

rewriting as a special case of rewriting, constrained to operate on left factors of words.

We then illustrate prefix rewriting with the help of pushdown automata (PDA) and

their transitions. The transitions of a PDA are a particular case of prefix rewritings

but their transition graphs are shown to be the same.

Let us first introduce notations and terminology for rewriting systems.

Definition 1.1. Given an alphabet X and a set L of labels, a (labelled) rewriting system

R is a finite subset of X* x L x X*.

E;rery element (u,f; O) of X* x L x X* is denoted by u 2 u. Note that rules

E- u are allowed. A rewriting system is said to be alphabetic if ugX for all rules

u A v, and normal (c-free) if both u and v have length smaller than 3 (u and
0 are nonempty).

Regular structure of prejix rewriting 63

Rewritings in a rewriting system are generally defined as applications of rewriting

rules in every context. On the contrary, we are concerned in this paper with prefix

rewriting defined as follows.

Definition 1.2. Given a rewriting system R, we define a prefix rewriting step A for

each label .f as follows:

A := { (uw, VW) 1 (u
/

- U)ER A wcX*}

We represent by UHL’ (U t% V) an elementary (unlabelled) prefix rewriting step (an

arbitrary sequence of such steps).

A well known property [S] is that the set {w 1 Y ?+ w} of words in X* reachable by

prefix rewriting from a given axiom rEX* is a regular language, and a corresponding

finite automaton is effectively constructible from R. Such an automaton is poly-

nomially constructible in time and space [6]. From [4], we can deduce a stronger

result.

Theorem 1.3. For any rewriting system R, the prejix rewriting 5 is a rational

transduction, and a corresponding transducer is efectively constructible from R.

The proof is given in [6]: we establish that the prefix rewriting is the componentwise

concatenation of a recognizable relation with the identity relation, so is a right

synchronized rational relation [lo, 111.

Prefix rewriting may be seen as a way to generate labelled transition graphs: the

prefix transition graph P(R) is the set of prefix-rewriting steps, i.e.

P(R)= (u 2 v 1 u L v) = (xw
f /

- Yw I (x - ~)ER A weX*}.

The prefix transition graph P(R,r) accessible from an axiom rsX* is the set of

prefix-rewriting steps reachable from r, i.e.

P(R,r)={uA v I u L+ v A r A u}.

Figure 1 gives an example of an accessible prefix transition graph.

In the remainder of the section, we establish a strong connection between prefix

rewritings and pushdown automata. To begin with, let us recast pushdown automata

and their transitions in the framework of prefix rewriting.

Definition 1.4. A pushdown automaton (without initial and final states) is a rewriting

system R satisfying the following conditions:

(i) the alphabet is partitioned into QR u PR

(ii) for any rule u 2 v in R, we have ucQ,.P, and vgQ,.P,*.

64 D. Caucal

Let R be the rewriting system on ({A, p, q}, {a, b, c,d}) defined as follows:

”
R=(p-q,p~pA,pA-p,qA~qj.

The accessible prefix transition graph P(R,p) is represented by

Fig. 1. Accessible prefix transition graph.

This definition corresponds to the usual definition of a pushdown automaton [lS]

on an input alphabet C when the label’s set is C u {E}. The language recognized by

a pushdown automaton R starting at ~EQ,.P, with acceptance on a set F s QR of
f”

final states, is the set of label sequencesf, .fn of the paths u1 fi u2 ...H u,+ 1 such that

U,=Y and u,,+~EF.P~.

Of course, a pushdown automaton (PDA) works under prefix rewriting. Thus,

pushdown transition graphs are certainly accessible prefix transition graphs in the

following sense.

Definition 1.5. An accessible prejx transition graph (a pushdown transition graph, an

alphabetic graph) is a graph isomorphic to P(R,r) for some rewriting system R and

some word r (some pushdown automaton R with r in Q,.P,*, some alphabetic

rewriting system R).

Here, a graph isomorphism is simply a vertex renaming, but the labels of the arcs

are preserved. To establish the converse, i.e. every accessible prefix transition graph is

a pushdown transition graph, we show that every accessible prefix transition graph is

generated by a normal s-free transition system.

Lemma 1.6. Any pair (R,r) consisting of a rewriting system R and a word r, can

efectively be normalized into another pair (S,s), where S is a normal E-free rewriting

system and s is a letter, such that P(S,s) is isomorphic to P(R,r).

Proof. Let R be a rewriting system on X, and rEX*. We may suppose R a-free and

r#E. Otherwise, we could take a letter a in X appearing neither in R nor in r, and

replace (R, r) by (aR, ar) with aR = {au 5 au 1 (u 2 u)ER}; so, aR is c-free, ar #E

and P(aR, ar) = aP(R, r).

Regular structure of prefix rewriting 65

Let m be the greatest length of r and the words of X* in R, i.e.

m=max{IuII(u=r) V 3f3u((u f - U)ER V (u- ’ u)ER)}.

Let us extend an injection i from {uEX+ / 1 < luI <m} to some given alphabet Y to an

injection j from X* to Y* by induction

j(s) = s,

j(u)=j(u)i(w), where u=vw#~ A IwI=min(m,IuI).

The rewriting system S on Y is defined as follows:

S={j(uw) ’ f
-AN I b - U)ER A WEX* A Iwl<m}

is normal and s-free. Moreover, s =j(,) is a letter. If R is alphabetic, observe that S is

alphabetic. We show that

ms)={.N s ---+j(N(u- ’ +P(R, r)}.

The proof is an easy but bothering check. 0

Such a transformation is not usual and corresponds to Lemma 2.4 of [14].

Since accessible prefix transition graphs of normal and c-free systems are

pushdown transition graphs, we can transform every prefix rewriting system into

a PDA without duplication, nor reduction in the accessible prefix transition

graph.

Proposition 1.7. Accessible prejix transition graphs coincide effectively with pushdown

transition graphs.

Proof. Let R be a rewriting system on X and rEX*. To show that P(R,r) is

a pushdown transition graph, we may assume, by Lemma 1.6, that R is a normal and

c-free system, and r is a letter. Consider the following alphabets:

Q={u(l)I(u=r) V !ljilu((u~ U)ER V (L’Au)ER)}

of the first letters of R and r, and

r={u(i)l2<i<lul A 3f3u((u
/

- V)ER V (v- ’ GR))

of the ith letters of R with i> 1.

66 D. Caucal

Given an injection i from r to an alphabet P disjoint of Q, we extend i to a total

injection from Qr* to QP* as follows:

i(au)=ai(u(l))...i(u(luI)), with ~EQ and UET*.

The rewriting system S on P u Q defined by

is a normal system. Furthermore, we show that

P(S,s)={i(u) / __f i(u) 1 (u - ’ 4Q(R, I,>,

where s = i(r)~Q.

The system S is not yet a PDA because the domain Dam(S) = {U / 31, z&u} of S, must

be included into Q. P. So, we take a new element p. The system

s
T={(u- f u)ES~~U~=2}u{ua f - oa I (u - U)ES A JUI = 1 A UEP,)

is a pushdown automaton with PT = Pu {p} and QT = Q.

Furthermore, P(T, sp) is isomorphic to P(S, s), hence to P(R, r). 0

After Proposition 1.7, we may ask whether alphabetic rewriting systems are also

representatives of arbitrary rewriting systems as far as the generated graphs are

concerned. The next proposition gives a negative answer.

Proposition 1.8. The class of alphabetic graphs is a proper subset of the class of
accessible prejix transition graphs.

Proof. Any alphabetic graph is an accessible prefix rewriting graph. But let us show

that the accessible prefix transition graph of Fig. 1 is not alphabetic. Consider the

following system:

R={pA
b

q,p-pA>pA -f,p,qA 24):

and suppose that there exist an alphabet X, an alphabetic system S on (X, {a, b, c, d })
and a word s in X * such that P(R, p) is isomorphic to P(S, s) according to a bijectionf:

Let i be an integer. As f is injective, f(pA’) #f(pAj) for every j#i. In particular

(n I If(pA”)I = i} is finite. So, there exists j such that (f(pA”)l> if(q)1 for every n3j.
As the set { If(pA”)I 1 n>j> is infinite, there is an integer m such that

If (pAm+’)I>lf(pA”)I3lf(q)l. Set u=f(pA”‘), v=f(pA”+‘) and w=f(qA*+l).

Because S is alphabetic, I L! I > 1 u I and (V A u)EP(S, s); there is BEX with v=Bu.

The system S being alphabetic and (u A w)EP(S,S), there exists XEX* such that

Regular structure of prt$ix rewriting 61

w = XU. As there exists a unique path in P(S, s) from w to f(q), and 1 uI 3 If(q)1 in the

alphabetic system S, there is an IZ such that 0 d n d m + 1 andf(qA”) = u. It follows that

f(pA”)=f(qA”). Then pA”=qA”, hence p=q, which is a contradiction. 0

Nevertheless, in the restricted case where P(R,r) has at least one coroot state

(reachable from every other state), we have the following result.

Theorem 1.9. From any pair (R, r) consisting of a rewriting system R and a word r such

that the accessible prefix transition graph P(R,r) has a coroot, we can decide whether

P(R, r) is an alphabetic graph. In this case, the pair (R, r) may be eflectively transformed

into a pair (S,s), where S is an alphabetic rewriting system and s is a letter, such that

P(S,s) is isomorphic to P(R,r).

The construction obtained with Monfort, is given in [7].

2. Prefix rewriting and pattern graph

Since, for any finite relation R on X *, the prefix-rewriting relation ?+ generated by

R is a rational transduction, prefix rewriting has a regular behaviou:. In particular,

the set of vertices of any accessible prefix transition graph is a regular language (over

X *). A natural question is whether the regular structure of accessible prefix transition

graph is preserved when transitions are labelled, as in Section 1. The answer is

positive, since those graphs are pushdown transition graphs (by Proposition 1.7), and

since Muller and Schupp [14] show that pushdown transition graphs coincide with

context-free graphs: a context-free graph is a rooted and finite-degree graph which has

a finite number of nonisomorphic connected components obtained after removing all

vertices within arbitrary distances of a given vertex. Thus, context-free graphs can be

cut into slices of a finite number of “patterns”.

Building up over the ideas of Muller and Schupp, we devise an effective construc-

tion of patterns for accessible prefix transition graphs. We also relax the constraint of

splitting up the graph “by slices” and allow the removal of patterns of arbitrary shapes

and sizes, to ease the construction of patterns. Furthermore, we establish the converse

result: we give a procedure which, given any finite family of patterns (of arbitrary

shapes and sizes), produces a PDA whose transition graph is obtained by pasting

these patterns together (along a regular tree of formal patterns).

To begin with, let us introduce patterns and their gluing. In order to ease the

presentation, we use graph grammars, and first recall their definition (for a good list of

references, see [123).

Definition 2.1. Let V be a set of vertices and F = u {F, 1 n > l} be a graded alphabet.

Every word jivl.. .v, of F,. V” is a hyperarc labelled by f and connecting in order the

vertices vr, v,. A hypergraph is a set of hyperarcs.

68 D. Caucal

A graph grammar on (F, V) is a finite set of hyperarc replacement rulesfi,. . .v,+H,
where fii . . .v, is a hyperarc labelled by the nonterminalf; the Vi are distinct vertices and

H is a finite hypergraph. Every label of a hyperarc of H which is not a nonterminal, is

a terminal and is of arity 2.

A graph grammar is deterministic if there is only one rule for each nonterminalf

Figure 2 is an example of a deterministic graph grammar (a hyperarc fir...~, is

represented as a label of ui if n = 1, otherwise is represented as an arc labelled byffrom

zji to u, with intermediate vertices u2, . . . , v, _ 1; another representation can be found in

Cl21).
Let us give some remarks and notations. A hypergraph has no isolated vertex. The

first letter X(1) of a hyperarc X is the label of X, and Vx = {X(2), . . . , X()X I)} is the set

of vertices of X; we say that X is a nonterminal hyperarc if X(1) is a nonterminal. There

is identity between a hyperarc X and the hypergraph {X} reduced to X. So, a graph

grammar G is a binary relation on the set of (finite) hypergraphs, its domain
Dam(G)= (X 1 (X, H)EG} is the set of left-hand sides of its rules, and its image (or

range) Im(G) is the set of right-hand sides of G. We extend by union the set of vertices

of a hyperarc to the set I& of vertices of a hypergraph H, i.e. I$, = u { Vx 1 XEH}.
Each deterministic graph grammar defines a graph, resulting from a given start

graph by iterating the graph rewriting [12, 131. Intuitively, a rewriting step consists in

choosing a nonterminal hyperarcft, . .t, whose labelfindicates the rule>, . . .s,+H to

be applied, and the vertices si in H indicate how to replace ftl . . t, by H.

Definition 2.2. Given a graph grammar G on (F, V) and a hypergraph M on (F, V),

M gives a hypergraph N in one rewriting step, and we denote M +G N, if there exists

a nonterminal hyperarc ftl . t, of M such that

Let A, a, b be in F of respective arity 3,2,2.
Let G={(A123,{a12,a14,a25,b63,A564})} b e a deterministic graph grammar.

A is the unique nonterminal of G, and G is represented as follows:

(1) l

(2). A

i

(3) l J

(4)
(1). a_.

a

1 (5)
(2) l 2.

a

A

h (6)

(3). -*

Fig. 2. Deterministic graph grammar.

Regular structure ofprefix rewriting 69

for some rulefs, . . .s,+H in G and for some matching function g mapping si to ti, and

the other vertices of H injectively to vertices outside of M.

Note that +G is not, in general, a functional relation, even when G is deterministic.

Nevertheless, if we let M -~o,~ N denote the rewriting of a nonterminal hyperarc X,

then

M -+G,X, o...o -+G,X, N if and only if M +G.X",l, o ... o +G,x.,., N

for any X,EM, and for any permutation 71 on { 1, . , n}. Thus, it makes sense to define

steps of complete parallel rewriting M aG N as follows:

and M has exactly n nonterminal hyperarcs Xi, , X,. One step of complete parallel

rewriting corresponds to the Kleene substitution.

Henceforth, the grammar G will be deterministic. The infinite graph G”‘(M) gener-

ated by G starting from M is defined below, where [M] = { fiteM lfis a terminal} is

the set of terminal arcs of M.

Definition 2.3. G”(M)= U,, [G”(M)], where Go(M)= M and G”(M) ac G”+‘(M) for

all n.

Since G is deterministic, G”(M) is unique up to hypergraph isomorphism. When

M is finite, this element is called the pattern graph generated by G from M. Pattern

graphs are the equational graphs of Bauderon [2] and Courcelle [S]. The grammar of

Fig. 2 generates from A123 the pattern graph of Fig. 3.

Let us recall that a graph G is ofJinite degree if for every vertex s in G, the number of

arcs to which s belongs is finite, and is of bounded degree if this number is uniformly

bounded. It turns out that every finite-degree pattern graph is a bounded degree

graph. A vertex r is a root of a graph G if each vertex of G is reachable from r.

In particular, every accessible prefix transition graph P(R,r) has a finite degree and

root r.

a

b 1
.-.

Fig. 3. Pattern graph.

70 D. Caucal

To characterize prefix transition graphs as pattern graphs, we show that every

pattern graph of finite degree can be generated by a normalized graph grammar.

Definition 2.4. A deterministic graph grammar G is in standard form if G satisfies the

three following conditions:

(i) G is proper: for all rule (X, H) of G, every vertex of X is a vertex of a terminal arc

of H,
(ii) G is in normal form: for all rule (X, H) of G, the vertices of every nonterminal

hyperarc of H are disjoint from the X’s ones,

(iii) G is separated: for all rule (X, H) of G, two nonterminal hyperarcs of H have no

common vertex, and every nonterminal hyperarc of H has distinct vertices.

The grammar of Fig. 2 is in standard form. Furthermore, we say that G is connected
(ofjnite degree) if for all hyperarc X in Dam(G), GO(X) is connected (of finite degree).

Finally, G is reduced according to a nonterminalfif every nonterminal g is “accessible”

fromf, that is the hyperarc XEDom(G) such that X(l)=f, rewrites into a hypergraph

H (i.e. X +* H) having a hyperarc labelled by g (i.e. there exists YEH such that

Y(f)=g).
Given a (deterministic) grammar generating a connected and finite-degree graph

H # 0, we can deduce a standard and connected grammar generating H.

Lemma 2.5. Any pair (G, M) of a deterministic graph grammar G and ajinite hyper-
graph M such that G”‘(M) is a connected and nonempty graph offinite degree, may be
effectively transformed into another pair (H, N), where H is in standard form and
connected, N is a hyperarc in Dam(H), and such that H”(N) is equal to G”(M).

Proof. (i) We may assume that the set [M] of terminal arcs of M is nonempty: since

G”(M) is a nonempty graph, it suffices to replace M by a hypergraph H such that

M =>* H and [H] #@ Let N = Ss, where S is a new symbol in F1 and s is a vertex of

a terminal arc of M. So, A = G u {(N, M)} is a grammar such that A”(N)= G”‘(M).
(ii) We reduce the grammar A according to h. Let us consider the accessibility

relation

R={(X(l), Y(~))EF’xF’I~H, (X,H)EA A YEH}

on the set F’= {X(l) 1 XEDom(A)} of the nonterminals of A. We construct the set

F” = R*(h) of the accessible nonterminals from h = N(l), and the restricted grammar

B= {(x, H)EA 1 x(i)e}.

This grammar satisfies NsDom(B), B”(N)=A”(N) and B is reduced according

to N(1).

(iii) Given a graph H, we consider the associated symmetric unlabelled graph:

/ s
stt,t if 3f;(s---t t)EH V (t - s)EH.

Reqular structure of prefix rewriting 71

For each hyperarc X in Dam(B), we want to construct the relation

Rx= ((~701 s,t~v, A s(~(x))+ t>

on the vertices of X which are connected in any pattern graph generated by B from X.

Let a be a new label of arity 2, and let us consider the sequence (G,),,e of graph

grammars, defined inductively as follows:

G,=((X,@IXEDom(R)};

G n+l={(X,{astIs,tEV, A s(++f)+ t})I3K,(X,K)d? A K=>c”H}.

For all n > 0, G, is a deterministic graph grammar and

G, z G ,,+ 1 E ((X, {ast I s, tc&}) I XEDomW}.

As the set of vertices Ynom(Bi of Dam(B) is finite, h=min(n I G,= G,+l > exists and

Gh can be constructed polynomially in time and space. Furthermore, and for all X in

Dam(B), we have Rx=~~x, where (X,HX)~GL.

(iv) We transform B into a proper grammar preserving B"(N). For instance, the

following grammar {(Sl,{a12,P23)),(P12,{a13,P32})} will be transformed into

thegrammar {(S1,{a12,Q2j),(Q1,{a13,Q3})) by removing the useless vertex 2 of the

hyperarc P12. For every hyperarc X of Dam(B), a useless vertex of X is a vertex which

does not belong to Dom(R,). To each X such that R,#& we associate a hyperarc

X labelled by a new symbol X(l) of arity equal to the cardinality #Dom(R,) of

Dom(R,), whose set I’, = {X(2), . . . , X(I& I)} of vertices is equal to Dom(R,) and such

that X(l)# _Y(l) if X # Y. As the vertex N(2) of the axiom N is a vertex of a terminal

arc, N(2)EDom(R,) and we can identify 8 with N (i.e. N(1) with N(1)). The grammar

removes the useless vertices of hyperarcs in Dam(B). Then, the grammar

C’={(X,K)I~(X,H)EB, Rx#@ A H=+R}

is deterministic and generates C’“(N)= B"(N) because B"(N) is connected and B is

reduced according to N(1). Let us remark that Rx = Rx for all XEDom(B) such that

Rx&.
By the construction of C’, for every hyperarc XcDom(C’), there exists a hyper-

graph Hx such that X (=+,)’ Hx and each vertex of X is a vertex of a terminal arc of

Hx. The new grammar

is proper. Furthermore, C”(N)= C’“(N)= B“'(N) and C is reduced according to N(1).

(v) We transform C into a proper grammar in normal form. First, we replace the

right-hand side H of every rule (X, H) of C by P(X) when the set VcUcx, of vertices of

C”(X) is restricted to Vx. For instance, the grammar ((Sl, (a12,A12}), (A12,

{a12,A21})} is replaced by the grammar {(Sl, {a12,A12}), (A12, {a12,a21))}. As C is

reduced according to N(1) and C”(N) is of finite degree, C is of finite degree. It follows

12 D. Caucal

that there exists Hx such that X(+,-)+ Hx and every vertex of X is not a vertex of

a nonterminal hyperarc of Hx. Then the grammar

D={(X,H,)IXEDom(C)}

is in normal form. Furthermore, D”(N) = C”(N) and the grammar D is proper and

reduced according to N(1) because C is. Note that Rx is unchanged for every X in

Dam(D) = Dam(C).

(vi) We transform D into a connected proper grammar in normal form, preserving

D”(N). After a possible renaming (and adding new rules), we may suppose that every

hypergraph of Im(D) does not have two nonterminal hyperarcs with the same label.

For instance, the following proper grammar in normal form {(S 1, {a12,a13,P23}),

(P12, (~13, a24,a25,P34,P35})} is replaced by the grammar D1 ={(Sl, (a12,u13,P23}),

(P12,{u13,u24,u25,P34,Q35}), (Q12,{u13,u24,u25,P34,Q35))). With all XEDom(D)

and each class P of Ux= {R,(s) 1 seDom(R,)}, we associate, as in (iv), a hyperarc

Xp labelled by a new symbol X,(1) of arity #P, whose set I+, of vertices is equal to P,
and such that X,(l) # Ye(l) if (X, P) #(Y, Q). As the vertex N(2) of the axiom N

is a vertex of a terminal arc of M, UN= { (N(2))) and we can identify NN(2)l(1)

with N(1).

Consider the grammar

which splits each XEDom(D) into hyperarcs according to Ux. This grammar allows

one to split the nonterminal hyperarcs into a disjoint union of rules in D, that is to say

for each rule (X, H) of D, we associate a hypergraph Hx such that H jJHx. In

fact, each part Xp of the splitting of X will generate only the part of Hx accessible

from P. The restriction of a hypergraph H to a set V of vertices is denoted by

H,V={fsl...~,~H~~l ,..., S,E V}. Then the grammar

E = {(X,, HxI v) / XEDom(D) A PE Ux A V= (+-+H,)+ (P)}

satisfies the following property

For instance, from grammar D,, we obtain the connected grammar

E1=((S1,{u12,u13,P’2,P”3}), (P’l,{u13,P’3,Q’3}), (Q'L {al3,P’3, Q'3)),
(P”2, (~24, ~25, P”4, Q”5}), (Q”2, (~24, ~25, P”4, Q”5})}. Let T be the set of finite

hypergraphs H such that two nonterminal (according to D) hyperarcs of H with the

same label, have no common vertex. As every hypergraph of Im(D) does not have two

nonterminal hyperarcs with the same label, Im(D) is in particular included into T. So,
we have

where idT= ((H, H) 1 HE T} is the identity on T.

Reyular structure of prefix rewritiny 73

As D is a proper grammar in normal form such that Im(D) c T, the relation

id, 0 (=+,)* is included into T x T. So, by induction on n 3 0, we have

In particular, E”(N)= D”(N).
Furthermore, E is a proper grammar in normal form, and reduced according to

N(1) because D is. As E”(N)= G”(M) is connected and E is reduced according to

N(l), by construction, E is a connected grammar.

(vii) We transform E into a separated grammar. For each rule (X, H) of E, we

extract the set W, = (K I3H, (X, H)EE A K is a connected component of H- [H]} of

connected components of the nonterminal hyperarcs of H, where X+H is a rule of E.
For all KE W,, we associate a hyperarc XK labelled by a new symbol X,(l) of arity

VK, Vx,= VK, and such that X,(l)#X,,(l) if K # K’. Let us consider the grammar

obtained from E by replacing in all rules (X, H) of E, each hypergraph K of W, in H by

XK. For all KEW~, we associate a hypergraph Hx,K such that K =+, HX,K. The

grammar

L=L’u{(Xx,H,,K)IXEDom(E) A KEW,J

is separated, and satisfies L”(N)=E”(N). Like grammar E, this grammar L is

connected, proper and in normal form. Finally, L is a connected grammar in standard

form which generates from NEDom(L) the pattern graph G”(M). 0

The next step is to translate a grammar in standard form generating a rooted graph

G of finite degree, into a rewriting system generating G by prefix rewritings.

Proposition 2.6. Any triple (G, M, u) of a deterministic graph grammar G, a jinite
hypergraph M and a vertex v of M, such that G”(M) hasfinite degree and root v, may be
effectively transformed into a pair (R, r) of a word-rewriting system R and a word r, such
that the corresponding graphs G”(M) and P(R, r) are isomorphic.

Proof. From Lemma 2.5, we can assume that G is a connected grammar in standard

form, and M is a hyperarc. After a possible renaming of labels (and provided, we add

new rules), we further suppose that every hypergraph of Im(G) does not have two

nonterminal hyperarcs with the same label.

Let N be the set of nonterminals of G, and V be the set of vertices of G. For

convenience, a vertex of a nonterminal hyperarc is called an output. With each rule

(X, H) of G, we associate a total function px from VW to Vu V. N, which is the identity

on the set of nonoutput vertices of H. For any output vertex s of H, we have

pX(s)= T(i) T(l), where T is the nonterminal hyperarc in the domain of G with the

14 D. Caucal

same label as the nonterminal hyperarc Y whose vertex is s, and i is the place of s

in Y, i.e.

Px(4 = s for SE V, such that s$ VJ for all JEH such that J(l)gN,

px(s)= T(i)T(l) if there exist YEH and TEDom(G) such that Y(i)=s and

T(l)= Y(1).

Since G is separated, px is well-defined.

Let R(G) be the rewriting system on N u V and labelled in F, defined by

R(G)={px(s).X(l)L p&).X(l)) 3H, (X, H)EG A (s A ~)EH A a&N}.

The vertices w of P(R(G), v.M(l)) are words wonp...n,, where w. is the vertex of the

“pattern” P which first introduced w as nonoutput vertex, and rip...... is the label

sequence of the nonterminal hyperarcs whose rewritings have given P. Then

P(R(G), r.M(l)) is isomorphic to G”(M). 0

Applied to the grammar of Fig. 2, the construction of Proposition 2.6 gives the

following rewriting system

R={lA- a 2A,lA~3AA,2A~l~~,2AAb3Aj.

Hence, P(R, 1.4) is the pattern graph of Fig. 3.

The converse of Proposition 2.6 is true: in an effective way, every accessible prefix

transition graph is a rooted pattern graph of finite degree.

Proposition 2.7. Any pair (R, r) of a word-rewriting system R and a word r, may be
efSectively transformed into a pair (G, M) of a deterministic graph grammar G and
a hyperarc M, such that the corresponding graphs P(R,r) and G”(M) are isomorphic.

Proof. From Lemma 1.6, we may suppose that R is normal and c-free on X, and reX.
The grammar G to be constructed generates P(R, r) by vertices of increasing length.

We consider the connected component P(R, r),, of P(R, r) restricted to the vertices

of length at least 1 u 1, and containing u.

We can determine the set V(u) of vertices P(R, r)lu of length /uJ. From [S] or [6], we

can construct an automaton recognizing the set $+ (r)= {v 1 r $ v} of vertices of

P(R, r). So, we can determine the finite set D(U) = $ (r)n XI” of vertices of P(R, r) of

the same length as u. To decide if two elements in D(U) are connected in the restriction

of P(R, r) to the vertices having length >, 1 z.1, we construct the unlabelled rewriting

system S, defined by

Reyuiar structure of prefix rewriting

and we determine the following relation E on D(u):

So, V(U) is the class in the partition of D(U) by the equivalence E*, containing U, i.e.

V(u)=E*(u)={oluE*u).

Furthermore, consider the symmetric system T of unlabelled word rewritings on

XI’IX*, defined by

A 3f((x s - Y)ER v (Y - s X)ER)}.

So, the set of vertices of P(R, r),, is included in {V I u $ II}, i.e. VP(Q),, s $ (u).

As R is normal, the set of vertices of P(R,r)lu have a common suffix s, of length

max(O, 1 u I - 2). We denote by V. U- ’ = {u I UUE V} the right quotient of a language V by

a word u.

Two vertices u and u of P(R, r) are equivalent, denoted as U=U, if

V(U).S,’ = V(v).&: ‘. If u-u then P(R, r)lu is isomorphic to P(R, r)lo. Moreover, the

equivalence z is of finite index and a set U of representatives is constructible from

(R,r) with rGU. For any UEU, we associate the graph H, of arcs of P(R,r)lu with

a vertex of length I u I. To construct the grammar G, we only add to each H, a set K, of

nonterminal hyperarcs which generates, according to G, the graph P(R, r)lu restricted

to vertices of length strictly greater than 1~1.

To this end, we take a graded alphabet F disjoint from the label set of R, and an

injectionj from U to the set of hyperarcs labelled by F with vertices in X*, such that

for every u in U, we have

For any

j(n)=,fil...s, with {s1, Sn} = V(U), Si # Sj if i #j, f# j(u)(l) if UE U - (U>

UE U, we define

K,={y(tls,)...(t,s,)Iw~V~(~,~), A Iwl=lul+l A 3v~U, DEW

A j(u)=y(tls,)...(t”s~)>,

and we define the following deterministic graph grammar:

Note that G is a connected and finite-degree grammar in standard form.

For any UEU, P(R,r)iU is isomorphic to G”(j(u)) and, in particular, for M=j(r)

P(R,r) is isomorphic to G”(M). 0

The construction of Proposition 2.7 is illustrated in Fig. 4.

16 D. Caucal

Applied to the pair (R, p) of Fig. 1, the construction of Proposition 2.7 gives the following grammar G:

The

~)ix * i ~~

k-i
0-0

0 d (~9

accessible prefix transition graph P(R,p) is

@A) b @AA)

isomorphic to the pattern graph G”(Xpq)

Fig. 4. Extraction of a graph grammar from an accessible prefix transition graph.

A restricted version of Proposition 2.7 was established in [l] for alphabetic graphs

with a coroot of out-degree zero. Propositions 2.6 and 2.7 establish constructively the

following statement.

Theorem 2.8. Accessible prefix transition graphs coincide effectively with rooted pattern
graphs of finite degree.

After Propositions 2.6 and 2.7, we can determine a word-rewriting system for the

inverse of any accessible prefix transition graph with a coroot.

Proposition 2.9. Any triple (R,r,c) consisting of a rewriting system R, a word r and
a coroot c of P(R, r), may be ejktively transformed into another triple (S, s, d) such that
there exists an isomorphism ffrom P(S, s) to the inverse of P(R, r) satisfying f (s) = c and
f(d)=r.

Proof. After renaming, we can suppose that any two rules in R have not the same

label, so the coroot c is unambiguously determined by a path from r to c. From

Proposition 2.7, we can transform (R, r) into (G, M), where G is a deterministic graph

grammar, and M is a finite hypergraph such that P(R,r) is a pattern graph G”(M)
generated by G from M. Provided we rewrite M a suitable number of times, we can

assume that it contains r and c. Let h be a new label of arity 2 and let

G’=Gu {(hrc, M)}. We construct a grammar H by inverting the arcs of the right

members of the rules in G’, i.e.

H={(X,K-‘)I(X,K)EG’}.

So, H”(hrc) is the inverse graph of G”(M), where c is a root and r is a coroot.

Consequently, by restituting the old labels, the system S constructed in Proposition

2.6 satisfies the requirements with s=ch and d=rh. 0

Propositions 2.6 and 2.7 allow the study of other effective transformations of

prefix-rewriting systems, not only the computation of the inverse as in Proposition

2.9. One of these transformations allows an effective extension of Theorem 2.8 to the

Regular structure of prefix rewriting 77

connected components of prefix transition graphs. The connected component of

a prefix transition graph P(R) containing a vertex r, is denoted by P(R),, i.e.

P(R),={uL 0 1 r(+-+p(R))* u A u A u}.

Such a class of graphs is extended up to isomorphism.

Definition 2.10. A prejix transition graph (a connected prejix transition graph, a rooted
prefix transition graph) is a graph isomorphic to P(R) (P(R),, P(R), having a root) for

some rewriting system R (and some word r).

Figure 5 gives an example of a connected prefix transition graph. Propositions 2.6

and 2.7 help to prove the following statement.

Theorem 2.11. Connected prefix transition graphs coincide efictively with connected

pattern graphs of jinite degree.

Proof. (i) Let us consider a word-rewriting system R on X labelled in L, and a word

rcX*. With each symbolf of L, we associate injectively a symbolf’ in a new set L’,
and we define a word-rewriting system S on X labelled in L u L’, as follows:

f’
S=Ruja-

f
Lf I (u - z+R}.

Then P(R), is the graph obtained from P(S, r) by reversing the arcs labelled in L’, i.e.

P(R),= {(n - ’ v)EP(S,r)l~~L}v{u~ol(o
f’

- u)EP(S, r) A f/EL’].

Let R be the rewriting system on ({A, B, C}, {a, b, c, d}) defined as follows:

h

R=(ALAA,A-B,CLB,C 2 CA}.

The connected component P(R), of P(R) containing A, is represented by

(4
.

b
I

@)*

C

t
.

a w‘v &+A)
-. L.

b
I I

b

(3.4 . @‘We

C

T T

C

d d
L._.

m-m

m (CA) (C.w

Fig. 5. Connected prefix transition graph.

78 D. Caucal

From Proposition 2.7, the pair (S, r) may be effectively transformed into a determinis-

tic graph grammar G and a hyperarc M in Dam(G) such that P(S, r) is a pattern graph

generated by G from M. In the patterns of G, we reverse the terminal arcs whose labels

are in L’, that is to say, we consider the following deterministic graph grammar H:

Then P(R), is isomorphic to H”(M).
(ii) Let us consider a deterministic graph grammar G and a finite hypergraph

M such that G”(M) is connected and of finite degree. The empty graph is a connected

prefix transition graph; otherwise, we can assume that G”(M) is not the empty graph.

From Lemma 2.5, we can assume that G is a connected grammar in standard form and

M is a hyperarc in Dam(G). Then, the rewriting system R(G) in the proof of

Proposition 2.6 is suitable because P(R(G))U.MC1j is isomorphic to G”(M) for any

vertex u of M. So, every connected pattern graph of finite degree is effectively

a connected prefix transition graph. 0

As a consequence, the rooted components of prefix transition graphs are the

accessible prefix transition graphs.

Corollary 2.12. Rooted prejix transition graphs coincide efictioely with accessible
prefix transition graphs.

Proof. (i) Let P(R), be a connected prefix transition graph with a root r. Then

P(R)u = P(R, r) is an accessible prefix transition graph.

(ii) Let P(R,r) be an accessible prefix transition graph. Note that the root r of

P(R, r) is not necessarily a root of P(R),, i.e. we can have P(R, r) #P(R),. By Theorem

2.8, P(R, r) is effectively a rooted pattern graph of finite degree. By Theorem 2.11,

P(R, r) is effectively a connected prefix transition graph. q

Finally, we consider prefix transition graphs. Every finite graph is a pattern graph

of finite degree which is not a prefix transition graph because (nonempty) prefix

transition graphs are infinite. Nevertheless, and from Theorem 2.11, the converse is

true.

Theorem 2.13. Prefix transition graphs are efSectively pattern graphs of$nite degree.

Proof. We first give a construction, and in the following, steps prove the assertion of

the theorem.

(i) Let R be a word-rewriting system on X with labels in L. Let W be the set of

words in R, i.e.

W={uI3u,3f;(u f
s

- V)ER V (v - GR},

and we denote by m=max { 1~1 I UE W} the maximum length of the words in R.

Regular structure ofprejix rewriting 79

Recall that the symmetric closure of the (unlabelled) prefix-rewriting step is denoted

by tf, i.e.

++=f(U,U)luHU v UHU},

and the equivalence (-)* is preserved by right concatenation. We have

V P(Rj=Dom(++)= W.X*. We consider the set E={uwl UE W A luwldm} of vertices

of P(R) having length at most m, and we construct E/(H)* = { C1, . . , C,}. We choose

an element ri of Ci of minimal length, From Theorem 2.11 and Lemma 2.5, we can

construct a grammar Gi in standard form (and connected) and a hyperarc Ni in

Dom(Gi) such that P(R), is isomorphic to GY(Ni). After a possible renaming, we may

assume that the Gi have distinct nonterminals and vertices. Take two new unary

symbols A and B, and a new vertex v. We construct the following “repetitive”

grammar H:

H={(Bv,(Bv}u{Nil l<i<p A Iril=m})}

and the grammar G as follows:

G~((A~~{B~}~{N~~1~i~~})}UHU~{G~~1~i~~}

To prove this theorem, it is enough to show that P(R) is isomorphic to G”(Av).

With each 1 d idp, we associate the following family

where Min(C) is the set of words in C of minimal length and pc is the prefix of the word

c of length min(m, ICI).

To prove that P(R) is generated by G from Au, it suffices to prove successively:

(1) u {KI 1 <i,<p} is a partition of VP(RI,

(2) P(R), is isomorphic to P(R),., for any dECE I$,

(3) if Iril<m then #I$=1 else #x=co.

(ii) We shall need the following three claims.

Claim I: Iril=m A Utt*riV~3w, w**ri A u=wv.

AS I riI= m and by minimality of I ril, I cl 3 m for every c in [ri] = {u I ri ++* u}. By

definition of m, if riv tf* u then there exists w such that ri c-1* w and WV = u.

Claim 2: u++*ri A 3v, uv~Min([uv])*IuI=Irii.

AS u ++* ri and by minimality of I ri/, we have lril <I ul. As ++* is closed by right

concatenation, uv ++* riv. SO, I uv I < I riv I ; hence, I u I < I ri I. In consequence, I u I = I ri I.

Claim 3: CE Ko 3cEMin(C), pc ++* ri.

The necessary condition follows immediately from the definition of K. Conversely,

let ccMin(C) such that pc++*ri. Let c’ be the suffix of c such that c=pc.c’. As tf* is

preserved by right concatenation, c ++* ri.c’. By Claim 2, Ipcl = (ri I; hence,

ri.c’EMin(C). Furthermore, C’=E if lril <m; so, ~~,.~.=r~. Finally, CE I$.

(iii) Proof of (1). Let C be an equivalence class of VPcRJ according to tt*, and we

want to show that there exists a unique i such that CE K.

Existence: Let cEMin(C). As CE VPcRj, pc~ VPcRI. Furthermore, I pc I d m; hence pc~ E.

So, there exists (a unique) 1 < i<p such that pctf* ri; and, by Claim 3, CE 6.

80 D. Caucal

Unicity: Let c,dEMin(C) such that Pc=ri and Pd=rj. We have c++*d and Icl=ldl.
If I c I <m then pc = c and pd = d; then pc tf* pd and, hence, ri tf* Yj.

If Icl>m then Iril=lpcl=m=lrjl=lp,l. Let C’ be such that c=p,.c’. SO, ri.c’w*d
and, by Claim 1, there exists w such that w ++*ri and d=w.c’. By Claim 2, Iwl=m;
then w = pd and, SO, ri -* rj.

In all cases ri ** rj; hence i = j.
(iv) Proof of (2). Let CE K: there exists cEMin(C) such that pc=ri.
If lcl<m then pc=c. SO, c=ri; then P(R),=P(R),<.
If ICI >m then lril = lpcl =m. Let c’ be such that c=p,.c’. By Claim 1, we obtain

P(R),= {u.cf 2 v.c) 1 (u -2 v)EP(R),i}

which is isomorphic to P(R),i.
(v) Proof of (3). Suppose that # E # 1 and we show that I ri I = m. AS [ri] E 6, there

exists CEE such that C#[ri]. So, there exists cEMin(C) such that pc=ri. Since

C#[ri], pc#c; hence, Icl>m. So, lril=m. Therefore, if IrJ<m then #I$=l.

Suppose that Iril=m and we show that # K=co. Let VEX* and cEMin([riu]).

As c c-t* riv, I ri I = m and, by Claim 1, there exists w such that w +-+* ri and c = WV. By

Claim 2, I w I = I ril = m. Therefore, w =pc and, hence, pc c-f* ri. By Claim 3, [ria]E K

for any VEX*. Furthermore, if [rin] = [riv] then riu ++* riv and, by Claim 1, we obtain

u=v. Eventually # I$=cc if IrJ=m. 0

The construction of Theorem 2.13 is illustrated in Fig. 6.

From Theorem 2.13 and [S], every closed monadic second-order formula of

prefix-rewriting step is decidable.

Corollary 2.14. The monadic second-order theory of the prefix-rewriting step on words
is decidable.

For instance, the termination and the confluence of the prefix-rewriting step is

decidable (short proofs can be found in [S]).

We shall now reconsider the result of Muller and Schupp [14]. The next definition

translates their notion of finite decomposition into the framework of generating

grammars.

Definition 2.15. A uniform grammar is a connected graph grammar in standard form

in which all rulefs,... s,-+H of G satisfies the additional conditions:

(i) every terminal arc of H goes through at least one si,

(ii) every vertex of a nonterminal hyperarc of H also belongs to a terminal arc of H.

For instance, the grammar of Fig. 2 is uniform. It is obvious to see that context-free
graphs, defined in [14], are the rooted pattern graphs generated by uniform gram-

mars. So, a context-free graph is a finite-degree pattern graph. Our goal is to prove

constructively Theorem 2.6 of [14].

Regular structure of prefix rewriting 81

Let R be the rewriting system on ({A, B}, {a, b}) defined as follows:

a

R={AAdA,Bb-All}.

The construction of Theorem 2.13 gives the set E/ A ={ {A, AA},{B,AB), {BA}, {El?)} and the grammar

X Y x1 x2 x3 x4 Y Y

X,
de ; + . c3 f4

w TV, 69

x2 b Y2 Y2 z2

;B,

-_) m-0 ;

Gb

-_) .-a ;
z2 Z2

+ .A.

@I W) G“v c-w

x3 b Y3 Y3 z3 z3 z3
. -be-.;. + .-a ; . --& .-a

x4 b Y4 Y4 z4

&)

+ a-9 ;

&

--_) .-a ;
z4 z4

+ .-a

@W W) &A) (W

This grammar generates from X the prefix transition graph P(R) of R, represented by

.A.. . _a
b

.*.A.. . _a

. . . .

. . . .

. . . .

Fig. 6. Extraction of a graph grammar from a prefix transition graph.

c,

Theorem 2.16. Context-free graphs coincide eflectively with pushdown transition

graphs.

From Propositions 2.6 and 1.7, to every uniform grammar corresponds effectively

a pushdown automaton whose transition graph is generated by the grammar. The

converse follows from Proposition 2.7 and from the proposition below, which states

effectively that every finite-degree and connected pattern graph can be generated by

a uniform grammar.

Proposition 2.17. Any pair (G, M) of a deterministic graph grammar G and of a ftnite

hypergraph M such that G”(M) is a connected and nonempty graph ofjinite degree, may

be effectively transformed into a uniform grammar H such that H”(M) is equal to

G”(M).

82 D. Caucal

Proof. From Lemma 2.5, we may assume that G is in standard form and connected,

and that M is a hyperarc in Dam(G). After a possible renaming of labels (and

provided, we add new rules), we further suppose that every hypergraph of Im(G) does

not have two nonterminal hyperarcs with the same label. Finally, and after a possible

renaming of vertices, we may assume that hypergraphs of Im(G) have no common

vertex.

Let V be the vertex set of the right members of G and N be the set of nonterminals.

We consider a total order d on V. N * preserved by right concatenation, and for all

graph C with vertices in V. N * and every nonterminal word u, we write

the suffixing of the vertices of C by U,

the right quotient of C by a, and sc the greater common suffix in N * of vertices in C.

We need a representative R(G, M) of the pattern graphs G”(M) where vertices have

canonical names: R(G, M) is the connected prefix transition graph P(R)M(z, contain-

ing a vertex of M (for instance, the first vertex M(2) of M), where R is the following

rewriting system:

fW)={~&)-e, px(t)l 33, (X,H)EG A (~2 ~)EH A a$N},

where px is defined as in Proposition 2.6. We check that R(G, M) is G”(M).
We give another definition of R(G, M). Consider a sequence (N,,,fn)nao, where N, is

a hypergraph with vertices in I’. N * and fn is an injection of nonterminal hyperarcs of

N, into N *. We shall set R(G, M)= U,,[N,,]. This sequence is defined as follows:

N,=(M) and fO(M)=&,

N .+I=CNI~U{G~IX~N, A XUkN),

where for every nonterminal hyperarc X of N, and for the rule (Y, K) of G such that

Y(l)=X(l), we have

G,=(fg,(s,)...gx(s,)lfs,...~,EK},

where for every vertex s in K, gx(s) is defined by

gx(s)=s.f,(X) ifs is not a vertex of a nonterminal hyperarc of K

gx(s)= U(i). U(l).f,(X) ifs is the ith vertex of a nonterminal hyperarc V of

K and U is the left member hyperarc of the rule in G with the same

label U(l)= V(1) as V (such a V’ is unique because G is separated),

and for every nonterminal hyperarc Z of Gx,

fn+~~~~~~~x~~~~~~...~x~~~I~I~~~=~~~~.f,~~~;

Regular structure of prefix- rewriting 83

that is, we push (on the left side) the label of a nonterminal hyperarc before deriving it.

So, each vertex in N, is a word giving its place in its pattern (first letter) and the way it

was obtained.

Figure 7 gives an example of representative. For every n 30, we determine the

restriction

G,={fst~R(G,M)ld(s,M)<n V d(t,M)<n}

of R(G, M) to the vertices s whose distance d(s, M) at M is at most II- 1. Then Go =8

and as G is in Greibach form, G, c [Nn]. The grammar H, to be constructed satisfying

the proposition, must be able to generate from M in II steps of parallel rewritings,

a graph having G, as set of terminal arcs. With the exception of M(l), a nonterminal of

H will be a couple (P, Q), where P is a finite set of terminal arcs with vertices in V. N *,

and Q is a subset of vertices of P.
Let n> 1. We will determine a set M, of nonterminal hyperarcs allowing the

generation of the graph R(G, M) - G, according to H. To this aim, we determine the

connected components D1, . . , D, of N, + 1 -G,. For 1 < idp, we consider the set

Ci={fst~DiIf~N A (sEVG, V t~VG,)}

of terminal arcs of Di having a vertex in G,. The hypergraph M, is defined by

M,={(Ci.(sc,)Y1,(VC, n vG,).(sCi)-l).(ui,l)...(ui,q,)l lGi<P

A {“i.lr...,ui,q, }= &,n vGn A Vj, 1 dj<qi, ui,j<ui,j+l}.

The grammar H we look for, is defined as the union of a sequence of grammars

(H&I. This sequence is inductively constructed as follows:

HI ={(M> GI ~MI)}

and

H ,,+ I = {(X.(sJ’, C.(s,)-‘) 1 XEM, A X(l)$P, A C is the connected

component of (G,+ 1 - G,) u M, + 1 having the vertices of X },

where P, is the set of the nonterminals of H,, H,.
To prove the finiteness of H, it suffices to show that there exists only a finite number

of possible nonterminals for H. Again, it suffices to find a bound on the distance in

R(G, M) of vertices common to C and G,, for every n and every connected component

C of R(G, M)-G,.
Because G is connected, the integer b = max {d,(,, YI(s, t) I 3(Y, K)EG, s, TV VK} is

well-defined. Let us consider a connected component C of R(G, M) - G, for any n, and

vertices s and t common to C and G,. We want to find an upper bound depending on

b of the distance dR(G,M)(~,t). Let us take a vertex u of C with minimal length. As

R(G, M) is connected, there exists a path of minimal length dR(G,MJ(~, M). The

grammar G being in Greibach form, this path goes through the “pattern” of U, that is

84 D. Caucal

through a vertex u with the same suffix in N* as U, i.e. v(2)...u(~u~)=~(2)...u(~~~)=s~.

Also &(G,M@, r)<d R(G,yj(~(l), u(1)) for the rule (Y, K) of G such that u(1) is a vertex

in K; hence, dRtG,Mj(u, u) < b. Since s is a “border” vertex of C and G,, and u is a vertex

of C, we have dR(G,M)(s,M)bdR(G,M)(U,M); then

So> dR(G,M)(S,U)~dR(G,M)(U,U)~b; hence, ~~(~,M)(U,S)~~~(G,M)(U,~)+~R(G,M)(~,S)~~~

and the same holds for dRcG,Mj(u, t). Consequently, dRcG,MJ(s, t)d4b, which is enough

to prove the finiteness of H. So, there exists an m such that H,+ 1 =@. Then

H = u (H, 1 1 d n d m} is effectively computable because the H, are. By construction

MEDom(H), H is uniform, and R(G,M) is isomorphic to H”(M); therefore,

H”(M) = G”(M). 0

The construction in the above proof is illustrated in Fig. 7.

Let us consider the following (nonuniform) grammar G:

(1) b
l -*

.-.
0 d

The representative R(G, Al) of G”(A1) is the following graph:

_-

The transformation in the proof of Proposition 2.17 gives the following uniform grammar H:

A

h)

(1) b (3B) (38) b OBB)

+ ‘q ; iE + :g ; ‘i: + O;gjyI

Fi (;B) (2) d (4B) & (4) d (4B)

where
b c ‘I d

E=({3B-3BB,3BB-3B,38-4B,4B-2},{2,3B})

b d
F=({3B-3BB,3BB~3B,3B~4B,4B--t4),{4,3B))

with the natural order on { 1,2,3,4} extended lexicographically on { 1,2,3,4} .B*.
Hence, H”(Al)=G”(Al).

Fig. 7. Transformation of a grammar into a uniform grammar.

Regular structure of prefix rewriting 85

A noneffective version of Proposition 2.17 has been given by Bauderon [3]. After

Propositions 2.17 and 2.7, we can decide that two accessible (connected) prefix

transition graphs of word-rewriting systems are isomorphic with respect to some

given vertices (i.e. the isomorphism is given on a pair of vertices, say on the roots).

Proposition 2.18. From all triples (R, r, r’) and (S, s, s’) consisting of a rewriting system,

a word and a vertex of the accessible (connected) prefix transition graph, we can decide

whether there exists an isomorphism ffiom P(R, r) to P(S, s) (from P(R), to P(S),) such

that f (r’) = s’.

Proof. From Proposition 2.7 (Theorem 2.11) and Proposition 2.17, we transform

(R, r, r’) into a uniform grammar G and an axiom aOr’ such that the prefix transition

graph of R accessible from r is the graph generated by G from aor’, i.e.

P(R,r)= G”(aor’) (P(R),.=GO(a,r’)). In the same way, we transform (S,s,s’) into

(H, bos’). Let us denote by NG (NH) the set of nonterminals in G (H). We will now

compare the right members of the uniform grammar rules G and H, starting from the

right members associated to a, and bo: two such hypergraphs are comparable if there

exists an isomorphism identifying their terminal arcs, and associating to every nonter-

minal hyperarc of the first one, a nonterminal of the other, up to a permutation of

vertices. To compare the right members of G and H, consider the set E of words

e=(a, b)n (l)...z(n); where a and b are nonterminals of arity n, from G and H,

respectively, and 71 is a permutation of { 1, . . , n}. With such a word e of E and given the

rules (asl...s,+P) in G and (bt,...t, -Q) in H, we associate the finite set B, of the

bijections h of the vertices of P onto the vertices of Q, such that the following

conditions hold:

h(si)=t,(i, for 1 didn,

CX~...X,EP A c$No o ch(x,)...h(x,)EQ A c$NH,

CX~...X,EP A L-EN, =c- 3dy,...y,EQ, dEN,

A (~1,~m}={&).%,)},

dy,...y,EQ A dEN, * ~cx~...x,EP, CEN,

A {Y 1,...,ym}=(h(x1),...,h(x,)};

we denote by E,,h the set of such words (c, d)o(l) . ..o(m) where CENG and h(xi)=y,(i,

for l<i<m.

Hence, there exists an isomorphism f of P(R, r) onto P(S, s) such that f (r’) = s’ if and

only if there exists a directed unlabelled graph C, with vertices in E, such that (ao, b,) 1

is a vertex of C and if e=(a, b)z(l).. .x(n) is a vertex of C then there exists a bijection

h of B, for which Ee,h is the set of targets of arcs in C starting at e. Since the set C of

such graphs is finite and constructible, we can decide on the isomorphism of P(R,r)

and P(S,s) (P(R),. and P(S),) associating r’ with s’. 0

86 D. Caucal

Let us note that Proposition 2.18 is also a consequence of Proposition 2.7 and of

Corollary 4.5 of [9].

Acknowledgment

Let me thank P. Darondeau, R. Monfort and J.-C. Raoult for their help in the

drafting of this paper. I also thank some anonymous referees for their numerous

remarks.

References

[l] J.C.M. Baeten, J.A. Bergstra and J.W. Klop, Decidability of bisimulation equivalence for processes

generating context-free languages, in: Lecture Notes in Computer Science, Vol. 259 (Springer, Berlin,

1987) 94-l 11.

[2] M. Bauderon, On systems of equations defining infinite graphs, in: Lecture Notes in Computer

Science, Vol. 344 (Springer, Berlin, 1989) 54473.

[3] M. Bauderon, Infinite hypergraphs: basic properties and systems of equations, Internal Report I-8920,

1989.

[4] L. Boasson and M. Nivat, Centers of context-free languages, Internal Report LITP 84-44.

[S] R. Biichi, Regular canonical systems, Arch. Math. Logik Grundlag. 6 (1964) 91-111.

[6] D. Caucal, Recritures suffixes de mats, Report INRIA 871, 1988.

[7] D. Caucal and R. Monfort, On the transition graphs of automata and grammars, in: WG 90, Lecture
Notes in Computer Science, Vol. 484 (Springer, Berlin, 1990) 31 l-337.

[8] B. Courcelle, The monadic second-order logic of graphs, II: Infinite graphs of bounded width, Marh.
Systems Theory 21 (1989) 1877222.

[9] B. Courcelle, The definability of equational graphs in monadic second order logic, in: SCALP 89,

Lecture Notes in Computer Science, Vol. 372 (Springer, Berlin, 1989) 2077221.

[lo] M. Dauchet and S. Tison, The theory of ground rewrite systems is decidable, in: Proc. 5th IEEE Symp.
LICS 90, 242-248.

[ll] C. Frougny and J. Sakarovitch, Rational relations with bounded delay, in: Proc. 8th STACS 90,
Lecture Notes in Computer Science, Vol. 480 (Springer, Berlin, 1990) 50-63.

[12] A. Habel, Hyperedge replacement: grammars and languages, Dissertation, University of Bremen,

1989.

1131 A. Habel and H.J. Kreowski, Some structural aspects of hypergraph languages generated by

hyperedge replacement, in: Lecture Notes in Computer Science, Vol. 247 (Springer, Berlin, 1987)

207-219.

1141 D. Muller and P. Schupp, The theory of ends, pushdown automata, and second order logic, Theoret.
Comput. Sci. 37 (1985) 51-75.

1151 A. Salomaa, Formal Languages, ACM monograph series (Academic Press, New York, 1973).

