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We consider a pushdown automaton as a word-rewriting system with labelled rules applied only in 

a prefix way. The notion of pushdown transition graph is then extended to the notion of prefix 

transition graph generated by a word-rewriting system and accessible from a given axiom. Such 

accessible prefix transition graphs are context-free graphs in the sense of Muller and Schupp (1985), 

and we show that they are also the rooted pattern graphs of finite degree, where a pattern graph is 

a graph produced from a finite graph by iterating the addition of a finite family of finite graphs (the 

patterns). Furthermore, this characterization is effective in the following sense: any finite family of 

patterns generating a rooted graph G of finite degree, is mapped effectively into a word-rewriting 

system R such that the accessible prefix transition graph of R is isomorphic to G, and the reverse 

transformation is effective. 

0. Introduction 

A labelled rewriting system on an alphabet X and a set L of labels, is a finite subset 

of X* x L x X*. Every element (u,i II) of X * x L x X * corresponds to a labelled 

transition 24 
s 

- u. One step of prefix rewriting generated by a rewriting system R is 

a labelled transition uw 
f f 

- VW, where u - v is a rule of R. Prefix rewriting steps 

may be viewed as the arcs of a graph, called a prefix transition graph; an accessible 

prefix transition graph is the graph generated in this way from a given axiom. If for 

a rule u 
s 

- c’, u is a letter, we say that R is alphabetic and that the corresponding 

accessible prefix transition graphs are alphabetic. 

As an example of prefix transitions, let us briefly introduce the transitions between 

the configurations (without input string) of a pushdown automaton (PDA). Such 

a configuration may be represented as a word qA,. . .A,, where q is a state of the 

automaton and AI is the top of the stack A1...A,. Then the transition relation of the 
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PDA can be seen as a rewriting system; a transition between configurations is mapped 

in this way into a step of prefix rewriting. The corresponding accessible prefix 

transition graph is called a pushdown transition graph. In Section 1, we show that 

accessible prefix transition graphs coincide with pushdown transition graphs, but 

there exist accessible prefix transition graphs that are not alphabetic. 

In a seminal paper, Muller and Schupp [14] have proved that every pushdown 

transition graph has a regular structure: it is a rooted graph of finite degree with 

a finite number of nonisomorphic connected components obtained after removing all 

vertices within arbitrary distances of a given vertex. Such a regular structure can be 

generated by a deterministic graph grammar. In Section 2, we give a procedure which 

produces a graph grammar generating the transition graph of a given PDA. Con- 

versely, we will also show that any rooted graph of finite degree, generated by 

a deterministic graph grammar, is isomorphic to the transition graph of some PDA, 

and we, moreover, give a procedure which produces the corresponding PDA from the 

grammar. Then, and in an effective way, we show that the connected components of 

prefix transition graphs coincide with connected and finite-degree graphs generated 

by deterministic graph grammars. Furthermore, we establish that every prefix 

transition graph can effectively be generated by a deterministic graph grammar. 

Finally, we show how an arbitrary deterministic graph grammar (generating a con- 

nected graph of finite degree) can be put into a particular normal form, corresponding 

to the decomposition of Muller and Schupp, and we effectively obtain in this way their 

correspondence. As a corollary, we can decide whether two accessible prefix transition 

graphs (or two connected components of prefix transition graphs) are isomorphic with 

respect to some given vertices. 

1. Prefix rewriting and pushdown automaton 

In this section, we recall basic facts about rewriting systems, and introduce prefix 

rewriting as a special case of rewriting, constrained to operate on left factors of words. 

We then illustrate prefix rewriting with the help of pushdown automata (PDA) and 

their transitions. The transitions of a PDA are a particular case of prefix rewritings 

but their transition graphs are shown to be the same. 

Let us first introduce notations and terminology for rewriting systems. 

Definition 1.1. Given an alphabet X and a set L of labels, a (labelled) rewriting system 

R is a finite subset of X* x L x X*. 

E;rery element (u,f; O) of X* x L x X* is denoted by u 2 u. Note that rules 

E- u are allowed. A rewriting system is said to be alphabetic if ugX for all rules 

u A v, and normal (c-free) if both u and v have length smaller than 3 (u and 
0 are nonempty). 
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Rewritings in a rewriting system are generally defined as applications of rewriting 

rules in every context. On the contrary, we are concerned in this paper with prefix 

rewriting defined as follows. 

Definition 1.2. Given a rewriting system R, we define a prefix rewriting step A for 

each label .f as follows: 

A := { (uw, VW) 1 (u 
/ 

- U)ER A wcX*} 

We represent by UHL’ (U t% V) an elementary (unlabelled) prefix rewriting step (an 

arbitrary sequence of such steps). 

A well known property [S] is that the set {w 1 Y ?+ w} of words in X* reachable by 

prefix rewriting from a given axiom rEX* is a regular language, and a corresponding 

finite automaton is effectively constructible from R. Such an automaton is poly- 

nomially constructible in time and space [6]. From [4], we can deduce a stronger 

result. 

Theorem 1.3. For any rewriting system R, the prejix rewriting 5 is a rational 

transduction, and a corresponding transducer is efectively constructible from R. 

The proof is given in [6]: we establish that the prefix rewriting is the componentwise 

concatenation of a recognizable relation with the identity relation, so is a right 

synchronized rational relation [lo, 111. 

Prefix rewriting may be seen as a way to generate labelled transition graphs: the 

prefix transition graph P(R) is the set of prefix-rewriting steps, i.e. 

P(R)= (u 2 v 1 u L v) = (xw 
f / 

- Yw I (x - ~)ER A weX*}. 

The prefix transition graph P(R,r) accessible from an axiom rsX* is the set of 

prefix-rewriting steps reachable from r, i.e. 

P(R,r)={uA v I u L+ v A r A u}. 

Figure 1 gives an example of an accessible prefix transition graph. 

In the remainder of the section, we establish a strong connection between prefix 

rewritings and pushdown automata. To begin with, let us recast pushdown automata 

and their transitions in the framework of prefix rewriting. 

Definition 1.4. A pushdown automaton (without initial and final states) is a rewriting 

system R satisfying the following conditions: 

(i) the alphabet is partitioned into QR u PR 

(ii) for any rule u 2 v in R, we have ucQ,.P, and vgQ,.P,*. 
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Let R be the rewriting system on ({A, p, q}, {a, b, c,d}) defined as follows: 

” 
R=(p-q,p~pA,pA-p,qA~qj. 

The accessible prefix transition graph P(R,p) is represented by 

Fig. 1. Accessible prefix transition graph. 

This definition corresponds to the usual definition of a pushdown automaton [lS] 

on an input alphabet C when the label’s set is C u {E}. The language recognized by 

a pushdown automaton R starting at ~EQ,.P, with acceptance on a set F s QR of 
f” 

final states, is the set of label sequencesf, .fn of the paths u1 fi u2 ...H u,+ 1 such that 

U,=Y and u,,+~EF.P~. 

Of course, a pushdown automaton (PDA) works under prefix rewriting. Thus, 

pushdown transition graphs are certainly accessible prefix transition graphs in the 

following sense. 

Definition 1.5. An accessible prejx transition graph (a pushdown transition graph, an 

alphabetic graph) is a graph isomorphic to P(R,r) for some rewriting system R and 

some word r (some pushdown automaton R with r in Q,.P,*, some alphabetic 

rewriting system R). 

Here, a graph isomorphism is simply a vertex renaming, but the labels of the arcs 

are preserved. To establish the converse, i.e. every accessible prefix transition graph is 

a pushdown transition graph, we show that every accessible prefix transition graph is 

generated by a normal s-free transition system. 

Lemma 1.6. Any pair (R,r) consisting of a rewriting system R and a word r, can 

efectively be normalized into another pair (S,s), where S is a normal E-free rewriting 

system and s is a letter, such that P(S,s) is isomorphic to P(R,r). 

Proof. Let R be a rewriting system on X, and rEX*. We may suppose R a-free and 

r#E. Otherwise, we could take a letter a in X appearing neither in R nor in r, and 

replace (R, r) by (aR, ar) with aR = {au 5 au 1 (u 2 u)ER}; so, aR is c-free, ar #E 

and P(aR, ar) = aP(R, r). 
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Let m be the greatest length of r and the words of X* in R, i.e. 

m=max{IuII(u=r) V 3f3u((u f - U)ER V (u- ’ u)ER)}. 

Let us extend an injection i from {uEX+ / 1 < luI <m} to some given alphabet Y to an 

injection j from X* to Y* by induction 

j(s) = s, 

j(u)=j(u)i(w), where u=vw#~ A IwI=min(m,IuI). 

The rewriting system S on Y is defined as follows: 

S={j(uw) ’ f 
-AN I b - U)ER A WEX* A Iwl<m} 

is normal and s-free. Moreover, s =j(,) is a letter. If R is alphabetic, observe that S is 

alphabetic. We show that 

ms)={.N s ---+j(N(u- ’ +P(R, r)}. 

The proof is an easy but bothering check. 0 

Such a transformation is not usual and corresponds to Lemma 2.4 of [14]. 

Since accessible prefix transition graphs of normal and c-free systems are 

pushdown transition graphs, we can transform every prefix rewriting system into 

a PDA without duplication, nor reduction in the accessible prefix transition 

graph. 

Proposition 1.7. Accessible prejix transition graphs coincide effectively with pushdown 

transition graphs. 

Proof. Let R be a rewriting system on X and rEX*. To show that P(R,r) is 

a pushdown transition graph, we may assume, by Lemma 1.6, that R is a normal and 

c-free system, and r is a letter. Consider the following alphabets: 

Q={u(l)I(u=r) V !ljilu((u~ U)ER V (L’Au)ER)} 

of the first letters of R and r, and 

r={u(i)l2<i<lul A 3f3u((u 
/ 

- V)ER V (v- ’ GR)) 

of the ith letters of R with i> 1. 
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Given an injection i from r to an alphabet P disjoint of Q, we extend i to a total 

injection from Qr* to QP* as follows: 

i(au)=ai(u(l))...i(u(luI)), with ~EQ and UET*. 

The rewriting system S on P u Q defined by 

is a normal system. Furthermore, we show that 

P(S,s)={i(u) / __f i(u) 1 (u - ’ 4Q(R, I,>, 

where s = i(r)~Q. 

The system S is not yet a PDA because the domain Dam(S) = {U / 31, z&u} of S, must 

be included into Q. P. So, we take a new element p. The system 

s 
T={(u- f u)ES~~U~=2}u{ua f - oa I (u - U)ES A JUI = 1 A UEP,) 

is a pushdown automaton with PT = Pu {p} and QT = Q. 

Furthermore, P(T, sp) is isomorphic to P(S, s), hence to P(R, r). 0 

After Proposition 1.7, we may ask whether alphabetic rewriting systems are also 

representatives of arbitrary rewriting systems as far as the generated graphs are 

concerned. The next proposition gives a negative answer. 

Proposition 1.8. The class of alphabetic graphs is a proper subset of the class of 
accessible prejix transition graphs. 

Proof. Any alphabetic graph is an accessible prefix rewriting graph. But let us show 

that the accessible prefix transition graph of Fig. 1 is not alphabetic. Consider the 

following system: 

R={pA 
b 

q,p-pA>pA -f,p,qA 24): 

and suppose that there exist an alphabet X, an alphabetic system S on (X, {a, b, c, d }) 
and a word s in X * such that P(R, p) is isomorphic to P(S, s) according to a bijectionf: 

Let i be an integer. As f is injective, f(pA’) #f(pAj) for every j#i. In particular 

(n I If(pA”)I = i} is finite. So, there exists j such that (f(pA”)l> if(q)1 for every n3j. 
As the set { If(pA”)I 1 n>j> is infinite, there is an integer m such that 

If (pAm+’ )I>lf(pA”)I3lf(q)l. Set u=f(pA”‘), v=f(pA”+‘) and w=f(qA*+l). 

Because S is alphabetic, I L! I > 1 u I and (V A u)EP(S, s); there is BEX with v=Bu. 

The system S being alphabetic and (u A w)EP(S,S), there exists XEX* such that 



Regular structure of prt$ix rewriting 61 

w = XU. As there exists a unique path in P(S, s) from w to f(q), and 1 uI 3 If(q)1 in the 

alphabetic system S, there is an IZ such that 0 d n d m + 1 andf(qA”) = u. It follows that 

f(pA”)=f(qA”). Then pA”=qA”, hence p=q, which is a contradiction. 0 

Nevertheless, in the restricted case where P(R,r) has at least one coroot state 

(reachable from every other state), we have the following result. 

Theorem 1.9. From any pair (R, r) consisting of a rewriting system R and a word r such 

that the accessible prefix transition graph P(R,r) has a coroot, we can decide whether 

P(R, r) is an alphabetic graph. In this case, the pair (R, r) may be eflectively transformed 

into a pair (S,s), where S is an alphabetic rewriting system and s is a letter, such that 

P(S,s) is isomorphic to P(R,r). 

The construction obtained with Monfort, is given in [7]. 

2. Prefix rewriting and pattern graph 

Since, for any finite relation R on X *, the prefix-rewriting relation ?+ generated by 

R is a rational transduction, prefix rewriting has a regular behaviou:. In particular, 

the set of vertices of any accessible prefix transition graph is a regular language (over 

X *). A natural question is whether the regular structure of accessible prefix transition 

graph is preserved when transitions are labelled, as in Section 1. The answer is 

positive, since those graphs are pushdown transition graphs (by Proposition 1.7), and 

since Muller and Schupp [14] show that pushdown transition graphs coincide with 

context-free graphs: a context-free graph is a rooted and finite-degree graph which has 

a finite number of nonisomorphic connected components obtained after removing all 

vertices within arbitrary distances of a given vertex. Thus, context-free graphs can be 

cut into slices of a finite number of “patterns”. 

Building up over the ideas of Muller and Schupp, we devise an effective construc- 

tion of patterns for accessible prefix transition graphs. We also relax the constraint of 

splitting up the graph “by slices” and allow the removal of patterns of arbitrary shapes 

and sizes, to ease the construction of patterns. Furthermore, we establish the converse 

result: we give a procedure which, given any finite family of patterns (of arbitrary 

shapes and sizes), produces a PDA whose transition graph is obtained by pasting 

these patterns together (along a regular tree of formal patterns). 

To begin with, let us introduce patterns and their gluing. In order to ease the 

presentation, we use graph grammars, and first recall their definition (for a good list of 

references, see [ 123). 

Definition 2.1. Let V be a set of vertices and F = u {F, 1 n > l} be a graded alphabet. 

Every word jivl.. .v, of F,. V” is a hyperarc labelled by f and connecting in order the 

vertices vr, . . . . v,. A hypergraph is a set of hyperarcs. 
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A graph grammar on (F, V) is a finite set of hyperarc replacement rulesfi,. . .v,+H, 
where fii . . .v, is a hyperarc labelled by the nonterminalf; the Vi are distinct vertices and 

H is a finite hypergraph. Every label of a hyperarc of H which is not a nonterminal, is 

a terminal and is of arity 2. 

A graph grammar is deterministic if there is only one rule for each nonterminalf 

Figure 2 is an example of a deterministic graph grammar (a hyperarc fir...~, is 

represented as a label of ui if n = 1, otherwise is represented as an arc labelled byffrom 

zji to u, with intermediate vertices u2, . . . , v, _ 1; another representation can be found in 

Cl21). 
Let us give some remarks and notations. A hypergraph has no isolated vertex. The 

first letter X( 1) of a hyperarc X is the label of X, and Vx = {X(2), . . . , X()X I)} is the set 

of vertices of X; we say that X is a nonterminal hyperarc if X(1) is a nonterminal. There 

is identity between a hyperarc X and the hypergraph {X} reduced to X. So, a graph 

grammar G is a binary relation on the set of (finite) hypergraphs, its domain 
Dam(G)= (X 1 (X, H)EG} is the set of left-hand sides of its rules, and its image (or 

range) Im(G) is the set of right-hand sides of G. We extend by union the set of vertices 

of a hyperarc to the set I& of vertices of a hypergraph H, i.e. I$, = u { Vx 1 XEH}. 
Each deterministic graph grammar defines a graph, resulting from a given start 

graph by iterating the graph rewriting [12, 131. Intuitively, a rewriting step consists in 

choosing a nonterminal hyperarcft, . .t, whose labelfindicates the rule>, . . .s,+H to 

be applied, and the vertices si in H indicate how to replace ftl . . t, by H. 

Definition 2.2. Given a graph grammar G on (F, V) and a hypergraph M on (F, V), 

M gives a hypergraph N in one rewriting step, and we denote M +G N, if there exists 

a nonterminal hyperarc ftl . t, of M such that 

Let A, a, b be in F of respective arity 3,2,2. 
Let G={(A123,{a12,a14,a25,b63,A564})} b e a deterministic graph grammar. 

A is the unique nonterminal of G, and G is represented as follows: 

(1) l 

(2). A 

i 

(3) l J 

(4) 
(1). a_. 

a 

1 (5) 
(2) l 2. 

a 

A 

h (6) 

(3). -* 

Fig. 2. Deterministic graph grammar. 
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for some rulefs, . . .s,+H in G and for some matching function g mapping si to ti, and 

the other vertices of H injectively to vertices outside of M. 

Note that +G is not, in general, a functional relation, even when G is deterministic. 

Nevertheless, if we let M -~o,~ N denote the rewriting of a nonterminal hyperarc X, 

then 

M -+G,X, o...o -+G,X, N if and only if M +G.X",l, o ... o +G,x.,., N 

for any X,EM, and for any permutation 71 on { 1, . , n}. Thus, it makes sense to define 

steps of complete parallel rewriting M aG N as follows: 

and M has exactly n nonterminal hyperarcs Xi, , X,. One step of complete parallel 

rewriting corresponds to the Kleene substitution. 

Henceforth, the grammar G will be deterministic. The infinite graph G”‘(M) gener- 

ated by G starting from M is defined below, where [M] = { fiteM lfis a terminal} is 

the set of terminal arcs of M. 

Definition 2.3. G”(M)= U,, [G”(M)], where Go(M)= M and G”(M) ac G”+‘(M) for 

all n. 

Since G is deterministic, G”(M) is unique up to hypergraph isomorphism. When 

M is finite, this element is called the pattern graph generated by G from M. Pattern 

graphs are the equational graphs of Bauderon [2] and Courcelle [S]. The grammar of 

Fig. 2 generates from A123 the pattern graph of Fig. 3. 

Let us recall that a graph G is ofJinite degree if for every vertex s in G, the number of 

arcs to which s belongs is finite, and is of bounded degree if this number is uniformly 

bounded. It turns out that every finite-degree pattern graph is a bounded degree 

graph. A vertex r is a root of a graph G if each vertex of G is reachable from r. 

In particular, every accessible prefix transition graph P(R,r) has a finite degree and 

root r. 

a 

b 1 
.-. 

Fig. 3. Pattern graph. 
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To characterize prefix transition graphs as pattern graphs, we show that every 

pattern graph of finite degree can be generated by a normalized graph grammar. 

Definition 2.4. A deterministic graph grammar G is in standard form if G satisfies the 

three following conditions: 

(i) G is proper: for all rule (X, H) of G, every vertex of X is a vertex of a terminal arc 

of H, 
(ii) G is in normal form: for all rule (X, H) of G, the vertices of every nonterminal 

hyperarc of H are disjoint from the X’s ones, 

(iii) G is separated: for all rule (X, H) of G, two nonterminal hyperarcs of H have no 

common vertex, and every nonterminal hyperarc of H has distinct vertices. 

The grammar of Fig. 2 is in standard form. Furthermore, we say that G is connected 
(ofjnite degree) if for all hyperarc X in Dam(G), GO(X) is connected (of finite degree). 

Finally, G is reduced according to a nonterminalfif every nonterminal g is “accessible” 

fromf, that is the hyperarc XEDom(G) such that X(l)=f, rewrites into a hypergraph 

H (i.e. X +* H) having a hyperarc labelled by g (i.e. there exists YEH such that 

Y(f)=g). 
Given a (deterministic) grammar generating a connected and finite-degree graph 

H # 0, we can deduce a standard and connected grammar generating H. 

Lemma 2.5. Any pair (G, M) of a deterministic graph grammar G and ajinite hyper- 
graph M such that G”‘(M) is a connected and nonempty graph offinite degree, may be 
effectively transformed into another pair (H, N), where H is in standard form and 
connected, N is a hyperarc in Dam(H), and such that H”(N) is equal to G”(M). 

Proof. (i) We may assume that the set [M] of terminal arcs of M is nonempty: since 

G”(M) is a nonempty graph, it suffices to replace M by a hypergraph H such that 

M =>* H and [H] #@ Let N = Ss, where S is a new symbol in F1 and s is a vertex of 

a terminal arc of M. So, A = G u {(N, M)} is a grammar such that A”(N)= G”‘(M). 
(ii) We reduce the grammar A according to h. Let us consider the accessibility 

relation 

R={(X(l), Y(~))EF’xF’I~H, (X,H)EA A YEH} 

on the set F’= {X(l) 1 XEDom(A)} of the nonterminals of A. We construct the set 

F” = R*(h) of the accessible nonterminals from h = N(l), and the restricted grammar 

B= {(x, H)EA 1 x(i)e}. 

This grammar satisfies NsDom(B), B”(N)=A”(N) and B is reduced according 

to N(1). 

(iii) Given a graph H, we consider the associated symmetric unlabelled graph: 

/ s 
stt,t if 3f;(s---t t)EH V (t - s)EH. 
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For each hyperarc X in Dam(B), we want to construct the relation 

Rx= ((~701 s,t~v, A s(~(x))+ t> 

on the vertices of X which are connected in any pattern graph generated by B from X. 

Let a be a new label of arity 2, and let us consider the sequence (G,),,e of graph 

grammars, defined inductively as follows: 

G,=((X,@IXEDom(R)}; 

G n+l={(X,{astIs,tEV, A s(++f)+ t})I3K,(X,K)d? A K=>c”H}. 

For all n > 0, G, is a deterministic graph grammar and 

G, z G ,,+ 1 E ((X, {ast I s, tc&}) I XEDomW}. 

As the set of vertices Ynom(Bi of Dam(B) is finite, h=min(n I G,= G,+l > exists and 

Gh can be constructed polynomially in time and space. Furthermore, and for all X in 

Dam(B), we have Rx=~~x, where (X,HX)~GL. 

(iv) We transform B into a proper grammar preserving B"(N). For instance, the 

following grammar {(Sl,{a12,P23)),(P12,{a13,P32})} will be transformed into 

thegrammar {(S1,{a12,Q2j),(Q1,{a13,Q3})) by removing the useless vertex 2 of the 

hyperarc P12. For every hyperarc X of Dam(B), a useless vertex of X is a vertex which 

does not belong to Dom(R,). To each X such that R,#& we associate a hyperarc 

X labelled by a new symbol X(l) of arity equal to the cardinality #Dom(R,) of 

Dom(R,), whose set I’, = {X(2), . . . , X( I& I)} of vertices is equal to Dom(R,) and such 

that X(l)# _Y(l) if X # Y. As the vertex N(2) of the axiom N is a vertex of a terminal 

arc, N(2)EDom(R,) and we can identify 8 with N (i.e. N(1) with N(1)). The grammar 

removes the useless vertices of hyperarcs in Dam(B). Then, the grammar 

C’={(X,K)I~(X,H)EB, Rx#@ A H=+R} 

is deterministic and generates C’“(N)= B"(N) because B"(N) is connected and B is 

reduced according to N(1). Let us remark that Rx = Rx for all XEDom(B) such that 

Rx&. 
By the construction of C’, for every hyperarc XcDom(C’), there exists a hyper- 

graph Hx such that X (=+,)’ Hx and each vertex of X is a vertex of a terminal arc of 

Hx. The new grammar 

is proper. Furthermore, C”(N)= C’“(N)= B“'(N) and C is reduced according to N(1). 

(v) We transform C into a proper grammar in normal form. First, we replace the 

right-hand side H of every rule (X, H) of C by P(X) when the set VcUcx, of vertices of 

C”(X) is restricted to Vx. For instance, the grammar ((Sl, (a12,A12}), (A12, 

{a12,A21})} is replaced by the grammar {(Sl, {a12,A12}), (A12, {a12,a21))}. As C is 

reduced according to N(1) and C”(N) is of finite degree, C is of finite degree. It follows 
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that there exists Hx such that X(+,-)+ Hx and every vertex of X is not a vertex of 

a nonterminal hyperarc of Hx. Then the grammar 

D={(X,H,)IXEDom(C)} 

is in normal form. Furthermore, D”(N) = C”(N) and the grammar D is proper and 

reduced according to N(1) because C is. Note that Rx is unchanged for every X in 

Dam(D) = Dam(C). 

(vi) We transform D into a connected proper grammar in normal form, preserving 

D”(N). After a possible renaming (and adding new rules), we may suppose that every 

hypergraph of Im(D) does not have two nonterminal hyperarcs with the same label. 

For instance, the following proper grammar in normal form {(S 1, {a12,a13,P23}), 

(P12, (~13, a24,a25,P34,P35})} is replaced by the grammar D1 ={(Sl, (a12,u13,P23}), 

(P12,{u13,u24,u25,P34,Q35}), (Q12,{u13,u24,u25,P34,Q35))). With all XEDom(D) 

and each class P of Ux= {R,(s) 1 seDom(R,)}, we associate, as in (iv), a hyperarc 

Xp labelled by a new symbol X,( 1) of arity #P, whose set I+, of vertices is equal to P, 
and such that X,(l) # Ye(l) if (X, P) #( Y, Q). As the vertex N(2) of the axiom N 

is a vertex of a terminal arc of M, UN= { (N(2))) and we can identify NN(2)l(1) 

with N(1). 

Consider the grammar 

which splits each XEDom(D) into hyperarcs according to Ux. This grammar allows 

one to split the nonterminal hyperarcs into a disjoint union of rules in D, that is to say 

for each rule (X, H) of D, we associate a hypergraph Hx such that H jJHx. In 

fact, each part Xp of the splitting of X will generate only the part of Hx accessible 

from P. The restriction of a hypergraph H to a set V of vertices is denoted by 

H,V={fsl...~,~H~~l ,..., S,E V}. Then the grammar 

E = {(X,, HxI v) / XEDom(D) A PE Ux A V= (+-+H,)+ (P)} 

satisfies the following property 

For instance, from grammar D,, we obtain the connected grammar 

E1=((S1,{u12,u13,P’2,P”3}), (P’l,{u13,P’3,Q’3}), (Q'L {al3,P’3, Q'3)), 
(P”2, (~24, ~25, P”4, Q”5}), (Q”2, (~24, ~25, P”4, Q”5})}. Let T be the set of finite 

hypergraphs H such that two nonterminal (according to D) hyperarcs of H with the 

same label, have no common vertex. As every hypergraph of Im(D) does not have two 

nonterminal hyperarcs with the same label, Im(D) is in particular included into T. So, 
we have 

where idT= ((H, H) 1 HE T} is the identity on T. 
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As D is a proper grammar in normal form such that Im(D) c T, the relation 

id, 0 (=+,)* is included into T x T. So, by induction on n 3 0, we have 

In particular, E”(N)= D”(N). 
Furthermore, E is a proper grammar in normal form, and reduced according to 

N(1) because D is. As E”(N)= G”(M) is connected and E is reduced according to 

N(l), by construction, E is a connected grammar. 

(vii) We transform E into a separated grammar. For each rule (X, H) of E, we 

extract the set W, = (K I3H, (X, H)EE A K is a connected component of H- [H]} of 

connected components of the nonterminal hyperarcs of H, where X+H is a rule of E. 
For all KE W,, we associate a hyperarc XK labelled by a new symbol X,(l) of arity 

# VK, Vx,= VK, and such that X,(l)#X,,(l) if K # K’. Let us consider the grammar 

obtained from E by replacing in all rules (X, H) of E, each hypergraph K of W, in H by 

XK. For all KEW~, we associate a hypergraph Hx,K such that K =+, HX,K. The 

grammar 

L=L’u{(Xx,H,,K)IXEDom(E) A KEW,J 

is separated, and satisfies L”(N)=E”(N). Like grammar E, this grammar L is 

connected, proper and in normal form. Finally, L is a connected grammar in standard 

form which generates from NEDom(L) the pattern graph G”(M). 0 

The next step is to translate a grammar in standard form generating a rooted graph 

G of finite degree, into a rewriting system generating G by prefix rewritings. 

Proposition 2.6. Any triple (G, M, u) of a deterministic graph grammar G, a jinite 
hypergraph M and a vertex v of M, such that G”(M) hasfinite degree and root v, may be 
effectively transformed into a pair (R, r) of a word-rewriting system R and a word r, such 
that the corresponding graphs G”(M) and P(R, r) are isomorphic. 

Proof. From Lemma 2.5, we can assume that G is a connected grammar in standard 

form, and M is a hyperarc. After a possible renaming of labels (and provided, we add 

new rules), we further suppose that every hypergraph of Im(G) does not have two 

nonterminal hyperarcs with the same label. 

Let N be the set of nonterminals of G, and V be the set of vertices of G. For 

convenience, a vertex of a nonterminal hyperarc is called an output. With each rule 

(X, H) of G, we associate a total function px from VW to Vu V. N, which is the identity 

on the set of nonoutput vertices of H. For any output vertex s of H, we have 

pX(s)= T(i) T(l), where T is the nonterminal hyperarc in the domain of G with the 
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same label as the nonterminal hyperarc Y whose vertex is s, and i is the place of s 

in Y, i.e. 

Px(4 = s for SE V, such that s$ VJ for all JEH such that J(l)gN, 

px(s)= T(i)T(l) if there exist YEH and TEDom(G) such that Y(i)=s and 

T(l)= Y(1). 

Since G is separated, px is well-defined. 

Let R(G) be the rewriting system on N u V and labelled in F, defined by 

R(G)={px(s).X(l)L p&).X(l)) 3H, (X, H)EG A (s A ~)EH A a&N}. 

The vertices w of P(R(G), v.M(l)) are words wonp...n,, where w. is the vertex of the 

“pattern” P which first introduced w as nonoutput vertex, and rip...... is the label 

sequence of the nonterminal hyperarcs whose rewritings have given P. Then 

P(R(G), r.M(l)) is isomorphic to G”(M). 0 

Applied to the grammar of Fig. 2, the construction of Proposition 2.6 gives the 

following rewriting system 

R={lA- a 2A,lA~3AA,2A~l~~,2AAb3Aj. 

Hence, P(R, 1.4) is the pattern graph of Fig. 3. 

The converse of Proposition 2.6 is true: in an effective way, every accessible prefix 

transition graph is a rooted pattern graph of finite degree. 

Proposition 2.7. Any pair (R, r) of a word-rewriting system R and a word r, may be 
efSectively transformed into a pair (G, M) of a deterministic graph grammar G and 
a hyperarc M, such that the corresponding graphs P(R,r) and G”(M) are isomorphic. 

Proof. From Lemma 1.6, we may suppose that R is normal and c-free on X, and reX. 
The grammar G to be constructed generates P(R, r) by vertices of increasing length. 

We consider the connected component P(R, r),, of P(R, r) restricted to the vertices 

of length at least 1 u 1, and containing u. 

We can determine the set V(u) of vertices P(R, r)lu of length /uJ. From [S] or [6], we 

can construct an automaton recognizing the set $+ (r)= {v 1 r $ v} of vertices of 

P(R, r). So, we can determine the finite set D(U) = $ (r)n XI” of vertices of P(R, r) of 

the same length as u. To decide if two elements in D(U) are connected in the restriction 

of P(R, r) to the vertices having length >, 1 z.1, we construct the unlabelled rewriting 

system S, defined by 
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and we determine the following relation E on D(u): 

So, V(U) is the class in the partition of D(U) by the equivalence E*, containing U, i.e. 

V(u)=E*(u)={oluE*u). 

Furthermore, consider the symmetric system T of unlabelled word rewritings on 

XI’IX*, defined by 

A 3f((x s - Y)ER v (Y - s X)ER)}. 

So, the set of vertices of P(R, r),, is included in {V I u $ II}, i.e. VP(Q),, s $ (u). 

As R is normal, the set of vertices of P(R,r)lu have a common suffix s, of length 

max(O, 1 u I - 2). We denote by V. U- ’ = {u I UUE V} the right quotient of a language V by 

a word u. 

Two vertices u and u of P(R, r) are equivalent, denoted as U=U, if 

V(U).S,’ = V(v).&: ‘. If u-u then P(R, r)lu is isomorphic to P(R, r)lo. Moreover, the 

equivalence z is of finite index and a set U of representatives is constructible from 

(R,r) with rGU. For any UEU, we associate the graph H, of arcs of P(R,r)lu with 

a vertex of length I u I. To construct the grammar G, we only add to each H, a set K, of 

nonterminal hyperarcs which generates, according to G, the graph P(R, r)lu restricted 

to vertices of length strictly greater than 1~1. 

To this end, we take a graded alphabet F disjoint from the label set of R, and an 

injectionj from U to the set of hyperarcs labelled by F with vertices in X*, such that 

for every u in U, we have 

For any 

j(n)=,fil...s, with {s1, . . . . Sn} = V(U), Si # Sj if i #j, f# j(u)(l) if UE U - (U> 

UE U, we define 

K,={y(tls,)...(t,s,)Iw~V~(~,~), A Iwl=lul+l A 3v~U, DEW 

A j(u)=y(tls,)...(t”s~)>, 

and we define the following deterministic graph grammar: 

Note that G is a connected and finite-degree grammar in standard form. 

For any UEU, P(R,r)iU is isomorphic to G”( j(u)) and, in particular, for M=j(r) 

P(R,r) is isomorphic to G”(M). 0 

The construction of Proposition 2.7 is illustrated in Fig. 4. 
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Applied to the pair (R, p) of Fig. 1, the construction of Proposition 2.7 gives the following grammar G: 

The 

~)ix * i ~~ 

k-i 
0-0 

0 d (~9 

accessible prefix transition graph P(R,p) is 

@A) b @AA) 

isomorphic to the pattern graph G”(Xpq) 

Fig. 4. Extraction of a graph grammar from an accessible prefix transition graph. 

A restricted version of Proposition 2.7 was established in [l] for alphabetic graphs 

with a coroot of out-degree zero. Propositions 2.6 and 2.7 establish constructively the 

following statement. 

Theorem 2.8. Accessible prefix transition graphs coincide effectively with rooted pattern 
graphs of finite degree. 

After Propositions 2.6 and 2.7, we can determine a word-rewriting system for the 

inverse of any accessible prefix transition graph with a coroot. 

Proposition 2.9. Any triple (R,r,c) consisting of a rewriting system R, a word r and 
a coroot c of P(R, r), may be ejktively transformed into another triple (S, s, d) such that 
there exists an isomorphism ffrom P(S, s) to the inverse of P(R, r) satisfying f (s) = c and 
f(d)=r. 

Proof. After renaming, we can suppose that any two rules in R have not the same 

label, so the coroot c is unambiguously determined by a path from r to c. From 

Proposition 2.7, we can transform (R, r) into (G, M), where G is a deterministic graph 

grammar, and M is a finite hypergraph such that P(R,r) is a pattern graph G”(M) 
generated by G from M. Provided we rewrite M a suitable number of times, we can 

assume that it contains r and c. Let h be a new label of arity 2 and let 

G’=Gu {(hrc, M)}. We construct a grammar H by inverting the arcs of the right 

members of the rules in G’, i.e. 

H={(X,K-‘)I(X,K)EG’}. 

So, H”(hrc) is the inverse graph of G”(M), where c is a root and r is a coroot. 

Consequently, by restituting the old labels, the system S constructed in Proposition 

2.6 satisfies the requirements with s=ch and d=rh. 0 

Propositions 2.6 and 2.7 allow the study of other effective transformations of 

prefix-rewriting systems, not only the computation of the inverse as in Proposition 

2.9. One of these transformations allows an effective extension of Theorem 2.8 to the 
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connected components of prefix transition graphs. The connected component of 

a prefix transition graph P(R) containing a vertex r, is denoted by P(R),, i.e. 

P(R),={uL 0 1 r(+-+p(R))* u A u A u}. 

Such a class of graphs is extended up to isomorphism. 

Definition 2.10. A prejix transition graph (a connected prejix transition graph, a rooted 
prefix transition graph) is a graph isomorphic to P(R) (P(R),, P(R), having a root) for 

some rewriting system R (and some word r). 

Figure 5 gives an example of a connected prefix transition graph. Propositions 2.6 

and 2.7 help to prove the following statement. 

Theorem 2.11. Connected prefix transition graphs coincide efictively with connected 

pattern graphs of jinite degree. 

Proof. (i) Let us consider a word-rewriting system R on X labelled in L, and a word 

rcX*. With each symbolf of L, we associate injectively a symbolf’ in a new set L’, 
and we define a word-rewriting system S on X labelled in L u L’, as follows: 

f’ 
S=Ruja- 

f 
Lf I (u - z+R}. 

Then P(R), is the graph obtained from P(S, r) by reversing the arcs labelled in L’, i.e. 

P(R),= {(n - ’ v)EP(S,r)l~~L}v{u~ol(o 
f’ 

- u)EP(S, r) A f/EL’]. 

Let R be the rewriting system on ({A, B, C}, {a, b, c, d}) defined as follows: 

h 

R=(ALAA,A-B,CLB,C 2 CA}. 

The connected component P(R), of P(R) containing A, is represented by 

(4 
. 

b 
I 

@)* 

C 

t 
. 

a w‘v &+A) 
-. L. 

b 
I I 

b 

(3.4 . @‘We 

C 

T T 

C 

d d 
L._. 

m-m 

m (CA) (C.w 

Fig. 5. Connected prefix transition graph. 
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From Proposition 2.7, the pair (S, r) may be effectively transformed into a determinis- 

tic graph grammar G and a hyperarc M in Dam(G) such that P(S, r) is a pattern graph 

generated by G from M. In the patterns of G, we reverse the terminal arcs whose labels 

are in L’, that is to say, we consider the following deterministic graph grammar H: 

Then P(R), is isomorphic to H”(M). 
(ii) Let us consider a deterministic graph grammar G and a finite hypergraph 

M such that G”(M) is connected and of finite degree. The empty graph is a connected 

prefix transition graph; otherwise, we can assume that G”(M) is not the empty graph. 

From Lemma 2.5, we can assume that G is a connected grammar in standard form and 

M is a hyperarc in Dam(G). Then, the rewriting system R(G) in the proof of 

Proposition 2.6 is suitable because P(R(G))U.MC1j is isomorphic to G”(M) for any 

vertex u of M. So, every connected pattern graph of finite degree is effectively 

a connected prefix transition graph. 0 

As a consequence, the rooted components of prefix transition graphs are the 

accessible prefix transition graphs. 

Corollary 2.12. Rooted prejix transition graphs coincide efictioely with accessible 
prefix transition graphs. 

Proof. (i) Let P(R), be a connected prefix transition graph with a root r. Then 

P(R)u = P(R, r) is an accessible prefix transition graph. 

(ii) Let P(R,r) be an accessible prefix transition graph. Note that the root r of 

P(R, r) is not necessarily a root of P(R),, i.e. we can have P(R, r) #P(R),. By Theorem 

2.8, P(R, r) is effectively a rooted pattern graph of finite degree. By Theorem 2.11, 

P(R, r) is effectively a connected prefix transition graph. q 

Finally, we consider prefix transition graphs. Every finite graph is a pattern graph 

of finite degree which is not a prefix transition graph because (nonempty) prefix 

transition graphs are infinite. Nevertheless, and from Theorem 2.11, the converse is 

true. 

Theorem 2.13. Prefix transition graphs are efSectively pattern graphs of$nite degree. 

Proof. We first give a construction, and in the following, steps prove the assertion of 

the theorem. 

(i) Let R be a word-rewriting system on X with labels in L. Let W be the set of 

words in R, i.e. 

W={uI3u,3f;(u f 
s 

- V)ER V (v - GR}, 

and we denote by m=max { 1~1 I UE W} the maximum length of the words in R. 
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Recall that the symmetric closure of the (unlabelled) prefix-rewriting step is denoted 

by tf, i.e. 

++=f(U,U)luHU v UHU}, 

and the equivalence (-)* is preserved by right concatenation. We have 

V P(Rj=Dom(++)= W.X*. We consider the set E={uwl UE W A luwldm} of vertices 

of P(R) having length at most m, and we construct E/(H)* = { C1, . . , C,}. We choose 

an element ri of Ci of minimal length, From Theorem 2.11 and Lemma 2.5, we can 

construct a grammar Gi in standard form (and connected) and a hyperarc Ni in 

Dom(Gi) such that P(R), is isomorphic to GY(Ni). After a possible renaming, we may 

assume that the Gi have distinct nonterminals and vertices. Take two new unary 

symbols A and B, and a new vertex v. We construct the following “repetitive” 

grammar H: 

H={(Bv,(Bv}u{Nil l<i<p A Iril=m})} 

and the grammar G as follows: 

G~((A~~{B~}~{N~~1~i~~})}UHU~{G~~1~i~~} 

To prove this theorem, it is enough to show that P(R) is isomorphic to G”(Av). 

With each 1 d idp, we associate the following family 

where Min(C) is the set of words in C of minimal length and pc is the prefix of the word 

c of length min(m, ICI). 

To prove that P(R) is generated by G from Au, it suffices to prove successively: 

(1) u {KI 1 <i,<p} is a partition of VP(RI, 

(2) P(R), is isomorphic to P(R),., for any dECE I$, 

(3) if Iril<m then #I$=1 else #x=co. 

(ii) We shall need the following three claims. 

Claim I: Iril=m A Utt*riV~3w, w**ri A u=wv. 

AS I riI= m and by minimality of I ril, I cl 3 m for every c in [ri] = {u I ri ++* u}. By 

definition of m, if riv tf* u then there exists w such that ri c-1* w and WV = u. 

Claim 2: u++*ri A 3v, uv~Min([uv])*IuI=Irii. 

AS u ++* ri and by minimality of I ri/, we have lril <I ul. As ++* is closed by right 

concatenation, uv ++* riv. SO, I uv I < I riv I ; hence, I u I < I ri I. In consequence, I u I = I ri I. 

Claim 3: CE Ko 3cEMin(C), pc ++* ri. 

The necessary condition follows immediately from the definition of K. Conversely, 

let ccMin(C) such that pc++*ri. Let c’ be the suffix of c such that c=pc.c’. As tf* is 

preserved by right concatenation, c ++* ri.c’. By Claim 2, Ipcl = ( ri I; hence, 

ri.c’EMin(C). Furthermore, C’=E if lril <m; so, ~~,.~.=r~. Finally, CE I$. 

(iii) Proof of (1). Let C be an equivalence class of VPcRJ according to tt*, and we 

want to show that there exists a unique i such that CE K. 

Existence: Let cEMin(C). As CE VPcRj, pc~ VPcRI. Furthermore, I pc I d m; hence pc~ E. 

So, there exists (a unique) 1 < i<p such that pctf* ri; and, by Claim 3, CE 6. 
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Unicity: Let c,dEMin(C) such that Pc=ri and Pd=rj. We have c++*d and Icl=ldl. 
If I c I <m then pc = c and pd = d; then pc tf* pd and, hence, ri tf* Yj. 

If Icl>m then Iril=lpcl=m=lrjl=lp,l. Let C’ be such that c=p,.c’. SO, ri.c’w*d 
and, by Claim 1, there exists w such that w ++*ri and d=w.c’. By Claim 2, Iwl=m; 
then w = pd and, SO, ri -* rj. 

In all cases ri ** rj; hence i = j. 
(iv) Proof of (2). Let CE K: there exists cEMin(C) such that pc=ri. 
If lcl<m then pc=c. SO, c=ri; then P(R),=P(R),<. 
If ICI >m then lril = lpcl =m. Let c’ be such that c=p,.c’. By Claim 1, we obtain 

P(R),= {u.cf 2 v.c) 1 (u -2 v)EP(R),i} 

which is isomorphic to P(R),i. 
(v) Proof of (3). Suppose that # E # 1 and we show that I ri I = m. AS [ri] E 6, there 

exists CEE such that C#[ri]. So, there exists cEMin(C) such that pc=ri. Since 

C#[ri], pc#c; hence, Icl>m. So, lril=m. Therefore, if IrJ<m then #I$=l. 

Suppose that Iril=m and we show that # K=co. Let VEX* and cEMin([riu]). 

As c c-t* riv, I ri I = m and, by Claim 1, there exists w such that w +-+* ri and c = WV. By 

Claim 2, I w I = I ril = m. Therefore, w =pc and, hence, pc c-f* ri. By Claim 3, [ria]E K 

for any VEX*. Furthermore, if [rin] = [riv] then riu ++* riv and, by Claim 1, we obtain 

u=v. Eventually # I$=cc if IrJ=m. 0 

The construction of Theorem 2.13 is illustrated in Fig. 6. 

From Theorem 2.13 and [S], every closed monadic second-order formula of 

prefix-rewriting step is decidable. 

Corollary 2.14. The monadic second-order theory of the prefix-rewriting step on words 
is decidable. 

For instance, the termination and the confluence of the prefix-rewriting step is 

decidable (short proofs can be found in [S]). 

We shall now reconsider the result of Muller and Schupp [14]. The next definition 

translates their notion of finite decomposition into the framework of generating 

grammars. 

Definition 2.15. A uniform grammar is a connected graph grammar in standard form 

in which all rulefs,... s,-+H of G satisfies the additional conditions: 

(i) every terminal arc of H goes through at least one si, 

(ii) every vertex of a nonterminal hyperarc of H also belongs to a terminal arc of H. 

For instance, the grammar of Fig. 2 is uniform. It is obvious to see that context-free 
graphs, defined in [14], are the rooted pattern graphs generated by uniform gram- 

mars. So, a context-free graph is a finite-degree pattern graph. Our goal is to prove 

constructively Theorem 2.6 of [14]. 
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Let R be the rewriting system on ({A, B}, {a, b}) defined as follows: 

a 

R={AAdA,Bb-All}. 

The construction of Theorem 2.13 gives the set E/ A ={ {A, AA},{B,AB), {BA}, {El?)} and the grammar 

X Y x1 x2 x3 x4 Y Y 

X, 
de . . . . ; + . c3 f4 

w TV, 69 

x2 b Y2 Y2 z2 

;B, 

-_) m-0 ; 

Gb 

-_) .-a ; 
z2 Z2 

+ .A. 

@I W) G“v c-w 

x3 b Y3 Y3 z3 z3 z3 
. -be-.;. + .-a ; . --& .-a 

x4 b Y4 Y4 z4 

&) 

+ a-9 ; 

& 

--_) .-a ; 
z4 z4 

+ .-a 

@W W) &A) (W 

This grammar generates from X the prefix transition graph P(R) of R, represented by 

.A.. . _a . . . . 
b 

.*.A.. . _a . . . . 

. . . . 

. . . . 

. . . . 

Fig. 6. Extraction of a graph grammar from a prefix transition graph. 

c, 

Theorem 2.16. Context-free graphs coincide eflectively with pushdown transition 

graphs. 

From Propositions 2.6 and 1.7, to every uniform grammar corresponds effectively 

a pushdown automaton whose transition graph is generated by the grammar. The 

converse follows from Proposition 2.7 and from the proposition below, which states 

effectively that every finite-degree and connected pattern graph can be generated by 

a uniform grammar. 

Proposition 2.17. Any pair (G, M) of a deterministic graph grammar G and of a ftnite 

hypergraph M such that G”(M) is a connected and nonempty graph ofjinite degree, may 

be effectively transformed into a uniform grammar H such that H”(M) is equal to 

G”(M). 
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Proof. From Lemma 2.5, we may assume that G is in standard form and connected, 

and that M is a hyperarc in Dam(G). After a possible renaming of labels (and 

provided, we add new rules), we further suppose that every hypergraph of Im(G) does 

not have two nonterminal hyperarcs with the same label. Finally, and after a possible 

renaming of vertices, we may assume that hypergraphs of Im(G) have no common 

vertex. 

Let V be the vertex set of the right members of G and N be the set of nonterminals. 

We consider a total order d on V. N * preserved by right concatenation, and for all 

graph C with vertices in V. N * and every nonterminal word u, we write 

the suffixing of the vertices of C by U, 

the right quotient of C by a, and sc the greater common suffix in N * of vertices in C. 

We need a representative R(G, M) of the pattern graphs G”(M) where vertices have 

canonical names: R(G, M) is the connected prefix transition graph P(R)M(z, contain- 

ing a vertex of M (for instance, the first vertex M(2) of M), where R is the following 

rewriting system: 

fW)={~&)-e, px(t)l 33, (X,H)EG A (~2 ~)EH A a$N}, 

where px is defined as in Proposition 2.6. We check that R(G, M) is G”(M). 
We give another definition of R(G, M). Consider a sequence (N,,,fn)nao, where N, is 

a hypergraph with vertices in I’. N * and fn is an injection of nonterminal hyperarcs of 

N, into N *. We shall set R(G, M)= U,,[N,,]. This sequence is defined as follows: 

N,=(M) and fO(M)=&, 

N .+I=CNI~U{G~IX~N, A XUkN), 

where for every nonterminal hyperarc X of N, and for the rule (Y, K) of G such that 

Y(l)=X(l), we have 

G,=(fg,(s,)...gx(s,)lfs,...~,EK}, 

where for every vertex s in K, gx(s) is defined by 

gx(s)=s.f,(X) ifs is not a vertex of a nonterminal hyperarc of K 

gx(s)= U(i). U(l).f,(X) ifs is the ith vertex of a nonterminal hyperarc V of 

K and U is the left member hyperarc of the rule in G with the same 

label U(l)= V(1) as V (such a V’ is unique because G is separated), 

and for every nonterminal hyperarc Z of Gx, 

fn+~~~~~~~x~~~~~~...~x~~~I~I~~~=~~~~.f,~~~; 
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that is, we push (on the left side) the label of a nonterminal hyperarc before deriving it. 

So, each vertex in N, is a word giving its place in its pattern (first letter) and the way it 

was obtained. 

Figure 7 gives an example of representative. For every n 30, we determine the 

restriction 

G,={fst~R(G,M)ld(s,M)<n V d(t,M)<n} 

of R(G, M) to the vertices s whose distance d(s, M) at M is at most II- 1. Then Go =8 

and as G is in Greibach form, G, c [Nn]. The grammar H, to be constructed satisfying 

the proposition, must be able to generate from M in II steps of parallel rewritings, 

a graph having G, as set of terminal arcs. With the exception of M(l), a nonterminal of 

H will be a couple (P, Q), where P is a finite set of terminal arcs with vertices in V. N *, 

and Q is a subset of vertices of P. 
Let n> 1. We will determine a set M, of nonterminal hyperarcs allowing the 

generation of the graph R(G, M) - G, according to H. To this aim, we determine the 

connected components D1, . . , D, of N, + 1 -G,. For 1 < idp, we consider the set 

Ci={fst~DiIf~N A (sEVG, V t~VG,)} 

of terminal arcs of Di having a vertex in G,. The hypergraph M, is defined by 

M,={(Ci.(sc,)Y1,(VC, n vG,).(sCi)-l).(ui,l)...(ui,q,)l lGi<P 

A {“i.lr...,ui,q, }= &,n vGn A Vj, 1 dj<qi, ui,j<ui,j+l}. 

The grammar H we look for, is defined as the union of a sequence of grammars 

(H&I. This sequence is inductively constructed as follows: 

HI ={(M> GI ~MI)} 

and 

H ,,+ I = {(X.(sJ’, C.(s,)-‘) 1 XEM, A X(l)$P, A C is the connected 

component of (G,+ 1 - G,) u M, + 1 having the vertices of X }, 

where P, is the set of the nonterminals of H,, . . . . H,. 
To prove the finiteness of H, it suffices to show that there exists only a finite number 

of possible nonterminals for H. Again, it suffices to find a bound on the distance in 

R(G, M) of vertices common to C and G,, for every n and every connected component 

C of R(G, M)-G,. 
Because G is connected, the integer b = max {d,(,, YI(s, t) I 3( Y, K)EG, s, TV VK} is 

well-defined. Let us consider a connected component C of R(G, M) - G, for any n, and 

vertices s and t common to C and G,. We want to find an upper bound depending on 

b of the distance dR(G,M)(~,t). Let us take a vertex u of C with minimal length. As 

R(G, M) is connected, there exists a path of minimal length dR(G,MJ(~, M). The 

grammar G being in Greibach form, this path goes through the “pattern” of U, that is 
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through a vertex u with the same suffix in N* as U, i.e. v(2)...u(~u~)=~(2)...u(~~~)=s~. 

Also &(G,M@, r)<d R(G,yj(~(l), u(1)) for the rule (Y, K) of G such that u(1) is a vertex 

in K; hence, dRtG,Mj(u, u) < b. Since s is a “border” vertex of C and G,, and u is a vertex 

of C, we have dR(G,M)(s,M)bdR(G,M)(U,M); then 

So> dR(G,M)(S,U)~dR(G,M)(U,U)~b; hence, ~~(~,M)(U,S)~~~(G,M)(U,~)+~R(G,M)(~,S)~~~ 

and the same holds for dRcG,Mj(u, t). Consequently, dRcG,MJ(s, t)d4b, which is enough 

to prove the finiteness of H. So, there exists an m such that H,+ 1 =@. Then 

H = u (H, 1 1 d n d m} is effectively computable because the H, are. By construction 

MEDom(H), H is uniform, and R(G,M) is isomorphic to H”(M); therefore, 

H”(M) = G”(M). 0 

The construction in the above proof is illustrated in Fig. 7. 

Let us consider the following (nonuniform) grammar G: 

(1) b 
l -* 

.-. 
0 d 

The representative R(G, Al) of G”(A1) is the following graph: 

_- 

The transformation in the proof of Proposition 2.17 gives the following uniform grammar H: 

A 

h) 

(1) b (3B) (38) b OBB) 

+ ‘q ; iE + :g ; ‘i: + O;gjyI 

Fi (;B) (2) d (4B) & (4) d (4B) 

where 
b c ‘I d 

E=({3B-3BB,3BB-3B,38-4B,4B-2},{2,3B}) 

b d 
F=({3B-3BB,3BB~3B,3B~4B,4B--t4),{4,3B)) 

with the natural order on { 1,2,3,4} extended lexicographically on { 1,2,3,4} .B*. 
Hence, H”(Al)=G”(Al). 

Fig. 7. Transformation of a grammar into a uniform grammar. 
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A noneffective version of Proposition 2.17 has been given by Bauderon [3]. After 

Propositions 2.17 and 2.7, we can decide that two accessible (connected) prefix 

transition graphs of word-rewriting systems are isomorphic with respect to some 

given vertices (i.e. the isomorphism is given on a pair of vertices, say on the roots). 

Proposition 2.18. From all triples (R, r, r’) and (S, s, s’) consisting of a rewriting system, 

a word and a vertex of the accessible (connected) prefix transition graph, we can decide 

whether there exists an isomorphism ffiom P(R, r) to P(S, s) (from P(R), to P(S),) such 

that f (r’) = s’. 

Proof. From Proposition 2.7 (Theorem 2.11) and Proposition 2.17, we transform 

(R, r, r’) into a uniform grammar G and an axiom aOr’ such that the prefix transition 

graph of R accessible from r is the graph generated by G from aor’, i.e. 

P(R,r)= G”(aor’) (P(R),.=GO(a,r’)). In the same way, we transform (S,s,s’) into 

(H, bos’). Let us denote by NG (NH) the set of nonterminals in G (H). We will now 

compare the right members of the uniform grammar rules G and H, starting from the 

right members associated to a, and bo: two such hypergraphs are comparable if there 

exists an isomorphism identifying their terminal arcs, and associating to every nonter- 

minal hyperarc of the first one, a nonterminal of the other, up to a permutation of 

vertices. To compare the right members of G and H, consider the set E of words 

e=(a, b)n (l)...z(n); where a and b are nonterminals of arity n, from G and H, 

respectively, and 71 is a permutation of { 1, . . , n}. With such a word e of E and given the 

rules (asl...s,+P) in G and (bt,...t, -Q) in H, we associate the finite set B, of the 

bijections h of the vertices of P onto the vertices of Q, such that the following 

conditions hold: 

h(si)=t,(i, for 1 didn, 

CX~...X,EP A c$No o ch(x,)...h(x,)EQ A c$NH, 

CX~...X,EP A L-EN, =c- 3dy,...y,EQ, dEN, 

A (~1, . . ..~m}={&). . ...%,)}, 

dy,...y,EQ A dEN, * ~cx~...x,EP, CEN, 

A {Y 1,...,ym}=(h(x1),...,h(x,)}; 

we denote by E,,h the set of such words (c, d)o(l) . ..o(m) where CENG and h(xi)=y,(i, 

for l<i<m. 

Hence, there exists an isomorphism f of P(R, r) onto P(S, s) such that f (r’) = s’ if and 

only if there exists a directed unlabelled graph C, with vertices in E, such that (ao, b,) 1 

is a vertex of C and if e=(a, b)z(l).. .x(n) is a vertex of C then there exists a bijection 

h of B, for which Ee,h is the set of targets of arcs in C starting at e. Since the set C of 

such graphs is finite and constructible, we can decide on the isomorphism of P(R,r) 

and P(S,s) (P(R),. and P(S),) associating r’ with s’. 0 
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Let us note that Proposition 2.18 is also a consequence of Proposition 2.7 and of 

Corollary 4.5 of [9]. 
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